tmp/tmprlb1vpu6/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 2 |
+
|
| 3 |
+
``` cpp
|
| 4 |
+
double ellint_3(double k, double nu, double phi);
|
| 5 |
+
float ellint_3f(float k, float nu, float phi);
|
| 6 |
+
long double ellint_3l(long double k, long double nu, long double phi);
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
*Effects:* These functions compute the incomplete elliptic integral of
|
| 10 |
+
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 11 |
+
measured in radians).
|
| 12 |
+
|
| 13 |
+
*Returns:* $$\mathsf{\Pi}(\nu, k, \phi) = \int_0^\phi \!
|
| 14 |
+
\frac{ \mathsf{d}\theta }{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} } \text{ ,\quad for $|k| \le 1$,}$$
|
| 15 |
+
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
| 16 |
+
|