- tmp/tmp3nw_lvln/{from.md → to.md} +79 -376
tmp/tmp3nw_lvln/{from.md → to.md}
RENAMED
|
@@ -8,54 +8,48 @@ a domain error for just those argument values for which:
|
|
| 8 |
- the function description’s *Returns:* clause explicitly specifies a
|
| 9 |
domain and those argument values fall outside the specified domain, or
|
| 10 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 11 |
component, or
|
| 12 |
- the corresponding mathematical function is not mathematically
|
| 13 |
-
defined.[^
|
| 14 |
|
| 15 |
Unless otherwise specified, each function is defined for all finite
|
| 16 |
values, for negative infinity, and for positive infinity.
|
| 17 |
|
| 18 |
-
#### Associated Laguerre polynomials <a id="sf.cmath.
|
| 19 |
|
| 20 |
``` cpp
|
| 21 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 22 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 23 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 24 |
```
|
| 25 |
|
| 26 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 27 |
of their respective arguments `n`, `m`, and `x`.
|
| 28 |
|
| 29 |
-
*Returns:* $$
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
{\mathsf{d}x ^ m} \, \mathsf{L}_{n+m}(x),
|
| 33 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n`, m is `m`, and x is
|
| 34 |
`x`.
|
| 35 |
|
| 36 |
*Remarks:* The effect of calling each of these functions is
|
| 37 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 38 |
|
| 39 |
-
#### Associated Legendre functions <a id="sf.cmath.
|
| 40 |
|
| 41 |
``` cpp
|
| 42 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 43 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 44 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 45 |
```
|
| 46 |
|
| 47 |
*Effects:* These functions compute the associated Legendre functions of
|
| 48 |
their respective arguments `l`, `m`, and `x`.
|
| 49 |
|
| 50 |
-
*Returns:* $$
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
\:
|
| 54 |
-
\frac{ \mathsf{d} ^ m}
|
| 55 |
-
{ \mathsf{d}x ^ m} \, \mathsf{P}_\ell(x),
|
| 56 |
-
\quad \mbox{for $|x| \le 1$}$$ where l is `l`, m is `m`, and x is
|
| 57 |
`x`.
|
| 58 |
|
| 59 |
*Remarks:* The effect of calling each of these functions is
|
| 60 |
*implementation-defined* if `l >= 128`.
|
| 61 |
|
|
@@ -68,115 +62,105 @@ long double betal(long double x, long double y);
|
|
| 68 |
```
|
| 69 |
|
| 70 |
*Effects:* These functions compute the beta function of their respective
|
| 71 |
arguments `x` and `y`.
|
| 72 |
|
| 73 |
-
*Returns:*
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
{ \Gamma(x+y) },
|
| 77 |
-
\quad \mbox{for $x > 0$,\, $y > 0$}$$ where x is `x` and y is
|
| 78 |
-
`y`.
|
| 79 |
|
| 80 |
-
#### Complete elliptic integral of the first kind <a id="sf.cmath.
|
| 81 |
|
| 82 |
``` cpp
|
| 83 |
double comp_ellint_1(double k);
|
| 84 |
float comp_ellint_1f(float k);
|
| 85 |
long double comp_ellint_1l(long double k);
|
| 86 |
```
|
| 87 |
|
| 88 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 89 |
first kind of their respective arguments `k`.
|
| 90 |
|
| 91 |
-
*Returns:*
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k`.
|
| 95 |
|
| 96 |
-
See also [[sf.cmath.
|
| 97 |
|
| 98 |
-
#### Complete elliptic integral of the second kind <a id="sf.cmath.
|
| 99 |
|
| 100 |
``` cpp
|
| 101 |
double comp_ellint_2(double k);
|
| 102 |
float comp_ellint_2f(float k);
|
| 103 |
long double comp_ellint_2l(long double k);
|
| 104 |
```
|
| 105 |
|
| 106 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 107 |
second kind of their respective arguments `k`.
|
| 108 |
|
| 109 |
-
*Returns:*
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k`.
|
| 113 |
|
| 114 |
-
See also [[sf.cmath.
|
| 115 |
|
| 116 |
-
#### Complete elliptic integral of the third kind <a id="sf.cmath.
|
| 117 |
|
| 118 |
``` cpp
|
| 119 |
double comp_ellint_3(double k, double nu);
|
| 120 |
float comp_ellint_3f(float k, float nu);
|
| 121 |
long double comp_ellint_3l(long double k, long double nu);
|
| 122 |
```
|
| 123 |
|
| 124 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 125 |
third kind of their respective arguments `k` and `nu`.
|
| 126 |
|
| 127 |
-
*Returns:*
|
| 128 |
-
|
| 129 |
-
|
| 130 |
|
| 131 |
-
See also [[sf.cmath.
|
| 132 |
|
| 133 |
-
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.
|
| 134 |
|
| 135 |
``` cpp
|
| 136 |
double cyl_bessel_i(double nu, double x);
|
| 137 |
float cyl_bessel_if(float nu, float x);
|
| 138 |
long double cyl_bessel_il(long double nu, long double x);
|
| 139 |
```
|
| 140 |
|
| 141 |
*Effects:* These functions compute the regular modified cylindrical
|
| 142 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 143 |
|
| 144 |
-
*Returns:* $$
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}
|
| 149 |
-
{k! \: \Gamma(\nu+k+1)},
|
| 150 |
-
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 151 |
|
| 152 |
*Remarks:* The effect of calling each of these functions is
|
| 153 |
*implementation-defined* if `nu >= 128`.
|
| 154 |
|
| 155 |
-
See also [[sf.cmath.
|
| 156 |
|
| 157 |
-
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.
|
| 158 |
|
| 159 |
``` cpp
|
| 160 |
double cyl_bessel_j(double nu, double x);
|
| 161 |
float cyl_bessel_jf(float nu, float x);
|
| 162 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 163 |
```
|
| 164 |
|
| 165 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 166 |
the first kind of their respective arguments `nu` and `x`.
|
| 167 |
|
| 168 |
-
*Returns:* $$
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
{k! \: \Gamma(\nu+k+1)},
|
| 172 |
-
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 173 |
|
| 174 |
*Remarks:* The effect of calling each of these functions is
|
| 175 |
*implementation-defined* if `nu >= 128`.
|
| 176 |
|
| 177 |
-
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.
|
| 178 |
|
| 179 |
``` cpp
|
| 180 |
double cyl_bessel_k(double nu, double x);
|
| 181 |
float cyl_bessel_kf(float nu, float x);
|
| 182 |
long double cyl_bessel_kl(long double nu, long double x);
|
|
@@ -209,14 +193,14 @@ Bessel functions of their respective arguments `nu` and `x`.
|
|
| 209 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 210 |
|
| 211 |
*Remarks:* The effect of calling each of these functions is
|
| 212 |
*implementation-defined* if `nu >= 128`.
|
| 213 |
|
| 214 |
-
See also [[sf.cmath.
|
| 215 |
-
[[sf.cmath.
|
| 216 |
|
| 217 |
-
#### Cylindrical Neumann functions <a id="sf.cmath.
|
| 218 |
|
| 219 |
``` cpp
|
| 220 |
double cyl_neumann(double nu, double x);
|
| 221 |
float cyl_neumannf(float nu, float x);
|
| 222 |
long double cyl_neumannl(long double nu, long double x);
|
|
@@ -244,13 +228,13 @@ their respective arguments `nu` and `x`.
|
|
| 244 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 245 |
|
| 246 |
*Remarks:* The effect of calling each of these functions is
|
| 247 |
*implementation-defined* if `nu >= 128`.
|
| 248 |
|
| 249 |
-
See also [[sf.cmath.
|
| 250 |
|
| 251 |
-
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.
|
| 252 |
|
| 253 |
``` cpp
|
| 254 |
double ellint_1(double k, double phi);
|
| 255 |
float ellint_1f(float k, float phi);
|
| 256 |
long double ellint_1l(long double k, long double phi);
|
|
@@ -258,17 +242,15 @@ long double ellint_1l(long double k, long double phi);
|
|
| 258 |
|
| 259 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 260 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 261 |
measured in radians).
|
| 262 |
|
| 263 |
-
*Returns:* $$
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
{\sqrt{1 - k^2 \sin^2 \theta}},
|
| 267 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k` and φ is `phi`.
|
| 268 |
|
| 269 |
-
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.
|
| 270 |
|
| 271 |
``` cpp
|
| 272 |
double ellint_2(double k, double phi);
|
| 273 |
float ellint_2f(float k, float phi);
|
| 274 |
long double ellint_2l(long double k, long double phi);
|
|
@@ -276,16 +258,15 @@ long double ellint_2l(long double k, long double phi);
|
|
| 276 |
|
| 277 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 278 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 279 |
measured in radians).
|
| 280 |
|
| 281 |
-
*Returns:*
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k` and φ is `phi`.
|
| 285 |
|
| 286 |
-
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.
|
| 287 |
|
| 288 |
``` cpp
|
| 289 |
double ellint_3(double k, double nu, double phi);
|
| 290 |
float ellint_3f(float k, float nu, float phi);
|
| 291 |
long double ellint_3l(long double k, long double nu, long double phi);
|
|
@@ -293,16 +274,13 @@ long double ellint_3l(long double k, long double nu, long double phi);
|
|
| 293 |
|
| 294 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 295 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 296 |
measured in radians).
|
| 297 |
|
| 298 |
-
*Returns:* $$
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} },
|
| 302 |
-
\quad \mbox{for $|k| \le 1$}$$ where $\nu$ is `nu`, k is `k`, and
|
| 303 |
-
φ is `phi`.
|
| 304 |
|
| 305 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 306 |
|
| 307 |
``` cpp
|
| 308 |
double expint(double x);
|
|
@@ -348,15 +326,13 @@ long double laguerrel(unsigned n, long double x);
|
|
| 348 |
```
|
| 349 |
|
| 350 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 351 |
respective arguments `n` and `x`.
|
| 352 |
|
| 353 |
-
*Returns:* $$
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
{ \mathsf{d}x ^ n} \, (x^n e^{-x}),
|
| 357 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 358 |
|
| 359 |
*Remarks:* The effect of calling each of these functions is
|
| 360 |
*implementation-defined* if `n >= 128`.
|
| 361 |
|
| 362 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
@@ -368,22 +344,19 @@ long double legendrel(unsigned l, long double x);
|
|
| 368 |
```
|
| 369 |
|
| 370 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 371 |
respective arguments `l` and `x`.
|
| 372 |
|
| 373 |
-
*Returns:* $$
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
\frac{ \mathsf{d} ^ \ell}
|
| 378 |
-
{ \mathsf{d}x ^ \ell} \, (x^2 - 1) ^ \ell,
|
| 379 |
-
\quad \mbox{for $|x| \le 1$}$$ where l is `l` and x is `x`.
|
| 380 |
|
| 381 |
*Remarks:* The effect of calling each of these functions is
|
| 382 |
*implementation-defined* if `l >= 128`.
|
| 383 |
|
| 384 |
-
#### Riemann zeta function <a id="sf.cmath.
|
| 385 |
|
| 386 |
``` cpp
|
| 387 |
double riemann_zeta(double x);
|
| 388 |
float riemann_zetaf(float x);
|
| 389 |
long double riemann_zetal(long double x);
|
|
@@ -413,32 +386,31 @@ respective arguments `x`.
|
|
| 413 |
& \mbox{for $x < 0$}
|
| 414 |
\end{array}
|
| 415 |
\right.
|
| 416 |
\;$$ where x is `x`.
|
| 417 |
|
| 418 |
-
#### Spherical Bessel functions of the first kind <a id="sf.cmath.
|
| 419 |
|
| 420 |
``` cpp
|
| 421 |
double sph_bessel(unsigned n, double x);
|
| 422 |
float sph_besself(unsigned n, float x);
|
| 423 |
long double sph_bessell(unsigned n, long double x);
|
| 424 |
```
|
| 425 |
|
| 426 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 427 |
first kind of their respective arguments `n` and `x`.
|
| 428 |
|
| 429 |
-
*Returns:*
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 433 |
|
| 434 |
*Remarks:* The effect of calling each of these functions is
|
| 435 |
*implementation-defined* if `n >= 128`.
|
| 436 |
|
| 437 |
-
See also [[sf.cmath.
|
| 438 |
|
| 439 |
-
#### Spherical associated Legendre functions <a id="sf.cmath.
|
| 440 |
|
| 441 |
``` cpp
|
| 442 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 443 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 444 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
@@ -446,30 +418,23 @@ long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
| 446 |
|
| 447 |
*Effects:* These functions compute the spherical associated Legendre
|
| 448 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 449 |
measured in radians).
|
| 450 |
|
| 451 |
-
*Returns:* $$
|
| 452 |
-
|
| 453 |
-
\
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
{4 \pi}
|
| 457 |
-
\frac{(\ell - m)!}
|
| 458 |
-
{(\ell + m)!}
|
| 459 |
-
\right]^{1/2}
|
| 460 |
-
\mathsf{P}_\ell^m
|
| 461 |
-
( \cos\theta ) e ^ {i m \phi},
|
| 462 |
-
\quad \mbox{for $|m| \le \ell$}$$ and l is `l`, m is `m`, and θ
|
| 463 |
is `theta`.
|
| 464 |
|
| 465 |
*Remarks:* The effect of calling each of these functions is
|
| 466 |
*implementation-defined* if `l >= 128`.
|
| 467 |
|
| 468 |
-
See also [[sf.cmath.
|
| 469 |
|
| 470 |
-
#### Spherical Neumann functions <a id="sf.cmath.
|
| 471 |
|
| 472 |
``` cpp
|
| 473 |
double sph_neumann(unsigned n, double x);
|
| 474 |
float sph_neumannf(unsigned n, float x);
|
| 475 |
long double sph_neumannl(unsigned n, long double x);
|
|
@@ -477,276 +442,14 @@ long double sph_neumannl(unsigned n, long double x);
|
|
| 477 |
|
| 478 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 479 |
known as the spherical Bessel functions of the second kind, of their
|
| 480 |
respective arguments `n` and `x`.
|
| 481 |
|
| 482 |
-
*Returns:*
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 486 |
|
| 487 |
*Remarks:* The effect of calling each of these functions is
|
| 488 |
*implementation-defined* if `n >= 128`.
|
| 489 |
|
| 490 |
-
See also [[sf.cmath.
|
| 491 |
|
| 492 |
-
<!-- Link reference definitions -->
|
| 493 |
-
[accumulate]: #accumulate
|
| 494 |
-
[adjacent.difference]: #adjacent.difference
|
| 495 |
-
[algorithms]: algorithms.md#algorithms
|
| 496 |
-
[bad.alloc]: language.md#bad.alloc
|
| 497 |
-
[basic.fundamental]: basic.md#basic.fundamental
|
| 498 |
-
[basic.stc.thread]: basic.md#basic.stc.thread
|
| 499 |
-
[basic.types]: basic.md#basic.types
|
| 500 |
-
[c.math]: #c.math
|
| 501 |
-
[c.math.abs]: #c.math.abs
|
| 502 |
-
[c.math.fpclass]: #c.math.fpclass
|
| 503 |
-
[c.math.hypot3]: #c.math.hypot3
|
| 504 |
-
[c.math.rand]: #c.math.rand
|
| 505 |
-
[cfenv]: #cfenv
|
| 506 |
-
[cfenv.syn]: #cfenv.syn
|
| 507 |
-
[class.gslice]: #class.gslice
|
| 508 |
-
[class.gslice.overview]: #class.gslice.overview
|
| 509 |
-
[class.slice]: #class.slice
|
| 510 |
-
[class.slice.overview]: #class.slice.overview
|
| 511 |
-
[cmath.syn]: #cmath.syn
|
| 512 |
-
[cmplx.over]: #cmplx.over
|
| 513 |
-
[complex]: #complex
|
| 514 |
-
[complex.literals]: #complex.literals
|
| 515 |
-
[complex.member.ops]: #complex.member.ops
|
| 516 |
-
[complex.members]: #complex.members
|
| 517 |
-
[complex.numbers]: #complex.numbers
|
| 518 |
-
[complex.ops]: #complex.ops
|
| 519 |
-
[complex.special]: #complex.special
|
| 520 |
-
[complex.syn]: #complex.syn
|
| 521 |
-
[complex.transcendentals]: #complex.transcendentals
|
| 522 |
-
[complex.value.ops]: #complex.value.ops
|
| 523 |
-
[cons.slice]: #cons.slice
|
| 524 |
-
[conv.prom]: conv.md#conv.prom
|
| 525 |
-
[cpp.pragma]: cpp.md#cpp.pragma
|
| 526 |
-
[cstdlib.syn]: language.md#cstdlib.syn
|
| 527 |
-
[dcl.array]: dcl.md#dcl.array
|
| 528 |
-
[dcl.init]: dcl.md#dcl.init
|
| 529 |
-
[exclusive.scan]: #exclusive.scan
|
| 530 |
-
[function.objects]: utilities.md#function.objects
|
| 531 |
-
[gslice.access]: #gslice.access
|
| 532 |
-
[gslice.array.assign]: #gslice.array.assign
|
| 533 |
-
[gslice.array.comp.assign]: #gslice.array.comp.assign
|
| 534 |
-
[gslice.array.fill]: #gslice.array.fill
|
| 535 |
-
[gslice.cons]: #gslice.cons
|
| 536 |
-
[implimits]: limits.md#implimits
|
| 537 |
-
[inclusive.scan]: #inclusive.scan
|
| 538 |
-
[indirect.array.assign]: #indirect.array.assign
|
| 539 |
-
[indirect.array.comp.assign]: #indirect.array.comp.assign
|
| 540 |
-
[indirect.array.fill]: #indirect.array.fill
|
| 541 |
-
[inner.product]: #inner.product
|
| 542 |
-
[input.iterators]: iterators.md#input.iterators
|
| 543 |
-
[input.output]: input.md#input.output
|
| 544 |
-
[iostate.flags]: input.md#iostate.flags
|
| 545 |
-
[istream.formatted]: input.md#istream.formatted
|
| 546 |
-
[iterator.requirements.general]: iterators.md#iterator.requirements.general
|
| 547 |
-
[library.c]: library.md#library.c
|
| 548 |
-
[mask.array.assign]: #mask.array.assign
|
| 549 |
-
[mask.array.comp.assign]: #mask.array.comp.assign
|
| 550 |
-
[mask.array.fill]: #mask.array.fill
|
| 551 |
-
[numarray]: #numarray
|
| 552 |
-
[numeric.iota]: #numeric.iota
|
| 553 |
-
[numeric.ops]: #numeric.ops
|
| 554 |
-
[numeric.ops.gcd]: #numeric.ops.gcd
|
| 555 |
-
[numeric.ops.lcm]: #numeric.ops.lcm
|
| 556 |
-
[numeric.ops.overview]: #numeric.ops.overview
|
| 557 |
-
[numeric.requirements]: #numeric.requirements
|
| 558 |
-
[numerics]: #numerics
|
| 559 |
-
[numerics.defns]: #numerics.defns
|
| 560 |
-
[numerics.general]: #numerics.general
|
| 561 |
-
[output.iterators]: iterators.md#output.iterators
|
| 562 |
-
[partial.sum]: #partial.sum
|
| 563 |
-
[rand]: #rand
|
| 564 |
-
[rand.adapt]: #rand.adapt
|
| 565 |
-
[rand.adapt.disc]: #rand.adapt.disc
|
| 566 |
-
[rand.adapt.general]: #rand.adapt.general
|
| 567 |
-
[rand.adapt.ibits]: #rand.adapt.ibits
|
| 568 |
-
[rand.adapt.shuf]: #rand.adapt.shuf
|
| 569 |
-
[rand.device]: #rand.device
|
| 570 |
-
[rand.dist]: #rand.dist
|
| 571 |
-
[rand.dist.bern]: #rand.dist.bern
|
| 572 |
-
[rand.dist.bern.bernoulli]: #rand.dist.bern.bernoulli
|
| 573 |
-
[rand.dist.bern.bin]: #rand.dist.bern.bin
|
| 574 |
-
[rand.dist.bern.geo]: #rand.dist.bern.geo
|
| 575 |
-
[rand.dist.bern.negbin]: #rand.dist.bern.negbin
|
| 576 |
-
[rand.dist.general]: #rand.dist.general
|
| 577 |
-
[rand.dist.norm]: #rand.dist.norm
|
| 578 |
-
[rand.dist.norm.cauchy]: #rand.dist.norm.cauchy
|
| 579 |
-
[rand.dist.norm.chisq]: #rand.dist.norm.chisq
|
| 580 |
-
[rand.dist.norm.f]: #rand.dist.norm.f
|
| 581 |
-
[rand.dist.norm.lognormal]: #rand.dist.norm.lognormal
|
| 582 |
-
[rand.dist.norm.normal]: #rand.dist.norm.normal
|
| 583 |
-
[rand.dist.norm.t]: #rand.dist.norm.t
|
| 584 |
-
[rand.dist.pois]: #rand.dist.pois
|
| 585 |
-
[rand.dist.pois.exp]: #rand.dist.pois.exp
|
| 586 |
-
[rand.dist.pois.extreme]: #rand.dist.pois.extreme
|
| 587 |
-
[rand.dist.pois.gamma]: #rand.dist.pois.gamma
|
| 588 |
-
[rand.dist.pois.poisson]: #rand.dist.pois.poisson
|
| 589 |
-
[rand.dist.pois.weibull]: #rand.dist.pois.weibull
|
| 590 |
-
[rand.dist.samp]: #rand.dist.samp
|
| 591 |
-
[rand.dist.samp.discrete]: #rand.dist.samp.discrete
|
| 592 |
-
[rand.dist.samp.pconst]: #rand.dist.samp.pconst
|
| 593 |
-
[rand.dist.samp.plinear]: #rand.dist.samp.plinear
|
| 594 |
-
[rand.dist.uni]: #rand.dist.uni
|
| 595 |
-
[rand.dist.uni.int]: #rand.dist.uni.int
|
| 596 |
-
[rand.dist.uni.real]: #rand.dist.uni.real
|
| 597 |
-
[rand.eng]: #rand.eng
|
| 598 |
-
[rand.eng.lcong]: #rand.eng.lcong
|
| 599 |
-
[rand.eng.mers]: #rand.eng.mers
|
| 600 |
-
[rand.eng.sub]: #rand.eng.sub
|
| 601 |
-
[rand.predef]: #rand.predef
|
| 602 |
-
[rand.req]: #rand.req
|
| 603 |
-
[rand.req.adapt]: #rand.req.adapt
|
| 604 |
-
[rand.req.dist]: #rand.req.dist
|
| 605 |
-
[rand.req.eng]: #rand.req.eng
|
| 606 |
-
[rand.req.genl]: #rand.req.genl
|
| 607 |
-
[rand.req.seedseq]: #rand.req.seedseq
|
| 608 |
-
[rand.req.urng]: #rand.req.urng
|
| 609 |
-
[rand.synopsis]: #rand.synopsis
|
| 610 |
-
[rand.util]: #rand.util
|
| 611 |
-
[rand.util.canonical]: #rand.util.canonical
|
| 612 |
-
[rand.util.seedseq]: #rand.util.seedseq
|
| 613 |
-
[random.access.iterators]: iterators.md#random.access.iterators
|
| 614 |
-
[reduce]: #reduce
|
| 615 |
-
[res.on.data.races]: library.md#res.on.data.races
|
| 616 |
-
[sf.cmath]: #sf.cmath
|
| 617 |
-
[sf.cmath.assoc_laguerre]: #sf.cmath.assoc_laguerre
|
| 618 |
-
[sf.cmath.assoc_legendre]: #sf.cmath.assoc_legendre
|
| 619 |
-
[sf.cmath.beta]: #sf.cmath.beta
|
| 620 |
-
[sf.cmath.comp_ellint_1]: #sf.cmath.comp_ellint_1
|
| 621 |
-
[sf.cmath.comp_ellint_2]: #sf.cmath.comp_ellint_2
|
| 622 |
-
[sf.cmath.comp_ellint_3]: #sf.cmath.comp_ellint_3
|
| 623 |
-
[sf.cmath.cyl_bessel_i]: #sf.cmath.cyl_bessel_i
|
| 624 |
-
[sf.cmath.cyl_bessel_j]: #sf.cmath.cyl_bessel_j
|
| 625 |
-
[sf.cmath.cyl_bessel_k]: #sf.cmath.cyl_bessel_k
|
| 626 |
-
[sf.cmath.cyl_neumann]: #sf.cmath.cyl_neumann
|
| 627 |
-
[sf.cmath.ellint_1]: #sf.cmath.ellint_1
|
| 628 |
-
[sf.cmath.ellint_2]: #sf.cmath.ellint_2
|
| 629 |
-
[sf.cmath.ellint_3]: #sf.cmath.ellint_3
|
| 630 |
-
[sf.cmath.expint]: #sf.cmath.expint
|
| 631 |
-
[sf.cmath.hermite]: #sf.cmath.hermite
|
| 632 |
-
[sf.cmath.laguerre]: #sf.cmath.laguerre
|
| 633 |
-
[sf.cmath.legendre]: #sf.cmath.legendre
|
| 634 |
-
[sf.cmath.riemann_zeta]: #sf.cmath.riemann_zeta
|
| 635 |
-
[sf.cmath.sph_bessel]: #sf.cmath.sph_bessel
|
| 636 |
-
[sf.cmath.sph_legendre]: #sf.cmath.sph_legendre
|
| 637 |
-
[sf.cmath.sph_neumann]: #sf.cmath.sph_neumann
|
| 638 |
-
[slice.access]: #slice.access
|
| 639 |
-
[slice.arr.assign]: #slice.arr.assign
|
| 640 |
-
[slice.arr.comp.assign]: #slice.arr.comp.assign
|
| 641 |
-
[slice.arr.fill]: #slice.arr.fill
|
| 642 |
-
[strings]: strings.md#strings
|
| 643 |
-
[tab:RandomDistribution]: #tab:RandomDistribution
|
| 644 |
-
[tab:RandomEngine]: #tab:RandomEngine
|
| 645 |
-
[tab:SeedSequence]: #tab:SeedSequence
|
| 646 |
-
[tab:UniformRandomBitGenerator]: #tab:UniformRandomBitGenerator
|
| 647 |
-
[tab:copyassignable]: #tab:copyassignable
|
| 648 |
-
[tab:copyconstructible]: #tab:copyconstructible
|
| 649 |
-
[tab:equalitycomparable]: #tab:equalitycomparable
|
| 650 |
-
[tab:iterator.input.requirements]: iterators.md#tab:iterator.input.requirements
|
| 651 |
-
[tab:moveassignable]: #tab:moveassignable
|
| 652 |
-
[tab:moveconstructible]: #tab:moveconstructible
|
| 653 |
-
[tab:numerics.lib.summary]: #tab:numerics.lib.summary
|
| 654 |
-
[template.gslice.array]: #template.gslice.array
|
| 655 |
-
[template.gslice.array.overview]: #template.gslice.array.overview
|
| 656 |
-
[template.indirect.array]: #template.indirect.array
|
| 657 |
-
[template.indirect.array.overview]: #template.indirect.array.overview
|
| 658 |
-
[template.mask.array]: #template.mask.array
|
| 659 |
-
[template.mask.array.overview]: #template.mask.array.overview
|
| 660 |
-
[template.slice.array]: #template.slice.array
|
| 661 |
-
[template.slice.array.overview]: #template.slice.array.overview
|
| 662 |
-
[template.valarray]: #template.valarray
|
| 663 |
-
[template.valarray.overview]: #template.valarray.overview
|
| 664 |
-
[thread.thread.class]: thread.md#thread.thread.class
|
| 665 |
-
[transform.exclusive.scan]: #transform.exclusive.scan
|
| 666 |
-
[transform.inclusive.scan]: #transform.inclusive.scan
|
| 667 |
-
[transform.reduce]: #transform.reduce
|
| 668 |
-
[valarray.access]: #valarray.access
|
| 669 |
-
[valarray.assign]: #valarray.assign
|
| 670 |
-
[valarray.binary]: #valarray.binary
|
| 671 |
-
[valarray.cassign]: #valarray.cassign
|
| 672 |
-
[valarray.comparison]: #valarray.comparison
|
| 673 |
-
[valarray.cons]: #valarray.cons
|
| 674 |
-
[valarray.members]: #valarray.members
|
| 675 |
-
[valarray.nonmembers]: #valarray.nonmembers
|
| 676 |
-
[valarray.range]: #valarray.range
|
| 677 |
-
[valarray.special]: #valarray.special
|
| 678 |
-
[valarray.sub]: #valarray.sub
|
| 679 |
-
[valarray.syn]: #valarray.syn
|
| 680 |
-
[valarray.transcend]: #valarray.transcend
|
| 681 |
-
[valarray.unary]: #valarray.unary
|
| 682 |
-
[vector]: containers.md#vector
|
| 683 |
-
|
| 684 |
-
[^1]: In other words, value types. These include arithmetic types,
|
| 685 |
-
pointers, the library class `complex`, and instantiations of
|
| 686 |
-
`valarray` for value types.
|
| 687 |
-
|
| 688 |
-
[^2]: The name of this engine refers, in part, to a property of its
|
| 689 |
-
period: For properly-selected values of the parameters, the period
|
| 690 |
-
is closely related to a large Mersenne prime number.
|
| 691 |
-
|
| 692 |
-
[^3]: The parameter is intended to allow an implementation to
|
| 693 |
-
differentiate between different sources of randomness.
|
| 694 |
-
|
| 695 |
-
[^4]: If a device has n states whose respective probabilities are
|
| 696 |
-
P₀, …, Pₙ₋₁, the device entropy S is defined as
|
| 697 |
-
$S = - \sum_{i=0}^{n-1} P_i \cdot \log P_i$.
|
| 698 |
-
|
| 699 |
-
[^5]: b is introduced to avoid any attempt to produce more bits of
|
| 700 |
-
randomness than can be held in `RealType`.
|
| 701 |
-
|
| 702 |
-
[^6]: The distribution corresponding to this probability density
|
| 703 |
-
function is also known (with a possible change of variable) as the
|
| 704 |
-
Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I
|
| 705 |
-
distribution.
|
| 706 |
-
|
| 707 |
-
[^7]: Annex [[implimits]] recommends a minimum number of recursively
|
| 708 |
-
nested template instantiations. This requirement thus indirectly
|
| 709 |
-
suggests a minimum allowable complexity for valarray expressions.
|
| 710 |
-
|
| 711 |
-
[^8]: The intent is to specify an array template that has the minimum
|
| 712 |
-
functionality necessary to address aliasing ambiguities and the
|
| 713 |
-
proliferation of temporaries. Thus, the `valarray` template is
|
| 714 |
-
neither a matrix class nor a field class. However, it is a very
|
| 715 |
-
useful building block for designing such classes.
|
| 716 |
-
|
| 717 |
-
[^9]: This default constructor is essential, since arrays of `valarray`
|
| 718 |
-
may be useful. After initialization, the length of an empty array
|
| 719 |
-
can be increased with the `resize` member function.
|
| 720 |
-
|
| 721 |
-
[^10]: This constructor is the preferred method for converting a C array
|
| 722 |
-
to a `valarray` object.
|
| 723 |
-
|
| 724 |
-
[^11]: This copy constructor creates a distinct array rather than an
|
| 725 |
-
alias. Implementations in which arrays share storage are permitted,
|
| 726 |
-
but they shall implement a copy-on-reference mechanism to ensure
|
| 727 |
-
that arrays are conceptually distinct.
|
| 728 |
-
|
| 729 |
-
[^12]: BLAS stands for *Basic Linear Algebra Subprograms.* C++programs
|
| 730 |
-
may instantiate this class. See, for example, Dongarra, Du Croz,
|
| 731 |
-
Duff, and Hammerling: *A set of Level 3 Basic Linear Algebra
|
| 732 |
-
Subprograms*; Technical Report MCS-P1-0888, Argonne National
|
| 733 |
-
Laboratory (USA), Mathematics and Computer Science Division, August,
|
| 734 |
-
1988.
|
| 735 |
-
|
| 736 |
-
[^13]: The use of fully closed ranges is intentional.
|
| 737 |
-
|
| 738 |
-
[^14]: `accumulate` is similar to the APL reduction operator and Common
|
| 739 |
-
Lisp reduce function, but it avoids the difficulty of defining the
|
| 740 |
-
result of reduction on an empty sequence by always requiring an
|
| 741 |
-
initial value.
|
| 742 |
-
|
| 743 |
-
[^15]: The use of fully closed ranges is intentional.
|
| 744 |
-
|
| 745 |
-
[^16]: The use of fully closed ranges is intentional.
|
| 746 |
-
|
| 747 |
-
[^17]: The use of fully closed ranges is intentional.
|
| 748 |
-
|
| 749 |
-
[^18]: A mathematical function is mathematically defined for a given set
|
| 750 |
-
of argument values (a) if it is explicitly defined for that set of
|
| 751 |
-
argument values, or (b) if its limiting value exists and does not
|
| 752 |
-
depend on the direction of approach.
|
|
|
|
| 8 |
- the function description’s *Returns:* clause explicitly specifies a
|
| 9 |
domain and those argument values fall outside the specified domain, or
|
| 10 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 11 |
component, or
|
| 12 |
- the corresponding mathematical function is not mathematically
|
| 13 |
+
defined.[^13]
|
| 14 |
|
| 15 |
Unless otherwise specified, each function is defined for all finite
|
| 16 |
values, for negative infinity, and for positive infinity.
|
| 17 |
|
| 18 |
+
#### Associated Laguerre polynomials <a id="sf.cmath.assoc.laguerre">[[sf.cmath.assoc.laguerre]]</a>
|
| 19 |
|
| 20 |
``` cpp
|
| 21 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 22 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 23 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 24 |
```
|
| 25 |
|
| 26 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 27 |
of their respective arguments `n`, `m`, and `x`.
|
| 28 |
|
| 29 |
+
*Returns:* $$\mathsf{L}_n^m(x) =
|
| 30 |
+
(-1)^m \frac{\mathsf{d} ^ m}{\mathsf{d}x ^ m} \, \mathsf{L}_{n+m}(x)
|
| 31 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n`, m is `m`, and x is
|
|
|
|
|
|
|
| 32 |
`x`.
|
| 33 |
|
| 34 |
*Remarks:* The effect of calling each of these functions is
|
| 35 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 36 |
|
| 37 |
+
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
| 38 |
|
| 39 |
``` cpp
|
| 40 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 41 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 42 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 43 |
```
|
| 44 |
|
| 45 |
*Effects:* These functions compute the associated Legendre functions of
|
| 46 |
their respective arguments `l`, `m`, and `x`.
|
| 47 |
|
| 48 |
+
*Returns:* $$\mathsf{P}_\ell^m(x) = (1 - x^2) ^ {m/2} \:
|
| 49 |
+
\frac{\mathsf{d} ^ m}{\mathsf{d}x ^ m} \, \mathsf{P}_\ell(x)
|
| 50 |
+
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l`, m is `m`, and x is
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
`x`.
|
| 52 |
|
| 53 |
*Remarks:* The effect of calling each of these functions is
|
| 54 |
*implementation-defined* if `l >= 128`.
|
| 55 |
|
|
|
|
| 62 |
```
|
| 63 |
|
| 64 |
*Effects:* These functions compute the beta function of their respective
|
| 65 |
arguments `x` and `y`.
|
| 66 |
|
| 67 |
+
*Returns:*
|
| 68 |
+
$$\mathsf{B}(x, y) = \frac{\Gamma(x) \, \Gamma(y)}{\Gamma(x + y)}
|
| 69 |
+
\text{ ,\quad for $x > 0$,\, $y > 0$,}$$ where x is `x` and y is `y`.
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 72 |
|
| 73 |
``` cpp
|
| 74 |
double comp_ellint_1(double k);
|
| 75 |
float comp_ellint_1f(float k);
|
| 76 |
long double comp_ellint_1l(long double k);
|
| 77 |
```
|
| 78 |
|
| 79 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 80 |
first kind of their respective arguments `k`.
|
| 81 |
|
| 82 |
+
*Returns:*
|
| 83 |
+
$$\mathsf{K}(k) = \mathsf{F}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 84 |
+
where k is `k`.
|
|
|
|
| 85 |
|
| 86 |
+
See also [[sf.cmath.ellint.1]].
|
| 87 |
|
| 88 |
+
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 89 |
|
| 90 |
``` cpp
|
| 91 |
double comp_ellint_2(double k);
|
| 92 |
float comp_ellint_2f(float k);
|
| 93 |
long double comp_ellint_2l(long double k);
|
| 94 |
```
|
| 95 |
|
| 96 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 97 |
second kind of their respective arguments `k`.
|
| 98 |
|
| 99 |
+
*Returns:*
|
| 100 |
+
$$\mathsf{E}(k) = \mathsf{E}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 101 |
+
where k is `k`.
|
|
|
|
| 102 |
|
| 103 |
+
See also [[sf.cmath.ellint.2]].
|
| 104 |
|
| 105 |
+
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 106 |
|
| 107 |
``` cpp
|
| 108 |
double comp_ellint_3(double k, double nu);
|
| 109 |
float comp_ellint_3f(float k, float nu);
|
| 110 |
long double comp_ellint_3l(long double k, long double nu);
|
| 111 |
```
|
| 112 |
|
| 113 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 114 |
third kind of their respective arguments `k` and `nu`.
|
| 115 |
|
| 116 |
+
*Returns:*
|
| 117 |
+
$$\mathsf{\Pi}(\nu, k) = \mathsf{\Pi}(\nu, k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 118 |
+
where k is `k` and $\nu$ is `nu`.
|
| 119 |
|
| 120 |
+
See also [[sf.cmath.ellint.3]].
|
| 121 |
|
| 122 |
+
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 123 |
|
| 124 |
``` cpp
|
| 125 |
double cyl_bessel_i(double nu, double x);
|
| 126 |
float cyl_bessel_if(float nu, float x);
|
| 127 |
long double cyl_bessel_il(long double nu, long double x);
|
| 128 |
```
|
| 129 |
|
| 130 |
*Effects:* These functions compute the regular modified cylindrical
|
| 131 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 132 |
|
| 133 |
+
*Returns:* $$\mathsf{I}_\nu(x) =
|
| 134 |
+
i^{-\nu} \mathsf{J}_\nu(ix) =
|
| 135 |
+
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
|
| 136 |
+
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
*Remarks:* The effect of calling each of these functions is
|
| 139 |
*implementation-defined* if `nu >= 128`.
|
| 140 |
|
| 141 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 142 |
|
| 143 |
+
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.cyl.bessel.j">[[sf.cmath.cyl.bessel.j]]</a>
|
| 144 |
|
| 145 |
``` cpp
|
| 146 |
double cyl_bessel_j(double nu, double x);
|
| 147 |
float cyl_bessel_jf(float nu, float x);
|
| 148 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 149 |
```
|
| 150 |
|
| 151 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 152 |
the first kind of their respective arguments `nu` and `x`.
|
| 153 |
|
| 154 |
+
*Returns:* $$\mathsf{J}_\nu(x) =
|
| 155 |
+
\sum_{k=0}^\infty \frac{(-1)^k (x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
|
| 156 |
+
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
|
|
|
|
|
|
| 157 |
|
| 158 |
*Remarks:* The effect of calling each of these functions is
|
| 159 |
*implementation-defined* if `nu >= 128`.
|
| 160 |
|
| 161 |
+
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
| 162 |
|
| 163 |
``` cpp
|
| 164 |
double cyl_bessel_k(double nu, double x);
|
| 165 |
float cyl_bessel_kf(float nu, float x);
|
| 166 |
long double cyl_bessel_kl(long double nu, long double x);
|
|
|
|
| 193 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 194 |
|
| 195 |
*Remarks:* The effect of calling each of these functions is
|
| 196 |
*implementation-defined* if `nu >= 128`.
|
| 197 |
|
| 198 |
+
See also [[sf.cmath.cyl.bessel.i]], [[sf.cmath.cyl.bessel.j]],
|
| 199 |
+
[[sf.cmath.cyl.neumann]].
|
| 200 |
|
| 201 |
+
#### Cylindrical Neumann functions <a id="sf.cmath.cyl.neumann">[[sf.cmath.cyl.neumann]]</a>
|
| 202 |
|
| 203 |
``` cpp
|
| 204 |
double cyl_neumann(double nu, double x);
|
| 205 |
float cyl_neumannf(float nu, float x);
|
| 206 |
long double cyl_neumannl(long double nu, long double x);
|
|
|
|
| 228 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 229 |
|
| 230 |
*Remarks:* The effect of calling each of these functions is
|
| 231 |
*implementation-defined* if `nu >= 128`.
|
| 232 |
|
| 233 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 234 |
|
| 235 |
+
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.ellint.1">[[sf.cmath.ellint.1]]</a>
|
| 236 |
|
| 237 |
``` cpp
|
| 238 |
double ellint_1(double k, double phi);
|
| 239 |
float ellint_1f(float k, float phi);
|
| 240 |
long double ellint_1l(long double k, long double phi);
|
|
|
|
| 242 |
|
| 243 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 244 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 245 |
measured in radians).
|
| 246 |
|
| 247 |
+
*Returns:* $$\mathsf{F}(k, \phi) =
|
| 248 |
+
\int_0^\phi \! \frac{\mathsf{d}\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
|
| 249 |
+
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
|
|
|
|
|
|
| 250 |
|
| 251 |
+
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 252 |
|
| 253 |
``` cpp
|
| 254 |
double ellint_2(double k, double phi);
|
| 255 |
float ellint_2f(float k, float phi);
|
| 256 |
long double ellint_2l(long double k, long double phi);
|
|
|
|
| 258 |
|
| 259 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 260 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 261 |
measured in radians).
|
| 262 |
|
| 263 |
+
*Returns:*
|
| 264 |
+
$$\mathsf{E}(k, \phi) = \int_0^\phi \! \sqrt{1 - k^2 \sin^2 \theta} \, \mathsf{d}\theta
|
| 265 |
+
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
|
|
|
| 266 |
|
| 267 |
+
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 268 |
|
| 269 |
``` cpp
|
| 270 |
double ellint_3(double k, double nu, double phi);
|
| 271 |
float ellint_3f(float k, float nu, float phi);
|
| 272 |
long double ellint_3l(long double k, long double nu, long double phi);
|
|
|
|
| 274 |
|
| 275 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 276 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 277 |
measured in radians).
|
| 278 |
|
| 279 |
+
*Returns:* $$\mathsf{\Pi}(\nu, k, \phi) = \int_0^\phi \!
|
| 280 |
+
\frac{ \mathsf{d}\theta }{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} } \text{ ,\quad for $|k| \le 1$,}$$
|
| 281 |
+
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 284 |
|
| 285 |
``` cpp
|
| 286 |
double expint(double x);
|
|
|
|
| 326 |
```
|
| 327 |
|
| 328 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 329 |
respective arguments `n` and `x`.
|
| 330 |
|
| 331 |
+
*Returns:* $$\mathsf{L}_n(x) =
|
| 332 |
+
\frac{e^x}{n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} \, (x^n e^{-x})
|
| 333 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
|
|
|
|
|
|
| 334 |
|
| 335 |
*Remarks:* The effect of calling each of these functions is
|
| 336 |
*implementation-defined* if `n >= 128`.
|
| 337 |
|
| 338 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
|
|
| 344 |
```
|
| 345 |
|
| 346 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 347 |
respective arguments `l` and `x`.
|
| 348 |
|
| 349 |
+
*Returns:* $$\mathsf{P}_\ell(x) =
|
| 350 |
+
\frac{1}{2^\ell \, \ell!}
|
| 351 |
+
\frac{\mathsf{d}^\ell}{\mathsf{d}x^\ell} \, (x^2 - 1) ^ \ell
|
| 352 |
+
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l` and x is `x`.
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
*Remarks:* The effect of calling each of these functions is
|
| 355 |
*implementation-defined* if `l >= 128`.
|
| 356 |
|
| 357 |
+
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
| 358 |
|
| 359 |
``` cpp
|
| 360 |
double riemann_zeta(double x);
|
| 361 |
float riemann_zetaf(float x);
|
| 362 |
long double riemann_zetal(long double x);
|
|
|
|
| 386 |
& \mbox{for $x < 0$}
|
| 387 |
\end{array}
|
| 388 |
\right.
|
| 389 |
\;$$ where x is `x`.
|
| 390 |
|
| 391 |
+
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 392 |
|
| 393 |
``` cpp
|
| 394 |
double sph_bessel(unsigned n, double x);
|
| 395 |
float sph_besself(unsigned n, float x);
|
| 396 |
long double sph_bessell(unsigned n, long double x);
|
| 397 |
```
|
| 398 |
|
| 399 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 400 |
first kind of their respective arguments `n` and `x`.
|
| 401 |
|
| 402 |
+
*Returns:*
|
| 403 |
+
$$\mathsf{j}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{J}_{n + 1\!/\!2}(x) \text{ ,\quad for $x \ge 0$,}$$
|
| 404 |
+
where n is `n` and x is `x`.
|
|
|
|
| 405 |
|
| 406 |
*Remarks:* The effect of calling each of these functions is
|
| 407 |
*implementation-defined* if `n >= 128`.
|
| 408 |
|
| 409 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 410 |
|
| 411 |
+
#### Spherical associated Legendre functions <a id="sf.cmath.sph.legendre">[[sf.cmath.sph.legendre]]</a>
|
| 412 |
|
| 413 |
``` cpp
|
| 414 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 415 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 416 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
|
|
| 418 |
|
| 419 |
*Effects:* These functions compute the spherical associated Legendre
|
| 420 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 421 |
measured in radians).
|
| 422 |
|
| 423 |
+
*Returns:* $$\mathsf{Y}_\ell^m(\theta, 0)$$ where
|
| 424 |
+
$$\mathsf{Y}_\ell^m(\theta, \phi) =
|
| 425 |
+
(-1)^m \left[\frac{(2 \ell + 1)}{4 \pi} \frac{(\ell - m)!}{(\ell + m)!}\right]^{1/2}
|
| 426 |
+
\mathsf{P}_\ell^m (\cos\theta) e^{i m \phi}
|
| 427 |
+
\text{ ,\quad for $|m| \le \ell$,}$$ and l is `l`, m is `m`, and θ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
is `theta`.
|
| 429 |
|
| 430 |
*Remarks:* The effect of calling each of these functions is
|
| 431 |
*implementation-defined* if `l >= 128`.
|
| 432 |
|
| 433 |
+
See also [[sf.cmath.assoc.legendre]].
|
| 434 |
|
| 435 |
+
#### Spherical Neumann functions <a id="sf.cmath.sph.neumann">[[sf.cmath.sph.neumann]]</a>
|
| 436 |
|
| 437 |
``` cpp
|
| 438 |
double sph_neumann(unsigned n, double x);
|
| 439 |
float sph_neumannf(unsigned n, float x);
|
| 440 |
long double sph_neumannl(unsigned n, long double x);
|
|
|
|
| 442 |
|
| 443 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 444 |
known as the spherical Bessel functions of the second kind, of their
|
| 445 |
respective arguments `n` and `x`.
|
| 446 |
|
| 447 |
+
*Returns:*
|
| 448 |
+
$$\mathsf{n}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{N}_{n + 1\!/\!2}(x)
|
| 449 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
|
|
|
| 450 |
|
| 451 |
*Remarks:* The effect of calling each of these functions is
|
| 452 |
*implementation-defined* if `n >= 128`.
|
| 453 |
|
| 454 |
+
See also [[sf.cmath.cyl.neumann]].
|
| 455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|