From Jason Turner

[sf.cmath.ellint.3]

Diff to HTML by rtfpessoa

tmp/tmpm3ib2s96/{from.md → to.md} RENAMED
@@ -9,9 +9,8 @@ long double ellint_3l(long double k, long double nu, long double phi);
9
 
10
  *Effects:* These functions compute the incomplete elliptic integral of
11
  the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
12
  measured in radians).
13
 
14
- *Returns:* $$\mathsf{\Pi}(\nu, k, \phi) = \int_0^\phi \!
15
- \frac{ \mathsf{d}\theta }{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} } \text{ ,\quad for $|k| \le 1$,}$$
16
- where $\nu$ is `nu`, k is `k`, and φ is `phi`.
17
 
 
9
 
10
  *Effects:* These functions compute the incomplete elliptic integral of
11
  the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
12
  measured in radians).
13
 
14
+ *Returns:* $\mathsf{\Pi}(\nu, k, \phi)$, where $\mathsf{\Pi}$ is given
15
+ by , $\nu$ is `nu`, k is `k`, and φ is `phi`.
 
16