tmp/tmppvd3t7hv/{from.md → to.md}
RENAMED
|
@@ -1,26 +1,28 @@
|
|
| 1 |
### Mathematical special functions <a id="sf.cmath">[[sf.cmath]]</a>
|
| 2 |
|
| 3 |
-
|
| 4 |
-
subclause is a NaN (Not a Number), the function shall return a NaN but
|
| 5 |
-
it shall not report a domain error. Otherwise, the function shall report
|
| 6 |
-
a domain error for just those argument values for which:
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
domain and those argument values fall outside the specified domain, or
|
| 10 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 11 |
component, or
|
| 12 |
- the corresponding mathematical function is not mathematically
|
| 13 |
-
defined.[^
|
| 14 |
|
| 15 |
Unless otherwise specified, each function is defined for all finite
|
| 16 |
values, for negative infinity, and for positive infinity.
|
| 17 |
|
| 18 |
#### Associated Laguerre polynomials <a id="sf.cmath.assoc.laguerre">[[sf.cmath.assoc.laguerre]]</a>
|
| 19 |
|
| 20 |
``` cpp
|
| 21 |
-
|
| 22 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 23 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 24 |
```
|
| 25 |
|
| 26 |
*Effects:* These functions compute the associated Laguerre polynomials
|
|
@@ -35,11 +37,11 @@ of their respective arguments `n`, `m`, and `x`.
|
|
| 35 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 36 |
|
| 37 |
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
| 38 |
|
| 39 |
``` cpp
|
| 40 |
-
|
| 41 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 42 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 43 |
```
|
| 44 |
|
| 45 |
*Effects:* These functions compute the associated Legendre functions of
|
|
@@ -54,11 +56,11 @@ their respective arguments `l`, `m`, and `x`.
|
|
| 54 |
*implementation-defined* if `l >= 128`.
|
| 55 |
|
| 56 |
#### Beta function <a id="sf.cmath.beta">[[sf.cmath.beta]]</a>
|
| 57 |
|
| 58 |
``` cpp
|
| 59 |
-
|
| 60 |
float betaf(float x, float y);
|
| 61 |
long double betal(long double x, long double y);
|
| 62 |
```
|
| 63 |
|
| 64 |
*Effects:* These functions compute the beta function of their respective
|
|
@@ -69,11 +71,11 @@ $$\mathsf{B}(x, y) = \frac{\Gamma(x) \, \Gamma(y)}{\Gamma(x + y)}
|
|
| 69 |
\text{ ,\quad for $x > 0$,\, $y > 0$,}$$ where x is `x` and y is `y`.
|
| 70 |
|
| 71 |
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 72 |
|
| 73 |
``` cpp
|
| 74 |
-
|
| 75 |
float comp_ellint_1f(float k);
|
| 76 |
long double comp_ellint_1l(long double k);
|
| 77 |
```
|
| 78 |
|
| 79 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
@@ -86,11 +88,11 @@ where k is `k`.
|
|
| 86 |
See also [[sf.cmath.ellint.1]].
|
| 87 |
|
| 88 |
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 89 |
|
| 90 |
``` cpp
|
| 91 |
-
|
| 92 |
float comp_ellint_2f(float k);
|
| 93 |
long double comp_ellint_2l(long double k);
|
| 94 |
```
|
| 95 |
|
| 96 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
@@ -103,11 +105,11 @@ where k is `k`.
|
|
| 103 |
See also [[sf.cmath.ellint.2]].
|
| 104 |
|
| 105 |
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 106 |
|
| 107 |
``` cpp
|
| 108 |
-
|
| 109 |
float comp_ellint_3f(float k, float nu);
|
| 110 |
long double comp_ellint_3l(long double k, long double nu);
|
| 111 |
```
|
| 112 |
|
| 113 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
@@ -120,11 +122,11 @@ where k is `k` and $\nu$ is `nu`.
|
|
| 120 |
See also [[sf.cmath.ellint.3]].
|
| 121 |
|
| 122 |
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 123 |
|
| 124 |
``` cpp
|
| 125 |
-
|
| 126 |
float cyl_bessel_if(float nu, float x);
|
| 127 |
long double cyl_bessel_il(long double nu, long double x);
|
| 128 |
```
|
| 129 |
|
| 130 |
*Effects:* These functions compute the regular modified cylindrical
|
|
@@ -141,11 +143,11 @@ Bessel functions of their respective arguments `nu` and `x`.
|
|
| 141 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 142 |
|
| 143 |
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.cyl.bessel.j">[[sf.cmath.cyl.bessel.j]]</a>
|
| 144 |
|
| 145 |
``` cpp
|
| 146 |
-
|
| 147 |
float cyl_bessel_jf(float nu, float x);
|
| 148 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 149 |
```
|
| 150 |
|
| 151 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
|
@@ -159,11 +161,11 @@ the first kind of their respective arguments `nu` and `x`.
|
|
| 159 |
*implementation-defined* if `nu >= 128`.
|
| 160 |
|
| 161 |
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
| 162 |
|
| 163 |
``` cpp
|
| 164 |
-
|
| 165 |
float cyl_bessel_kf(float nu, float x);
|
| 166 |
long double cyl_bessel_kl(long double nu, long double x);
|
| 167 |
```
|
| 168 |
|
| 169 |
*Effects:* These functions compute the irregular modified cylindrical
|
|
@@ -199,11 +201,11 @@ See also [[sf.cmath.cyl.bessel.i]], [[sf.cmath.cyl.bessel.j]],
|
|
| 199 |
[[sf.cmath.cyl.neumann]].
|
| 200 |
|
| 201 |
#### Cylindrical Neumann functions <a id="sf.cmath.cyl.neumann">[[sf.cmath.cyl.neumann]]</a>
|
| 202 |
|
| 203 |
``` cpp
|
| 204 |
-
|
| 205 |
float cyl_neumannf(float nu, float x);
|
| 206 |
long double cyl_neumannl(long double nu, long double x);
|
| 207 |
```
|
| 208 |
|
| 209 |
*Effects:* These functions compute the cylindrical Neumann functions,
|
|
@@ -233,11 +235,11 @@ their respective arguments `nu` and `x`.
|
|
| 233 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 234 |
|
| 235 |
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.ellint.1">[[sf.cmath.ellint.1]]</a>
|
| 236 |
|
| 237 |
``` cpp
|
| 238 |
-
|
| 239 |
float ellint_1f(float k, float phi);
|
| 240 |
long double ellint_1l(long double k, long double phi);
|
| 241 |
```
|
| 242 |
|
| 243 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
@@ -249,11 +251,11 @@ measured in radians).
|
|
| 249 |
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 250 |
|
| 251 |
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 252 |
|
| 253 |
``` cpp
|
| 254 |
-
|
| 255 |
float ellint_2f(float k, float phi);
|
| 256 |
long double ellint_2l(long double k, long double phi);
|
| 257 |
```
|
| 258 |
|
| 259 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
@@ -265,11 +267,12 @@ $$\mathsf{E}(k, \phi) = \int_0^\phi \! \sqrt{1 - k^2 \sin^2 \theta} \, \mathsf{d
|
|
| 265 |
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 266 |
|
| 267 |
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 268 |
|
| 269 |
``` cpp
|
| 270 |
-
|
|
|
|
| 271 |
float ellint_3f(float k, float nu, float phi);
|
| 272 |
long double ellint_3l(long double k, long double nu, long double phi);
|
| 273 |
```
|
| 274 |
|
| 275 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
@@ -281,11 +284,11 @@ measured in radians).
|
|
| 281 |
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
| 282 |
|
| 283 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 284 |
|
| 285 |
``` cpp
|
| 286 |
-
|
| 287 |
float expintf(float x);
|
| 288 |
long double expintl(long double x);
|
| 289 |
```
|
| 290 |
|
| 291 |
*Effects:* These functions compute the exponential integral of their
|
|
@@ -298,11 +301,11 @@ respective arguments `x`.
|
|
| 298 |
\;$$ where x is `x`.
|
| 299 |
|
| 300 |
#### Hermite polynomials <a id="sf.cmath.hermite">[[sf.cmath.hermite]]</a>
|
| 301 |
|
| 302 |
``` cpp
|
| 303 |
-
|
| 304 |
float hermitef(unsigned n, float x);
|
| 305 |
long double hermitel(unsigned n, long double x);
|
| 306 |
```
|
| 307 |
|
| 308 |
*Effects:* These functions compute the Hermite polynomials of their
|
|
@@ -318,11 +321,11 @@ respective arguments `n` and `x`.
|
|
| 318 |
*implementation-defined* if `n >= 128`.
|
| 319 |
|
| 320 |
#### Laguerre polynomials <a id="sf.cmath.laguerre">[[sf.cmath.laguerre]]</a>
|
| 321 |
|
| 322 |
``` cpp
|
| 323 |
-
|
| 324 |
float laguerref(unsigned n, float x);
|
| 325 |
long double laguerrel(unsigned n, long double x);
|
| 326 |
```
|
| 327 |
|
| 328 |
*Effects:* These functions compute the Laguerre polynomials of their
|
|
@@ -336,11 +339,11 @@ respective arguments `n` and `x`.
|
|
| 336 |
*implementation-defined* if `n >= 128`.
|
| 337 |
|
| 338 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
| 339 |
|
| 340 |
``` cpp
|
| 341 |
-
|
| 342 |
float legendref(unsigned l, float x);
|
| 343 |
long double legendrel(unsigned l, long double x);
|
| 344 |
```
|
| 345 |
|
| 346 |
*Effects:* These functions compute the Legendre polynomials of their
|
|
@@ -355,11 +358,11 @@ respective arguments `l` and `x`.
|
|
| 355 |
*implementation-defined* if `l >= 128`.
|
| 356 |
|
| 357 |
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
| 358 |
|
| 359 |
``` cpp
|
| 360 |
-
|
| 361 |
float riemann_zetaf(float x);
|
| 362 |
long double riemann_zetal(long double x);
|
| 363 |
```
|
| 364 |
|
| 365 |
*Effects:* These functions compute the Riemann zeta function of their
|
|
@@ -389,11 +392,11 @@ respective arguments `x`.
|
|
| 389 |
\;$$ where x is `x`.
|
| 390 |
|
| 391 |
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 392 |
|
| 393 |
``` cpp
|
| 394 |
-
|
| 395 |
float sph_besself(unsigned n, float x);
|
| 396 |
long double sph_bessell(unsigned n, long double x);
|
| 397 |
```
|
| 398 |
|
| 399 |
*Effects:* These functions compute the spherical Bessel functions of the
|
|
@@ -409,11 +412,11 @@ where n is `n` and x is `x`.
|
|
| 409 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 410 |
|
| 411 |
#### Spherical associated Legendre functions <a id="sf.cmath.sph.legendre">[[sf.cmath.sph.legendre]]</a>
|
| 412 |
|
| 413 |
``` cpp
|
| 414 |
-
|
| 415 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 416 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
| 417 |
```
|
| 418 |
|
| 419 |
*Effects:* These functions compute the spherical associated Legendre
|
|
@@ -433,11 +436,11 @@ is `theta`.
|
|
| 433 |
See also [[sf.cmath.assoc.legendre]].
|
| 434 |
|
| 435 |
#### Spherical Neumann functions <a id="sf.cmath.sph.neumann">[[sf.cmath.sph.neumann]]</a>
|
| 436 |
|
| 437 |
``` cpp
|
| 438 |
-
|
| 439 |
float sph_neumannf(unsigned n, float x);
|
| 440 |
long double sph_neumannl(unsigned n, long double x);
|
| 441 |
```
|
| 442 |
|
| 443 |
*Effects:* These functions compute the spherical Neumann functions, also
|
|
|
|
| 1 |
### Mathematical special functions <a id="sf.cmath">[[sf.cmath]]</a>
|
| 2 |
|
| 3 |
+
#### General <a id="sf.cmath.general">[[sf.cmath.general]]</a>
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
If any argument value to any of the functions specified in [[sf.cmath]]
|
| 6 |
+
is a NaN (Not a Number), the function shall return a NaN but it shall
|
| 7 |
+
not report a domain error. Otherwise, the function shall report a domain
|
| 8 |
+
error for just those argument values for which:
|
| 9 |
+
|
| 10 |
+
- the function description’s *Returns:* element explicitly specifies a
|
| 11 |
domain and those argument values fall outside the specified domain, or
|
| 12 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 13 |
component, or
|
| 14 |
- the corresponding mathematical function is not mathematically
|
| 15 |
+
defined.[^14]
|
| 16 |
|
| 17 |
Unless otherwise specified, each function is defined for all finite
|
| 18 |
values, for negative infinity, and for positive infinity.
|
| 19 |
|
| 20 |
#### Associated Laguerre polynomials <a id="sf.cmath.assoc.laguerre">[[sf.cmath.assoc.laguerre]]</a>
|
| 21 |
|
| 22 |
``` cpp
|
| 23 |
+
floating-point-type assoc_laguerre(unsigned n, unsigned m, floating-point-type x);
|
| 24 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 25 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 26 |
```
|
| 27 |
|
| 28 |
*Effects:* These functions compute the associated Laguerre polynomials
|
|
|
|
| 37 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 38 |
|
| 39 |
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
| 40 |
|
| 41 |
``` cpp
|
| 42 |
+
floating-point-type assoc_legendre(unsigned l, unsigned m, floating-point-type x);
|
| 43 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 44 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 45 |
```
|
| 46 |
|
| 47 |
*Effects:* These functions compute the associated Legendre functions of
|
|
|
|
| 56 |
*implementation-defined* if `l >= 128`.
|
| 57 |
|
| 58 |
#### Beta function <a id="sf.cmath.beta">[[sf.cmath.beta]]</a>
|
| 59 |
|
| 60 |
``` cpp
|
| 61 |
+
floating-point-type beta(floating-point-type x, floating-point-type y);
|
| 62 |
float betaf(float x, float y);
|
| 63 |
long double betal(long double x, long double y);
|
| 64 |
```
|
| 65 |
|
| 66 |
*Effects:* These functions compute the beta function of their respective
|
|
|
|
| 71 |
\text{ ,\quad for $x > 0$,\, $y > 0$,}$$ where x is `x` and y is `y`.
|
| 72 |
|
| 73 |
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 74 |
|
| 75 |
``` cpp
|
| 76 |
+
floating-point-type comp_ellint_1(floating-point-type k);
|
| 77 |
float comp_ellint_1f(float k);
|
| 78 |
long double comp_ellint_1l(long double k);
|
| 79 |
```
|
| 80 |
|
| 81 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
|
|
| 88 |
See also [[sf.cmath.ellint.1]].
|
| 89 |
|
| 90 |
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 91 |
|
| 92 |
``` cpp
|
| 93 |
+
floating-point-type comp_ellint_2(floating-point-type k);
|
| 94 |
float comp_ellint_2f(float k);
|
| 95 |
long double comp_ellint_2l(long double k);
|
| 96 |
```
|
| 97 |
|
| 98 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
|
|
| 105 |
See also [[sf.cmath.ellint.2]].
|
| 106 |
|
| 107 |
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 108 |
|
| 109 |
``` cpp
|
| 110 |
+
floating-point-type comp_ellint_3(floating-point-type k, floating-point-type nu);
|
| 111 |
float comp_ellint_3f(float k, float nu);
|
| 112 |
long double comp_ellint_3l(long double k, long double nu);
|
| 113 |
```
|
| 114 |
|
| 115 |
*Effects:* These functions compute the complete elliptic integral of the
|
|
|
|
| 122 |
See also [[sf.cmath.ellint.3]].
|
| 123 |
|
| 124 |
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 125 |
|
| 126 |
``` cpp
|
| 127 |
+
floating-point-type cyl_bessel_i(floating-point-type nu, floating-point-type x);
|
| 128 |
float cyl_bessel_if(float nu, float x);
|
| 129 |
long double cyl_bessel_il(long double nu, long double x);
|
| 130 |
```
|
| 131 |
|
| 132 |
*Effects:* These functions compute the regular modified cylindrical
|
|
|
|
| 143 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 144 |
|
| 145 |
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.cyl.bessel.j">[[sf.cmath.cyl.bessel.j]]</a>
|
| 146 |
|
| 147 |
``` cpp
|
| 148 |
+
floating-point-type cyl_bessel_j(floating-point-type nu, floating-point-type x);
|
| 149 |
float cyl_bessel_jf(float nu, float x);
|
| 150 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 151 |
```
|
| 152 |
|
| 153 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
|
|
|
| 161 |
*implementation-defined* if `nu >= 128`.
|
| 162 |
|
| 163 |
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
| 164 |
|
| 165 |
``` cpp
|
| 166 |
+
floating-point-type cyl_bessel_k(floating-point-type nu, floating-point-type x);
|
| 167 |
float cyl_bessel_kf(float nu, float x);
|
| 168 |
long double cyl_bessel_kl(long double nu, long double x);
|
| 169 |
```
|
| 170 |
|
| 171 |
*Effects:* These functions compute the irregular modified cylindrical
|
|
|
|
| 201 |
[[sf.cmath.cyl.neumann]].
|
| 202 |
|
| 203 |
#### Cylindrical Neumann functions <a id="sf.cmath.cyl.neumann">[[sf.cmath.cyl.neumann]]</a>
|
| 204 |
|
| 205 |
``` cpp
|
| 206 |
+
floating-point-type cyl_neumann(floating-point-type nu, floating-point-type x);
|
| 207 |
float cyl_neumannf(float nu, float x);
|
| 208 |
long double cyl_neumannl(long double nu, long double x);
|
| 209 |
```
|
| 210 |
|
| 211 |
*Effects:* These functions compute the cylindrical Neumann functions,
|
|
|
|
| 235 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 236 |
|
| 237 |
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.ellint.1">[[sf.cmath.ellint.1]]</a>
|
| 238 |
|
| 239 |
``` cpp
|
| 240 |
+
floating-point-type ellint_1(floating-point-type k, floating-point-type phi);
|
| 241 |
float ellint_1f(float k, float phi);
|
| 242 |
long double ellint_1l(long double k, long double phi);
|
| 243 |
```
|
| 244 |
|
| 245 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
|
|
| 251 |
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 252 |
|
| 253 |
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 254 |
|
| 255 |
``` cpp
|
| 256 |
+
floating-point-type ellint_2(floating-point-type k, floating-point-type phi);
|
| 257 |
float ellint_2f(float k, float phi);
|
| 258 |
long double ellint_2l(long double k, long double phi);
|
| 259 |
```
|
| 260 |
|
| 261 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
|
|
| 267 |
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
| 268 |
|
| 269 |
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 270 |
|
| 271 |
``` cpp
|
| 272 |
+
floating-point-type ellint_3(floating-point-type k, floating-point-type nu,
|
| 273 |
+
floating-point-type phi);
|
| 274 |
float ellint_3f(float k, float nu, float phi);
|
| 275 |
long double ellint_3l(long double k, long double nu, long double phi);
|
| 276 |
```
|
| 277 |
|
| 278 |
*Effects:* These functions compute the incomplete elliptic integral of
|
|
|
|
| 284 |
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
| 285 |
|
| 286 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 287 |
|
| 288 |
``` cpp
|
| 289 |
+
floating-point-type expint(floating-point-type x);
|
| 290 |
float expintf(float x);
|
| 291 |
long double expintl(long double x);
|
| 292 |
```
|
| 293 |
|
| 294 |
*Effects:* These functions compute the exponential integral of their
|
|
|
|
| 301 |
\;$$ where x is `x`.
|
| 302 |
|
| 303 |
#### Hermite polynomials <a id="sf.cmath.hermite">[[sf.cmath.hermite]]</a>
|
| 304 |
|
| 305 |
``` cpp
|
| 306 |
+
floating-point-type hermite(unsigned n, floating-point-type x);
|
| 307 |
float hermitef(unsigned n, float x);
|
| 308 |
long double hermitel(unsigned n, long double x);
|
| 309 |
```
|
| 310 |
|
| 311 |
*Effects:* These functions compute the Hermite polynomials of their
|
|
|
|
| 321 |
*implementation-defined* if `n >= 128`.
|
| 322 |
|
| 323 |
#### Laguerre polynomials <a id="sf.cmath.laguerre">[[sf.cmath.laguerre]]</a>
|
| 324 |
|
| 325 |
``` cpp
|
| 326 |
+
floating-point-type laguerre(unsigned n, floating-point-type x);
|
| 327 |
float laguerref(unsigned n, float x);
|
| 328 |
long double laguerrel(unsigned n, long double x);
|
| 329 |
```
|
| 330 |
|
| 331 |
*Effects:* These functions compute the Laguerre polynomials of their
|
|
|
|
| 339 |
*implementation-defined* if `n >= 128`.
|
| 340 |
|
| 341 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
| 342 |
|
| 343 |
``` cpp
|
| 344 |
+
floating-point-type legendre(unsigned l, floating-point-type x);
|
| 345 |
float legendref(unsigned l, float x);
|
| 346 |
long double legendrel(unsigned l, long double x);
|
| 347 |
```
|
| 348 |
|
| 349 |
*Effects:* These functions compute the Legendre polynomials of their
|
|
|
|
| 358 |
*implementation-defined* if `l >= 128`.
|
| 359 |
|
| 360 |
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
| 361 |
|
| 362 |
``` cpp
|
| 363 |
+
floating-point-type riemann_zeta(floating-point-type x);
|
| 364 |
float riemann_zetaf(float x);
|
| 365 |
long double riemann_zetal(long double x);
|
| 366 |
```
|
| 367 |
|
| 368 |
*Effects:* These functions compute the Riemann zeta function of their
|
|
|
|
| 392 |
\;$$ where x is `x`.
|
| 393 |
|
| 394 |
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 395 |
|
| 396 |
``` cpp
|
| 397 |
+
floating-point-type sph_bessel(unsigned n, floating-point-type x);
|
| 398 |
float sph_besself(unsigned n, float x);
|
| 399 |
long double sph_bessell(unsigned n, long double x);
|
| 400 |
```
|
| 401 |
|
| 402 |
*Effects:* These functions compute the spherical Bessel functions of the
|
|
|
|
| 412 |
See also [[sf.cmath.cyl.bessel.j]].
|
| 413 |
|
| 414 |
#### Spherical associated Legendre functions <a id="sf.cmath.sph.legendre">[[sf.cmath.sph.legendre]]</a>
|
| 415 |
|
| 416 |
``` cpp
|
| 417 |
+
floating-point-type sph_legendre(unsigned l, unsigned m, floating-point-type theta);
|
| 418 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 419 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
| 420 |
```
|
| 421 |
|
| 422 |
*Effects:* These functions compute the spherical associated Legendre
|
|
|
|
| 436 |
See also [[sf.cmath.assoc.legendre]].
|
| 437 |
|
| 438 |
#### Spherical Neumann functions <a id="sf.cmath.sph.neumann">[[sf.cmath.sph.neumann]]</a>
|
| 439 |
|
| 440 |
``` cpp
|
| 441 |
+
floating-point-type sph_neumann(unsigned n, floating-point-type x);
|
| 442 |
float sph_neumannf(unsigned n, float x);
|
| 443 |
long double sph_neumannl(unsigned n, long double x);
|
| 444 |
```
|
| 445 |
|
| 446 |
*Effects:* These functions compute the spherical Neumann functions, also
|