tmp/tmpypsxeo2u/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
##### General <a id="dcl.spec.auto.general">[[dcl.spec.auto.general]]</a>
|
| 2 |
+
|
| 3 |
+
``` bnf
|
| 4 |
+
placeholder-type-specifier:
|
| 5 |
+
type-constraintₒₚₜ auto
|
| 6 |
+
type-constraintₒₚₜ decltype '(' auto ')'
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
A *placeholder-type-specifier* designates a placeholder type that will
|
| 10 |
+
be replaced later by deduction from an initializer.
|
| 11 |
+
|
| 12 |
+
A *placeholder-type-specifier* of the form *type-constraint*ₒₚₜ `auto`
|
| 13 |
+
can be used as a *decl-specifier* of the *decl-specifier-seq* of a
|
| 14 |
+
*parameter-declaration* of a function declaration or *lambda-expression*
|
| 15 |
+
and, if it is not the `auto` *type-specifier* introducing a
|
| 16 |
+
*trailing-return-type* (see below), is a *generic parameter type
|
| 17 |
+
placeholder* of the function declaration or *lambda-expression*.
|
| 18 |
+
|
| 19 |
+
[*Note 1*: Having a generic parameter type placeholder signifies that
|
| 20 |
+
the function is an abbreviated function template [[dcl.fct]] or the
|
| 21 |
+
lambda is a generic lambda [[expr.prim.lambda]]. — *end note*]
|
| 22 |
+
|
| 23 |
+
A placeholder type can appear with a function declarator in the
|
| 24 |
+
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 25 |
+
*trailing-return-type*, in any context where such a declarator is valid.
|
| 26 |
+
If the function declarator includes a *trailing-return-type*
|
| 27 |
+
[[dcl.fct]], that *trailing-return-type* specifies the declared return
|
| 28 |
+
type of the function. Otherwise, the function declarator shall declare a
|
| 29 |
+
function. If the declared return type of the function contains a
|
| 30 |
+
placeholder type, the return type of the function is deduced from
|
| 31 |
+
non-discarded `return` statements, if any, in the body of the function
|
| 32 |
+
[[stmt.if]].
|
| 33 |
+
|
| 34 |
+
The type of a variable declared using a placeholder type is deduced from
|
| 35 |
+
its initializer. This use is allowed in an initializing declaration
|
| 36 |
+
[[dcl.init]] of a variable. The placeholder type shall appear as one of
|
| 37 |
+
the *decl-specifier*s in the *decl-specifier-seq* and the
|
| 38 |
+
*decl-specifier-seq* shall be followed by one or more *declarator*s,
|
| 39 |
+
each of which shall be followed by a non-empty *initializer*.
|
| 40 |
+
|
| 41 |
+
[*Example 1*:
|
| 42 |
+
|
| 43 |
+
``` cpp
|
| 44 |
+
auto x = 5; // OK, x has type int
|
| 45 |
+
const auto *v = &x, u = 6; // OK, v has type const int*, u has type const int
|
| 46 |
+
static auto y = 0.0; // OK, y has type double
|
| 47 |
+
auto int r; // error: auto is not a storage-class-specifier
|
| 48 |
+
auto f() -> int; // OK, f returns int
|
| 49 |
+
auto g() { return 0.0; } // OK, g returns double
|
| 50 |
+
auto h(); // OK, h's return type will be deduced when it is defined
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
— *end example*]
|
| 54 |
+
|
| 55 |
+
The `auto` *type-specifier* can also be used to introduce a structured
|
| 56 |
+
binding declaration [[dcl.struct.bind]].
|
| 57 |
+
|
| 58 |
+
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 59 |
+
*new-type-id* or *type-id* of a *new-expression* [[expr.new]] and as a
|
| 60 |
+
*decl-specifier* of the *parameter-declaration*'s *decl-specifier-seq*
|
| 61 |
+
in a *template-parameter* [[temp.param]]. The `auto` *type-specifier*
|
| 62 |
+
can also be used as the *simple-type-specifier* in an explicit type
|
| 63 |
+
conversion (functional notation) [[expr.type.conv]].
|
| 64 |
+
|
| 65 |
+
A program that uses a placeholder type in a context not explicitly
|
| 66 |
+
allowed in [[dcl.spec.auto]] is ill-formed.
|
| 67 |
+
|
| 68 |
+
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 69 |
+
they shall all form declarations of variables. The type of each declared
|
| 70 |
+
variable is determined by placeholder type deduction
|
| 71 |
+
[[dcl.type.auto.deduct]], and if the type that replaces the placeholder
|
| 72 |
+
type is not the same in each deduction, the program is ill-formed.
|
| 73 |
+
|
| 74 |
+
[*Example 2*:
|
| 75 |
+
|
| 76 |
+
``` cpp
|
| 77 |
+
auto x = 5, *y = &x; // OK, auto is int
|
| 78 |
+
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
— *end example*]
|
| 82 |
+
|
| 83 |
+
If a function with a declared return type that contains a placeholder
|
| 84 |
+
type has multiple non-discarded `return` statements, the return type is
|
| 85 |
+
deduced for each such `return` statement. If the type deduced is not the
|
| 86 |
+
same in each deduction, the program is ill-formed.
|
| 87 |
+
|
| 88 |
+
If a function with a declared return type that uses a placeholder type
|
| 89 |
+
has no non-discarded `return` statements, the return type is deduced as
|
| 90 |
+
though from a `return` statement with no operand at the closing brace of
|
| 91 |
+
the function body.
|
| 92 |
+
|
| 93 |
+
[*Example 3*:
|
| 94 |
+
|
| 95 |
+
``` cpp
|
| 96 |
+
auto f() { } // OK, return type is void
|
| 97 |
+
auto* g() { } // error: cannot deduce auto* from void()
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
— *end example*]
|
| 101 |
+
|
| 102 |
+
An exported function with a declared return type that uses a placeholder
|
| 103 |
+
type shall be defined in the translation unit containing its exported
|
| 104 |
+
declaration, outside the *private-module-fragment* (if any).
|
| 105 |
+
|
| 106 |
+
[*Note 2*: The deduced return type cannot have a name with internal
|
| 107 |
+
linkage [[basic.link]]. — *end note*]
|
| 108 |
+
|
| 109 |
+
If a variable or function with an undeduced placeholder type is named by
|
| 110 |
+
an expression [[basic.def.odr]], the program is ill-formed. Once a
|
| 111 |
+
non-discarded `return` statement has been seen in a function, however,
|
| 112 |
+
the return type deduced from that statement can be used in the rest of
|
| 113 |
+
the function, including in other `return` statements.
|
| 114 |
+
|
| 115 |
+
[*Example 4*:
|
| 116 |
+
|
| 117 |
+
``` cpp
|
| 118 |
+
auto n = n; // error: n's initializer refers to n
|
| 119 |
+
auto f();
|
| 120 |
+
void g() { &f; } // error: f's return type is unknown
|
| 121 |
+
auto sum(int i) {
|
| 122 |
+
if (i == 1)
|
| 123 |
+
return i; // sum's return type is int
|
| 124 |
+
else
|
| 125 |
+
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 126 |
+
}
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
— *end example*]
|
| 130 |
+
|
| 131 |
+
Return type deduction for a templated function with a placeholder in its
|
| 132 |
+
declared type occurs when the definition is instantiated even if the
|
| 133 |
+
function body contains a `return` statement with a non-type-dependent
|
| 134 |
+
operand.
|
| 135 |
+
|
| 136 |
+
[*Note 3*: Therefore, any use of a specialization of the function
|
| 137 |
+
template will cause an implicit instantiation. Any errors that arise
|
| 138 |
+
from this instantiation are not in the immediate context of the function
|
| 139 |
+
type and can result in the program being ill-formed
|
| 140 |
+
[[temp.deduct]]. — *end note*]
|
| 141 |
+
|
| 142 |
+
[*Example 5*:
|
| 143 |
+
|
| 144 |
+
``` cpp
|
| 145 |
+
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 146 |
+
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 147 |
+
template<class T> auto f(T* t) { return *t; }
|
| 148 |
+
void g() { int (*p)(int*) = &f; } // instantiates both fs to determine return types,
|
| 149 |
+
// chooses second
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
— *end example*]
|
| 153 |
+
|
| 154 |
+
If a function or function template F has a declared return type that
|
| 155 |
+
uses a placeholder type, redeclarations or specializations of F shall
|
| 156 |
+
use that placeholder type, not a deduced type; otherwise, they shall not
|
| 157 |
+
use a placeholder type.
|
| 158 |
+
|
| 159 |
+
[*Example 6*:
|
| 160 |
+
|
| 161 |
+
``` cpp
|
| 162 |
+
auto f();
|
| 163 |
+
auto f() { return 42; } // return type is int
|
| 164 |
+
auto f(); // OK
|
| 165 |
+
int f(); // error: auto and int don't match
|
| 166 |
+
decltype(auto) f(); // error: auto and decltype(auto) don't match
|
| 167 |
+
|
| 168 |
+
template <typename T> auto g(T t) { return t; } // #1
|
| 169 |
+
template auto g(int); // OK, return type is int
|
| 170 |
+
template char g(char); // error: no matching template
|
| 171 |
+
template<> auto g(double); // OK, forward declaration with unknown return type
|
| 172 |
+
|
| 173 |
+
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
|
| 174 |
+
template char g(char); // OK, now there is a matching template
|
| 175 |
+
template auto g(float); // still matches #1
|
| 176 |
+
|
| 177 |
+
void h() { return g(42); } // error: ambiguous
|
| 178 |
+
|
| 179 |
+
template <typename T> struct A {
|
| 180 |
+
friend T frf(T);
|
| 181 |
+
};
|
| 182 |
+
auto frf(int i) { return i; } // not a friend of A<int>
|
| 183 |
+
extern int v;
|
| 184 |
+
auto v = 17; // OK, redeclares v
|
| 185 |
+
struct S {
|
| 186 |
+
static int i;
|
| 187 |
+
};
|
| 188 |
+
auto S::i = 23; // OK
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
— *end example*]
|
| 192 |
+
|
| 193 |
+
A function declared with a return type that uses a placeholder type
|
| 194 |
+
shall not be `virtual` [[class.virtual]].
|
| 195 |
+
|
| 196 |
+
A function declared with a return type that uses a placeholder type
|
| 197 |
+
shall not be a coroutine [[dcl.fct.def.coroutine]].
|
| 198 |
+
|
| 199 |
+
An explicit instantiation declaration [[temp.explicit]] does not cause
|
| 200 |
+
the instantiation of an entity declared using a placeholder type, but it
|
| 201 |
+
also does not prevent that entity from being instantiated as needed to
|
| 202 |
+
determine its type.
|
| 203 |
+
|
| 204 |
+
[*Example 7*:
|
| 205 |
+
|
| 206 |
+
``` cpp
|
| 207 |
+
template <typename T> auto f(T t) { return t; }
|
| 208 |
+
extern template auto f(int); // does not instantiate f<int>
|
| 209 |
+
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
| 210 |
+
// instantiation definition is still required somewhere in the program
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
— *end example*]
|
| 214 |
+
|