tmp/tmpufaplyxi/{from.md → to.md}
RENAMED
|
@@ -5,64 +5,76 @@ placeholder-type-specifier:
|
|
| 5 |
type-constraintₒₚₜ auto
|
| 6 |
type-constraintₒₚₜ decltype '(' auto ')'
|
| 7 |
```
|
| 8 |
|
| 9 |
A *placeholder-type-specifier* designates a placeholder type that will
|
| 10 |
-
be replaced later by deduction from an initializer.
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
[*Note 1*: Having a generic parameter type placeholder signifies that
|
| 20 |
the function is an abbreviated function template [[dcl.fct]] or the
|
| 21 |
lambda is a generic lambda [[expr.prim.lambda]]. — *end note*]
|
| 22 |
|
| 23 |
-
A placeholder type can appear
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
non-discarded `return` statements, if any, in the body of the function
|
| 32 |
-
[[stmt.if]].
|
| 33 |
|
| 34 |
The type of a variable declared using a placeholder type is deduced from
|
| 35 |
its initializer. This use is allowed in an initializing declaration
|
| 36 |
[[dcl.init]] of a variable. The placeholder type shall appear as one of
|
| 37 |
-
the *decl-specifier*s in the *decl-specifier-seq*
|
| 38 |
-
*
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
[*Example 1*:
|
| 42 |
|
| 43 |
``` cpp
|
| 44 |
auto x = 5; // OK, x has type int
|
| 45 |
const auto *v = &x, u = 6; // OK, v has type const int*, u has type const int
|
| 46 |
static auto y = 0.0; // OK, y has type double
|
| 47 |
auto int r; // error: auto is not a storage-class-specifier
|
| 48 |
auto f() -> int; // OK, f returns int
|
| 49 |
auto g() { return 0.0; } // OK, g returns double
|
|
|
|
| 50 |
auto h(); // OK, h's return type will be deduced when it is defined
|
| 51 |
```
|
| 52 |
|
| 53 |
— *end example*]
|
| 54 |
|
| 55 |
The `auto` *type-specifier* can also be used to introduce a structured
|
| 56 |
binding declaration [[dcl.struct.bind]].
|
| 57 |
|
| 58 |
-
A placeholder type can also be used in the *type-specifier-seq*
|
| 59 |
-
*new-type-id* or *type-id* of a *new-expression* [[expr.new]]
|
| 60 |
-
*
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
A program that uses a placeholder type in a context not explicitly
|
| 66 |
allowed in [[dcl.spec.auto]] is ill-formed.
|
| 67 |
|
| 68 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
|
@@ -126,10 +138,25 @@ auto sum(int i) {
|
|
| 126 |
}
|
| 127 |
```
|
| 128 |
|
| 129 |
— *end example*]
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
Return type deduction for a templated function with a placeholder in its
|
| 132 |
declared type occurs when the definition is instantiated even if the
|
| 133 |
function body contains a `return` statement with a non-type-dependent
|
| 134 |
operand.
|
| 135 |
|
|
@@ -137,11 +164,11 @@ operand.
|
|
| 137 |
template will cause an implicit instantiation. Any errors that arise
|
| 138 |
from this instantiation are not in the immediate context of the function
|
| 139 |
type and can result in the program being ill-formed
|
| 140 |
[[temp.deduct]]. — *end note*]
|
| 141 |
|
| 142 |
-
[*Example
|
| 143 |
|
| 144 |
``` cpp
|
| 145 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 146 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 147 |
template<class T> auto f(T* t) { return *t; }
|
|
@@ -154,11 +181,11 @@ void g() { int (*p)(int*) = &f; } // instantiates both fs to deter
|
|
| 154 |
If a function or function template F has a declared return type that
|
| 155 |
uses a placeholder type, redeclarations or specializations of F shall
|
| 156 |
use that placeholder type, not a deduced type; otherwise, they shall not
|
| 157 |
use a placeholder type.
|
| 158 |
|
| 159 |
-
[*Example
|
| 160 |
|
| 161 |
``` cpp
|
| 162 |
auto f();
|
| 163 |
auto f() { return 42; } // return type is int
|
| 164 |
auto f(); // OK
|
|
@@ -199,11 +226,11 @@ shall not be a coroutine [[dcl.fct.def.coroutine]].
|
|
| 199 |
An explicit instantiation declaration [[temp.explicit]] does not cause
|
| 200 |
the instantiation of an entity declared using a placeholder type, but it
|
| 201 |
also does not prevent that entity from being instantiated as needed to
|
| 202 |
determine its type.
|
| 203 |
|
| 204 |
-
[*Example
|
| 205 |
|
| 206 |
``` cpp
|
| 207 |
template <typename T> auto f(T t) { return t; }
|
| 208 |
extern template auto f(int); // does not instantiate f<int>
|
| 209 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
|
|
|
| 5 |
type-constraintₒₚₜ auto
|
| 6 |
type-constraintₒₚₜ decltype '(' auto ')'
|
| 7 |
```
|
| 8 |
|
| 9 |
A *placeholder-type-specifier* designates a placeholder type that will
|
| 10 |
+
be replaced later, typically by deduction from an initializer.
|
| 11 |
|
| 12 |
+
The type of a *parameter-declaration* of a
|
| 13 |
+
|
| 14 |
+
- function declaration [[dcl.fct]],
|
| 15 |
+
- *lambda-expression* [[expr.prim.lambda]], or
|
| 16 |
+
- *template-parameter* [[temp.param]]
|
| 17 |
+
|
| 18 |
+
can be declared using a *placeholder-type-specifier* of the form
|
| 19 |
+
*type-constraint*ₒₚₜ `auto`. The placeholder type shall appear as one
|
| 20 |
+
of the *decl-specifier*s in the *decl-specifier-seq* or as one of the
|
| 21 |
+
*type-specifier*s in a *trailing-return-type* that specifies the type
|
| 22 |
+
that replaces such a *decl-specifier* (see below); the placeholder type
|
| 23 |
+
is a *generic parameter type placeholder* of the function declaration,
|
| 24 |
+
*lambda-expression*, or *template-parameter*, respectively.
|
| 25 |
|
| 26 |
[*Note 1*: Having a generic parameter type placeholder signifies that
|
| 27 |
the function is an abbreviated function template [[dcl.fct]] or the
|
| 28 |
lambda is a generic lambda [[expr.prim.lambda]]. — *end note*]
|
| 29 |
|
| 30 |
+
A placeholder type can appear in the *decl-specifier-seq* for a function
|
| 31 |
+
declarator that includes a *trailing-return-type* [[dcl.fct]].
|
| 32 |
+
|
| 33 |
+
A placeholder type can appear in the *decl-specifier-seq* or
|
| 34 |
+
*type-specifier-seq* in the declared return type of a function
|
| 35 |
+
declarator that declares a function; the return type of the function is
|
| 36 |
+
deduced from non-discarded `return` statements, if any, in the body of
|
| 37 |
+
the function [[stmt.if]].
|
|
|
|
|
|
|
| 38 |
|
| 39 |
The type of a variable declared using a placeholder type is deduced from
|
| 40 |
its initializer. This use is allowed in an initializing declaration
|
| 41 |
[[dcl.init]] of a variable. The placeholder type shall appear as one of
|
| 42 |
+
the *decl-specifier*s in the *decl-specifier-seq* or as one of the
|
| 43 |
+
*type-specifier*s in a *trailing-return-type* that specifies the type
|
| 44 |
+
that replaces such a *decl-specifier*; the *decl-specifier-seq* shall be
|
| 45 |
+
followed by one or more *declarator*s, each of which shall be followed
|
| 46 |
+
by a non-empty *initializer*.
|
| 47 |
|
| 48 |
[*Example 1*:
|
| 49 |
|
| 50 |
``` cpp
|
| 51 |
auto x = 5; // OK, x has type int
|
| 52 |
const auto *v = &x, u = 6; // OK, v has type const int*, u has type const int
|
| 53 |
static auto y = 0.0; // OK, y has type double
|
| 54 |
auto int r; // error: auto is not a storage-class-specifier
|
| 55 |
auto f() -> int; // OK, f returns int
|
| 56 |
auto g() { return 0.0; } // OK, g returns double
|
| 57 |
+
auto (*fp)() -> auto = f; // OK
|
| 58 |
auto h(); // OK, h's return type will be deduced when it is defined
|
| 59 |
```
|
| 60 |
|
| 61 |
— *end example*]
|
| 62 |
|
| 63 |
The `auto` *type-specifier* can also be used to introduce a structured
|
| 64 |
binding declaration [[dcl.struct.bind]].
|
| 65 |
|
| 66 |
+
A placeholder type can also be used in the *type-specifier-seq* of the
|
| 67 |
+
*new-type-id* or in the *type-id* of a *new-expression* [[expr.new]]. In
|
| 68 |
+
such a *type-id*, the placeholder type shall appear as one of the
|
| 69 |
+
*type-specifier*s in the *type-specifier-seq* or as one of the
|
| 70 |
+
*type-specifier*s in a *trailing-return-type* that specifies the type
|
| 71 |
+
that replaces such a *type-specifier*.
|
| 72 |
+
|
| 73 |
+
The `auto` *type-specifier* can also be used as the
|
| 74 |
+
*simple-type-specifier* in an explicit type conversion (functional
|
| 75 |
+
notation) [[expr.type.conv]].
|
| 76 |
|
| 77 |
A program that uses a placeholder type in a context not explicitly
|
| 78 |
allowed in [[dcl.spec.auto]] is ill-formed.
|
| 79 |
|
| 80 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
|
|
|
| 138 |
}
|
| 139 |
```
|
| 140 |
|
| 141 |
— *end example*]
|
| 142 |
|
| 143 |
+
A result binding never has an undeduced placeholder type
|
| 144 |
+
[[dcl.contract.res]].
|
| 145 |
+
|
| 146 |
+
[*Example 5*:
|
| 147 |
+
|
| 148 |
+
``` cpp
|
| 149 |
+
auto f()
|
| 150 |
+
post(r : r == 7) // OK
|
| 151 |
+
{
|
| 152 |
+
return 7;
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
— *end example*]
|
| 157 |
+
|
| 158 |
Return type deduction for a templated function with a placeholder in its
|
| 159 |
declared type occurs when the definition is instantiated even if the
|
| 160 |
function body contains a `return` statement with a non-type-dependent
|
| 161 |
operand.
|
| 162 |
|
|
|
|
| 164 |
template will cause an implicit instantiation. Any errors that arise
|
| 165 |
from this instantiation are not in the immediate context of the function
|
| 166 |
type and can result in the program being ill-formed
|
| 167 |
[[temp.deduct]]. — *end note*]
|
| 168 |
|
| 169 |
+
[*Example 6*:
|
| 170 |
|
| 171 |
``` cpp
|
| 172 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 173 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 174 |
template<class T> auto f(T* t) { return *t; }
|
|
|
|
| 181 |
If a function or function template F has a declared return type that
|
| 182 |
uses a placeholder type, redeclarations or specializations of F shall
|
| 183 |
use that placeholder type, not a deduced type; otherwise, they shall not
|
| 184 |
use a placeholder type.
|
| 185 |
|
| 186 |
+
[*Example 7*:
|
| 187 |
|
| 188 |
``` cpp
|
| 189 |
auto f();
|
| 190 |
auto f() { return 42; } // return type is int
|
| 191 |
auto f(); // OK
|
|
|
|
| 226 |
An explicit instantiation declaration [[temp.explicit]] does not cause
|
| 227 |
the instantiation of an entity declared using a placeholder type, but it
|
| 228 |
also does not prevent that entity from being instantiated as needed to
|
| 229 |
determine its type.
|
| 230 |
|
| 231 |
+
[*Example 8*:
|
| 232 |
|
| 233 |
``` cpp
|
| 234 |
template <typename T> auto f(T t) { return t; }
|
| 235 |
extern template auto f(int); // does not instantiate f<int>
|
| 236 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|