- tmp/tmpd3v5h117/{from.md → to.md} +30 -125
tmp/tmpd3v5h117/{from.md → to.md}
RENAMED
|
@@ -26,14 +26,12 @@ long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
|
| 26 |
```
|
| 27 |
|
| 28 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 29 |
of their respective arguments `n`, `m`, and `x`.
|
| 30 |
|
| 31 |
-
*Returns:*
|
| 32 |
-
|
| 33 |
-
\text{ ,\quad for $x \ge 0$,}$$ where n is `n`, m is `m`, and x is
|
| 34 |
-
`x`.
|
| 35 |
|
| 36 |
*Remarks:* The effect of calling each of these functions is
|
| 37 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 38 |
|
| 39 |
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
|
@@ -45,14 +43,12 @@ long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
|
| 45 |
```
|
| 46 |
|
| 47 |
*Effects:* These functions compute the associated Legendre functions of
|
| 48 |
their respective arguments `l`, `m`, and `x`.
|
| 49 |
|
| 50 |
-
*Returns:*
|
| 51 |
-
|
| 52 |
-
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l`, m is `m`, and x is
|
| 53 |
-
`x`.
|
| 54 |
|
| 55 |
*Remarks:* The effect of calling each of these functions is
|
| 56 |
*implementation-defined* if `l >= 128`.
|
| 57 |
|
| 58 |
#### Beta function <a id="sf.cmath.beta">[[sf.cmath.beta]]</a>
|
|
@@ -64,13 +60,11 @@ long double betal(long double x, long double y);
|
|
| 64 |
```
|
| 65 |
|
| 66 |
*Effects:* These functions compute the beta function of their respective
|
| 67 |
arguments `x` and `y`.
|
| 68 |
|
| 69 |
-
*Returns:*
|
| 70 |
-
$$\mathsf{B}(x, y) = \frac{\Gamma(x) \, \Gamma(y)}{\Gamma(x + y)}
|
| 71 |
-
\text{ ,\quad for $x > 0$,\, $y > 0$,}$$ where x is `x` and y is `y`.
|
| 72 |
|
| 73 |
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 74 |
|
| 75 |
``` cpp
|
| 76 |
floating-point-type comp_ellint_1(floating-point-type k);
|
|
@@ -79,13 +73,11 @@ long double comp_ellint_1l(long double k);
|
|
| 79 |
```
|
| 80 |
|
| 81 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 82 |
first kind of their respective arguments `k`.
|
| 83 |
|
| 84 |
-
*Returns:*
|
| 85 |
-
$$\mathsf{K}(k) = \mathsf{F}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 86 |
-
where k is `k`.
|
| 87 |
|
| 88 |
See also [[sf.cmath.ellint.1]].
|
| 89 |
|
| 90 |
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 91 |
|
|
@@ -96,13 +88,11 @@ long double comp_ellint_2l(long double k);
|
|
| 96 |
```
|
| 97 |
|
| 98 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 99 |
second kind of their respective arguments `k`.
|
| 100 |
|
| 101 |
-
*Returns:*
|
| 102 |
-
$$\mathsf{E}(k) = \mathsf{E}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 103 |
-
where k is `k`.
|
| 104 |
|
| 105 |
See also [[sf.cmath.ellint.2]].
|
| 106 |
|
| 107 |
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 108 |
|
|
@@ -113,13 +103,12 @@ long double comp_ellint_3l(long double k, long double nu);
|
|
| 113 |
```
|
| 114 |
|
| 115 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 116 |
third kind of their respective arguments `k` and `nu`.
|
| 117 |
|
| 118 |
-
*Returns:*
|
| 119 |
-
|
| 120 |
-
where k is `k` and $\nu$ is `nu`.
|
| 121 |
|
| 122 |
See also [[sf.cmath.ellint.3]].
|
| 123 |
|
| 124 |
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 125 |
|
|
@@ -130,14 +119,12 @@ long double cyl_bessel_il(long double nu, long double x);
|
|
| 130 |
```
|
| 131 |
|
| 132 |
*Effects:* These functions compute the regular modified cylindrical
|
| 133 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 134 |
|
| 135 |
-
*Returns:* $
|
| 136 |
-
|
| 137 |
-
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
|
| 138 |
-
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
| 139 |
|
| 140 |
*Remarks:* The effect of calling each of these functions is
|
| 141 |
*implementation-defined* if `nu >= 128`.
|
| 142 |
|
| 143 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
@@ -151,13 +138,12 @@ long double cyl_bessel_jl(long double nu, long double x);
|
|
| 151 |
```
|
| 152 |
|
| 153 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 154 |
the first kind of their respective arguments `nu` and `x`.
|
| 155 |
|
| 156 |
-
*Returns:* $
|
| 157 |
-
|
| 158 |
-
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
| 159 |
|
| 160 |
*Remarks:* The effect of calling each of these functions is
|
| 161 |
*implementation-defined* if `nu >= 128`.
|
| 162 |
|
| 163 |
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
|
@@ -169,32 +155,12 @@ long double cyl_bessel_kl(long double nu, long double x);
|
|
| 169 |
```
|
| 170 |
|
| 171 |
*Effects:* These functions compute the irregular modified cylindrical
|
| 172 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 173 |
|
| 174 |
-
*Returns:* $$
|
| 175 |
-
|
| 176 |
-
(\pi/2)i^{\nu+1} ( \mathsf{J}_\nu(ix)
|
| 177 |
-
+ i \mathsf{N}_\nu(ix)
|
| 178 |
-
)
|
| 179 |
-
=
|
| 180 |
-
\left\{
|
| 181 |
-
\begin{array}{cl}
|
| 182 |
-
\displaystyle
|
| 183 |
-
\frac{\pi}{2}
|
| 184 |
-
\frac{\mathsf{I}_{-\nu}(x) - \mathsf{I}_{\nu}(x)}
|
| 185 |
-
{\sin \nu\pi },
|
| 186 |
-
& \mbox{for $x \ge 0$ and non-integral $\nu$}
|
| 187 |
-
\\
|
| 188 |
-
\\
|
| 189 |
-
\displaystyle
|
| 190 |
-
\frac{\pi}{2}
|
| 191 |
-
\lim_{\mu \rightarrow \nu} \frac{\mathsf{I}_{-\mu}(x) - \mathsf{I}_{\mu}(x)}
|
| 192 |
-
{\sin \mu\pi },
|
| 193 |
-
& \mbox{for $x \ge 0$ and integral $\nu$}
|
| 194 |
-
\end{array}
|
| 195 |
-
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 196 |
|
| 197 |
*Remarks:* The effect of calling each of these functions is
|
| 198 |
*implementation-defined* if `nu >= 128`.
|
| 199 |
|
| 200 |
See also [[sf.cmath.cyl.bessel.i]], [[sf.cmath.cyl.bessel.j]],
|
|
@@ -210,26 +176,12 @@ long double cyl_neumannl(long double nu, long double x);
|
|
| 210 |
|
| 211 |
*Effects:* These functions compute the cylindrical Neumann functions,
|
| 212 |
also known as the cylindrical Bessel functions of the second kind, of
|
| 213 |
their respective arguments `nu` and `x`.
|
| 214 |
|
| 215 |
-
*Returns:* $$
|
| 216 |
-
|
| 217 |
-
\left\{
|
| 218 |
-
\begin{array}{cl}
|
| 219 |
-
\displaystyle
|
| 220 |
-
\frac{\mathsf{J}_\nu(x) \cos \nu\pi - \mathsf{J}_{-\nu}(x)}
|
| 221 |
-
{\sin \nu\pi },
|
| 222 |
-
& \mbox{for $x \ge 0$ and non-integral $\nu$}
|
| 223 |
-
\\
|
| 224 |
-
\\
|
| 225 |
-
\displaystyle
|
| 226 |
-
\lim_{\mu \rightarrow \nu} \frac{\mathsf{J}_\mu(x) \cos \mu\pi - \mathsf{J}_{-\mu}(x)}
|
| 227 |
-
{\sin \mu\pi },
|
| 228 |
-
& \mbox{for $x \ge 0$ and integral $\nu$}
|
| 229 |
-
\end{array}
|
| 230 |
-
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 231 |
|
| 232 |
*Remarks:* The effect of calling each of these functions is
|
| 233 |
*implementation-defined* if `nu >= 128`.
|
| 234 |
|
| 235 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
@@ -244,13 +196,11 @@ long double ellint_1l(long double k, long double phi);
|
|
| 244 |
|
| 245 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 246 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 247 |
measured in radians).
|
| 248 |
|
| 249 |
-
*Returns:*
|
| 250 |
-
\int_0^\phi \! \frac{\mathsf{d}\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
|
| 251 |
-
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 252 |
|
| 253 |
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 254 |
|
| 255 |
``` cpp
|
| 256 |
floating-point-type ellint_2(floating-point-type k, floating-point-type phi);
|
|
@@ -260,13 +210,11 @@ long double ellint_2l(long double k, long double phi);
|
|
| 260 |
|
| 261 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 262 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 263 |
measured in radians).
|
| 264 |
|
| 265 |
-
*Returns:*
|
| 266 |
-
$$\mathsf{E}(k, \phi) = \int_0^\phi \! \sqrt{1 - k^2 \sin^2 \theta} \, \mathsf{d}\theta
|
| 267 |
-
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 268 |
|
| 269 |
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 270 |
|
| 271 |
``` cpp
|
| 272 |
floating-point-type ellint_3(floating-point-type k, floating-point-type nu,
|
|
@@ -277,13 +225,12 @@ long double ellint_3l(long double k, long double nu, long double phi);
|
|
| 277 |
|
| 278 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 279 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 280 |
measured in radians).
|
| 281 |
|
| 282 |
-
*Returns:* $
|
| 283 |
-
|
| 284 |
-
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
| 285 |
|
| 286 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 287 |
|
| 288 |
``` cpp
|
| 289 |
floating-point-type expint(floating-point-type x);
|
|
@@ -292,15 +239,11 @@ long double expintl(long double x);
|
|
| 292 |
```
|
| 293 |
|
| 294 |
*Effects:* These functions compute the exponential integral of their
|
| 295 |
respective arguments `x`.
|
| 296 |
|
| 297 |
-
*Returns:*
|
| 298 |
-
\mathsf{Ei}(x) =
|
| 299 |
-
- \int_{-x}^\infty \frac{e^{-t}}
|
| 300 |
-
{t } \, \mathsf{d}t
|
| 301 |
-
\;$$ where x is `x`.
|
| 302 |
|
| 303 |
#### Hermite polynomials <a id="sf.cmath.hermite">[[sf.cmath.hermite]]</a>
|
| 304 |
|
| 305 |
``` cpp
|
| 306 |
floating-point-type hermite(unsigned n, floating-point-type x);
|
|
@@ -309,15 +252,11 @@ long double hermitel(unsigned n, long double x);
|
|
| 309 |
```
|
| 310 |
|
| 311 |
*Effects:* These functions compute the Hermite polynomials of their
|
| 312 |
respective arguments `n` and `x`.
|
| 313 |
|
| 314 |
-
*Returns:*
|
| 315 |
-
\mathsf{H}_n(x) =
|
| 316 |
-
(-1)^n e^{x^2} \frac{ \mathsf{d} ^n}
|
| 317 |
-
{ \mathsf{d}x^n} \, e^{-x^2}
|
| 318 |
-
\;$$ where n is `n` and x is `x`.
|
| 319 |
|
| 320 |
*Remarks:* The effect of calling each of these functions is
|
| 321 |
*implementation-defined* if `n >= 128`.
|
| 322 |
|
| 323 |
#### Laguerre polynomials <a id="sf.cmath.laguerre">[[sf.cmath.laguerre]]</a>
|
|
@@ -329,13 +268,11 @@ long double laguerrel(unsigned n, long double x);
|
|
| 329 |
```
|
| 330 |
|
| 331 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 332 |
respective arguments `n` and `x`.
|
| 333 |
|
| 334 |
-
*Returns:*
|
| 335 |
-
\frac{e^x}{n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} \, (x^n e^{-x})
|
| 336 |
-
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
| 337 |
|
| 338 |
*Remarks:* The effect of calling each of these functions is
|
| 339 |
*implementation-defined* if `n >= 128`.
|
| 340 |
|
| 341 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
@@ -347,14 +284,11 @@ long double legendrel(unsigned l, long double x);
|
|
| 347 |
```
|
| 348 |
|
| 349 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 350 |
respective arguments `l` and `x`.
|
| 351 |
|
| 352 |
-
*Returns:*
|
| 353 |
-
\frac{1}{2^\ell \, \ell!}
|
| 354 |
-
\frac{\mathsf{d}^\ell}{\mathsf{d}x^\ell} \, (x^2 - 1) ^ \ell
|
| 355 |
-
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l` and x is `x`.
|
| 356 |
|
| 357 |
*Remarks:* The effect of calling each of these functions is
|
| 358 |
*implementation-defined* if `l >= 128`.
|
| 359 |
|
| 360 |
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
|
@@ -366,32 +300,11 @@ long double riemann_zetal(long double x);
|
|
| 366 |
```
|
| 367 |
|
| 368 |
*Effects:* These functions compute the Riemann zeta function of their
|
| 369 |
respective arguments `x`.
|
| 370 |
|
| 371 |
-
*Returns:*
|
| 372 |
-
\mathsf{\zeta}(x) =
|
| 373 |
-
\left\{
|
| 374 |
-
\begin{array}{cl}
|
| 375 |
-
\displaystyle
|
| 376 |
-
\sum_{k=1}^\infty k^{-x},
|
| 377 |
-
& \mbox{for $x > 1$}
|
| 378 |
-
\\
|
| 379 |
-
\\
|
| 380 |
-
\displaystyle
|
| 381 |
-
\frac{1}
|
| 382 |
-
{1 - 2^{1-x}}
|
| 383 |
-
\sum_{k=1}^\infty (-1)^{k-1} k^{-x},
|
| 384 |
-
& \mbox{for $0 \le x \le 1$}
|
| 385 |
-
\\
|
| 386 |
-
\\
|
| 387 |
-
\displaystyle
|
| 388 |
-
2^x \pi^{x-1} \sin(\frac{\pi x}{2}) \, \Gamma(1-x) \, \zeta(1-x),
|
| 389 |
-
& \mbox{for $x < 0$}
|
| 390 |
-
\end{array}
|
| 391 |
-
\right.
|
| 392 |
-
\;$$ where x is `x`.
|
| 393 |
|
| 394 |
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 395 |
|
| 396 |
``` cpp
|
| 397 |
floating-point-type sph_bessel(unsigned n, floating-point-type x);
|
|
@@ -400,13 +313,11 @@ long double sph_bessell(unsigned n, long double x);
|
|
| 400 |
```
|
| 401 |
|
| 402 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 403 |
first kind of their respective arguments `n` and `x`.
|
| 404 |
|
| 405 |
-
*Returns:*
|
| 406 |
-
$$\mathsf{j}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{J}_{n + 1\!/\!2}(x) \text{ ,\quad for $x \ge 0$,}$$
|
| 407 |
-
where n is `n` and x is `x`.
|
| 408 |
|
| 409 |
*Remarks:* The effect of calling each of these functions is
|
| 410 |
*implementation-defined* if `n >= 128`.
|
| 411 |
|
| 412 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
@@ -421,16 +332,12 @@ long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
| 421 |
|
| 422 |
*Effects:* These functions compute the spherical associated Legendre
|
| 423 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 424 |
measured in radians).
|
| 425 |
|
| 426 |
-
*Returns:*
|
| 427 |
-
|
| 428 |
-
(-1)^m \left[\frac{(2 \ell + 1)}{4 \pi} \frac{(\ell - m)!}{(\ell + m)!}\right]^{1/2}
|
| 429 |
-
\mathsf{P}_\ell^m (\cos\theta) e^{i m \phi}
|
| 430 |
-
\text{ ,\quad for $|m| \le \ell$,}$$ and l is `l`, m is `m`, and θ
|
| 431 |
-
is `theta`.
|
| 432 |
|
| 433 |
*Remarks:* The effect of calling each of these functions is
|
| 434 |
*implementation-defined* if `l >= 128`.
|
| 435 |
|
| 436 |
See also [[sf.cmath.assoc.legendre]].
|
|
@@ -445,13 +352,11 @@ long double sph_neumannl(unsigned n, long double x);
|
|
| 445 |
|
| 446 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 447 |
known as the spherical Bessel functions of the second kind, of their
|
| 448 |
respective arguments `n` and `x`.
|
| 449 |
|
| 450 |
-
*Returns:*
|
| 451 |
-
$$\mathsf{n}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{N}_{n + 1\!/\!2}(x)
|
| 452 |
-
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
| 453 |
|
| 454 |
*Remarks:* The effect of calling each of these functions is
|
| 455 |
*implementation-defined* if `n >= 128`.
|
| 456 |
|
| 457 |
See also [[sf.cmath.cyl.neumann]].
|
|
|
|
| 26 |
```
|
| 27 |
|
| 28 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 29 |
of their respective arguments `n`, `m`, and `x`.
|
| 30 |
|
| 31 |
+
*Returns:* Lₙᵐ(x), where Lₙᵐ is given by , Lₙ₊ₘ is given by , n is `n`,
|
| 32 |
+
m is `m`, and x is `x`.
|
|
|
|
|
|
|
| 33 |
|
| 34 |
*Remarks:* The effect of calling each of these functions is
|
| 35 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 36 |
|
| 37 |
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
|
|
|
| 43 |
```
|
| 44 |
|
| 45 |
*Effects:* These functions compute the associated Legendre functions of
|
| 46 |
their respective arguments `l`, `m`, and `x`.
|
| 47 |
|
| 48 |
+
*Returns:* P_ℓ^m(x), where P_ℓ^m is given by , P_ℓ is given by , ℓ is
|
| 49 |
+
`l`, m is `m`, and x is `x`.
|
|
|
|
|
|
|
| 50 |
|
| 51 |
*Remarks:* The effect of calling each of these functions is
|
| 52 |
*implementation-defined* if `l >= 128`.
|
| 53 |
|
| 54 |
#### Beta function <a id="sf.cmath.beta">[[sf.cmath.beta]]</a>
|
|
|
|
| 60 |
```
|
| 61 |
|
| 62 |
*Effects:* These functions compute the beta function of their respective
|
| 63 |
arguments `x` and `y`.
|
| 64 |
|
| 65 |
+
*Returns:* B(x, y), where B is given by , x is `x` and y is `y`.
|
|
|
|
|
|
|
| 66 |
|
| 67 |
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 68 |
|
| 69 |
``` cpp
|
| 70 |
floating-point-type comp_ellint_1(floating-point-type k);
|
|
|
|
| 73 |
```
|
| 74 |
|
| 75 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 76 |
first kind of their respective arguments `k`.
|
| 77 |
|
| 78 |
+
*Returns:* K(k), where K is given by and k is `k`.
|
|
|
|
|
|
|
| 79 |
|
| 80 |
See also [[sf.cmath.ellint.1]].
|
| 81 |
|
| 82 |
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 83 |
|
|
|
|
| 88 |
```
|
| 89 |
|
| 90 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 91 |
second kind of their respective arguments `k`.
|
| 92 |
|
| 93 |
+
*Returns:* E(k), where E is given by and k is `k`.
|
|
|
|
|
|
|
| 94 |
|
| 95 |
See also [[sf.cmath.ellint.2]].
|
| 96 |
|
| 97 |
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 98 |
|
|
|
|
| 103 |
```
|
| 104 |
|
| 105 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 106 |
third kind of their respective arguments `k` and `nu`.
|
| 107 |
|
| 108 |
+
*Returns:* $\mathsf{\Pi}(\nu, k)$, where $\mathsf{\Pi}$ is given by , k
|
| 109 |
+
is `k`, and $\nu$ is `nu`.
|
|
|
|
| 110 |
|
| 111 |
See also [[sf.cmath.ellint.3]].
|
| 112 |
|
| 113 |
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 114 |
|
|
|
|
| 119 |
```
|
| 120 |
|
| 121 |
*Effects:* These functions compute the regular modified cylindrical
|
| 122 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 123 |
|
| 124 |
+
*Returns:* $\mathsf{I}_\nu(x)$, where $\mathsf{I}_\nu$ is given by ,
|
| 125 |
+
$\nu$ is `nu`, and x is `x`.
|
|
|
|
|
|
|
| 126 |
|
| 127 |
*Remarks:* The effect of calling each of these functions is
|
| 128 |
*implementation-defined* if `nu >= 128`.
|
| 129 |
|
| 130 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
|
|
| 138 |
```
|
| 139 |
|
| 140 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 141 |
the first kind of their respective arguments `nu` and `x`.
|
| 142 |
|
| 143 |
+
*Returns:* $\mathsf{J}_\nu(x)$, where $\mathsf{J}_\nu$ is given by ,
|
| 144 |
+
$\nu$ is `nu`, and x is `x`.
|
|
|
|
| 145 |
|
| 146 |
*Remarks:* The effect of calling each of these functions is
|
| 147 |
*implementation-defined* if `nu >= 128`.
|
| 148 |
|
| 149 |
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
|
|
|
| 155 |
```
|
| 156 |
|
| 157 |
*Effects:* These functions compute the irregular modified cylindrical
|
| 158 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 159 |
|
| 160 |
+
*Returns:* $\mathsf{K}_\nu(x)$, where $\mathsf{K}_\nu$ is given by ,
|
| 161 |
+
$\nu$ is `nu`, and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
*Remarks:* The effect of calling each of these functions is
|
| 164 |
*implementation-defined* if `nu >= 128`.
|
| 165 |
|
| 166 |
See also [[sf.cmath.cyl.bessel.i]], [[sf.cmath.cyl.bessel.j]],
|
|
|
|
| 176 |
|
| 177 |
*Effects:* These functions compute the cylindrical Neumann functions,
|
| 178 |
also known as the cylindrical Bessel functions of the second kind, of
|
| 179 |
their respective arguments `nu` and `x`.
|
| 180 |
|
| 181 |
+
*Returns:* $\mathsf{N}_\nu(x)$, where $\mathsf{N}_\nu$ is given by ,
|
| 182 |
+
$\nu$ is `nu`, and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
*Remarks:* The effect of calling each of these functions is
|
| 185 |
*implementation-defined* if `nu >= 128`.
|
| 186 |
|
| 187 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
|
|
| 196 |
|
| 197 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 198 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 199 |
measured in radians).
|
| 200 |
|
| 201 |
+
*Returns:* F(k, φ), where F is given by , k is `k`, and φ is `phi`.
|
|
|
|
|
|
|
| 202 |
|
| 203 |
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 204 |
|
| 205 |
``` cpp
|
| 206 |
floating-point-type ellint_2(floating-point-type k, floating-point-type phi);
|
|
|
|
| 210 |
|
| 211 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 212 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 213 |
measured in radians).
|
| 214 |
|
| 215 |
+
*Returns:* E(k, φ), where E is given by , k is `k`, and φ is `phi`.
|
|
|
|
|
|
|
| 216 |
|
| 217 |
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 218 |
|
| 219 |
``` cpp
|
| 220 |
floating-point-type ellint_3(floating-point-type k, floating-point-type nu,
|
|
|
|
| 225 |
|
| 226 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 227 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 228 |
measured in radians).
|
| 229 |
|
| 230 |
+
*Returns:* $\mathsf{\Pi}(\nu, k, \phi)$, where $\mathsf{\Pi}$ is given
|
| 231 |
+
by , $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
|
|
|
| 232 |
|
| 233 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 234 |
|
| 235 |
``` cpp
|
| 236 |
floating-point-type expint(floating-point-type x);
|
|
|
|
| 239 |
```
|
| 240 |
|
| 241 |
*Effects:* These functions compute the exponential integral of their
|
| 242 |
respective arguments `x`.
|
| 243 |
|
| 244 |
+
*Returns:* Ei(x), where Ei is given by and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
#### Hermite polynomials <a id="sf.cmath.hermite">[[sf.cmath.hermite]]</a>
|
| 247 |
|
| 248 |
``` cpp
|
| 249 |
floating-point-type hermite(unsigned n, floating-point-type x);
|
|
|
|
| 252 |
```
|
| 253 |
|
| 254 |
*Effects:* These functions compute the Hermite polynomials of their
|
| 255 |
respective arguments `n` and `x`.
|
| 256 |
|
| 257 |
+
*Returns:* Hₙ(x), where Hₙ is given by , n is `n`, and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
*Remarks:* The effect of calling each of these functions is
|
| 260 |
*implementation-defined* if `n >= 128`.
|
| 261 |
|
| 262 |
#### Laguerre polynomials <a id="sf.cmath.laguerre">[[sf.cmath.laguerre]]</a>
|
|
|
|
| 268 |
```
|
| 269 |
|
| 270 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 271 |
respective arguments `n` and `x`.
|
| 272 |
|
| 273 |
+
*Returns:* Lₙ(x), where Lₙ is given by , n is `n`, and x is `x`.
|
|
|
|
|
|
|
| 274 |
|
| 275 |
*Remarks:* The effect of calling each of these functions is
|
| 276 |
*implementation-defined* if `n >= 128`.
|
| 277 |
|
| 278 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
|
|
| 284 |
```
|
| 285 |
|
| 286 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 287 |
respective arguments `l` and `x`.
|
| 288 |
|
| 289 |
+
*Returns:* P_ℓ(x), where P_ℓ is given by , l is `l`, and x is `x`.
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
*Remarks:* The effect of calling each of these functions is
|
| 292 |
*implementation-defined* if `l >= 128`.
|
| 293 |
|
| 294 |
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
|
|
|
| 300 |
```
|
| 301 |
|
| 302 |
*Effects:* These functions compute the Riemann zeta function of their
|
| 303 |
respective arguments `x`.
|
| 304 |
|
| 305 |
+
*Returns:* ζ(x), where ζ is given by and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 308 |
|
| 309 |
``` cpp
|
| 310 |
floating-point-type sph_bessel(unsigned n, floating-point-type x);
|
|
|
|
| 313 |
```
|
| 314 |
|
| 315 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 316 |
first kind of their respective arguments `n` and `x`.
|
| 317 |
|
| 318 |
+
*Returns:* jₙ(x), where jₙ is given by , n is `n`, and x is `x`.
|
|
|
|
|
|
|
| 319 |
|
| 320 |
*Remarks:* The effect of calling each of these functions is
|
| 321 |
*implementation-defined* if `n >= 128`.
|
| 322 |
|
| 323 |
See also [[sf.cmath.cyl.bessel.j]].
|
|
|
|
| 332 |
|
| 333 |
*Effects:* These functions compute the spherical associated Legendre
|
| 334 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 335 |
measured in radians).
|
| 336 |
|
| 337 |
+
*Returns:* Y_ℓ^m(θ, 0), where Y_ℓ^m is given by , l is `l`, m is `m`,
|
| 338 |
+
and θ is `theta`.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
*Remarks:* The effect of calling each of these functions is
|
| 341 |
*implementation-defined* if `l >= 128`.
|
| 342 |
|
| 343 |
See also [[sf.cmath.assoc.legendre]].
|
|
|
|
| 352 |
|
| 353 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 354 |
known as the spherical Bessel functions of the second kind, of their
|
| 355 |
respective arguments `n` and `x`.
|
| 356 |
|
| 357 |
+
*Returns:* nₙ(x), where nₙ is given by , n is `n`, and x is `x`.
|
|
|
|
|
|
|
| 358 |
|
| 359 |
*Remarks:* The effect of calling each of these functions is
|
| 360 |
*implementation-defined* if `n >= 128`.
|
| 361 |
|
| 362 |
See also [[sf.cmath.cyl.neumann]].
|