tmp/tmph8cevv6w/{from.md → to.md}
RENAMED
|
@@ -1,81 +1,81 @@
|
|
| 1 |
### Transcendentals <a id="complex.transcendentals">[[complex.transcendentals]]</a>
|
| 2 |
|
| 3 |
``` cpp
|
| 4 |
-
template<class T> complex<T> acos(const complex<T>& x);
|
| 5 |
```
|
| 6 |
|
| 7 |
*Returns:* The complex arc cosine of `x`.
|
| 8 |
|
| 9 |
*Remarks:* Behaves the same as the C function `cacos`. See also: ISO C
|
| 10 |
7.3.5.1
|
| 11 |
|
| 12 |
``` cpp
|
| 13 |
-
template<class T> complex<T> asin(const complex<T>& x);
|
| 14 |
```
|
| 15 |
|
| 16 |
*Returns:* The complex arc sine of `x`.
|
| 17 |
|
| 18 |
*Remarks:* Behaves the same as the C function `casin`. See also: ISO C
|
| 19 |
7.3.5.2
|
| 20 |
|
| 21 |
``` cpp
|
| 22 |
-
template<class T> complex<T> atan(const complex<T>& x);
|
| 23 |
```
|
| 24 |
|
| 25 |
*Returns:* The complex arc tangent of `x`.
|
| 26 |
|
| 27 |
*Remarks:* Behaves the same as the C function `catan`. See also: ISO C
|
| 28 |
7.3.5.3
|
| 29 |
|
| 30 |
``` cpp
|
| 31 |
-
template<class T> complex<T> acosh(const complex<T>& x);
|
| 32 |
```
|
| 33 |
|
| 34 |
*Returns:* The complex arc hyperbolic cosine of `x`.
|
| 35 |
|
| 36 |
*Remarks:* Behaves the same as the C function `cacosh`. See also: ISO C
|
| 37 |
7.3.6.1
|
| 38 |
|
| 39 |
``` cpp
|
| 40 |
-
template<class T> complex<T> asinh(const complex<T>& x);
|
| 41 |
```
|
| 42 |
|
| 43 |
*Returns:* The complex arc hyperbolic sine of `x`.
|
| 44 |
|
| 45 |
*Remarks:* Behaves the same as the C function `casinh`. See also: ISO C
|
| 46 |
7.3.6.2
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
-
template<class T> complex<T> atanh(const complex<T>& x);
|
| 50 |
```
|
| 51 |
|
| 52 |
*Returns:* The complex arc hyperbolic tangent of `x`.
|
| 53 |
|
| 54 |
*Remarks:* Behaves the same as the C function `catanh`. See also: ISO C
|
| 55 |
7.3.6.3
|
| 56 |
|
| 57 |
``` cpp
|
| 58 |
-
template<class T> complex<T> cos(const complex<T>& x);
|
| 59 |
```
|
| 60 |
|
| 61 |
*Returns:* The complex cosine of `x`.
|
| 62 |
|
| 63 |
``` cpp
|
| 64 |
-
template<class T> complex<T> cosh(const complex<T>& x);
|
| 65 |
```
|
| 66 |
|
| 67 |
*Returns:* The complex hyperbolic cosine of `x`.
|
| 68 |
|
| 69 |
``` cpp
|
| 70 |
-
template<class T> complex<T> exp(const complex<T>& x);
|
| 71 |
```
|
| 72 |
|
| 73 |
*Returns:* The complex base-e exponential of `x`.
|
| 74 |
|
| 75 |
``` cpp
|
| 76 |
-
template<class T> complex<T> log(const complex<T>& x);
|
| 77 |
```
|
| 78 |
|
| 79 |
*Returns:* The complex natural (base-e) logarithm of `x`. For all `x`,
|
| 80 |
`imag(log(x))` lies in the interval \[-π, π\].
|
| 81 |
|
|
@@ -83,44 +83,44 @@ template<class T> complex<T> log(const complex<T>& x);
|
|
| 83 |
in C++ as they are for `clog` in C. — *end note*]
|
| 84 |
|
| 85 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 86 |
|
| 87 |
``` cpp
|
| 88 |
-
template<class T> complex<T> log10(const complex<T>& x);
|
| 89 |
```
|
| 90 |
|
| 91 |
*Returns:* The complex common (base-10) logarithm of `x`, defined as
|
| 92 |
`log(x) / log(10)`.
|
| 93 |
|
| 94 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 95 |
|
| 96 |
``` cpp
|
| 97 |
-
template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
|
| 98 |
-
template<class T> complex<T> pow(const complex<T>& x, const T& y);
|
| 99 |
-
template<class T> complex<T> pow(const T& x, const complex<T>& y);
|
| 100 |
```
|
| 101 |
|
| 102 |
*Returns:* The complex power of base `x` raised to the `y`ᵗʰ power,
|
| 103 |
defined as `exp(y * log(x))`. The value returned for `pow(0, 0)` is
|
| 104 |
*implementation-defined*.
|
| 105 |
|
| 106 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 107 |
|
| 108 |
``` cpp
|
| 109 |
-
template<class T> complex<T> sin(const complex<T>& x);
|
| 110 |
```
|
| 111 |
|
| 112 |
*Returns:* The complex sine of `x`.
|
| 113 |
|
| 114 |
``` cpp
|
| 115 |
-
template<class T> complex<T> sinh(const complex<T>& x);
|
| 116 |
```
|
| 117 |
|
| 118 |
*Returns:* The complex hyperbolic sine of `x`.
|
| 119 |
|
| 120 |
``` cpp
|
| 121 |
-
template<class T> complex<T> sqrt(const complex<T>& x);
|
| 122 |
```
|
| 123 |
|
| 124 |
*Returns:* The complex square root of `x`, in the range of the right
|
| 125 |
half-plane.
|
| 126 |
|
|
@@ -128,16 +128,16 @@ half-plane.
|
|
| 128 |
in C++ as they are for `csqrt` in C. — *end note*]
|
| 129 |
|
| 130 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 131 |
|
| 132 |
``` cpp
|
| 133 |
-
template<class T> complex<T> tan(const complex<T>& x);
|
| 134 |
```
|
| 135 |
|
| 136 |
*Returns:* The complex tangent of `x`.
|
| 137 |
|
| 138 |
``` cpp
|
| 139 |
-
template<class T> complex<T> tanh(const complex<T>& x);
|
| 140 |
```
|
| 141 |
|
| 142 |
*Returns:* The complex hyperbolic tangent of `x`.
|
| 143 |
|
|
|
|
| 1 |
### Transcendentals <a id="complex.transcendentals">[[complex.transcendentals]]</a>
|
| 2 |
|
| 3 |
``` cpp
|
| 4 |
+
template<class T> constexpr complex<T> acos(const complex<T>& x);
|
| 5 |
```
|
| 6 |
|
| 7 |
*Returns:* The complex arc cosine of `x`.
|
| 8 |
|
| 9 |
*Remarks:* Behaves the same as the C function `cacos`. See also: ISO C
|
| 10 |
7.3.5.1
|
| 11 |
|
| 12 |
``` cpp
|
| 13 |
+
template<class T> constexpr complex<T> asin(const complex<T>& x);
|
| 14 |
```
|
| 15 |
|
| 16 |
*Returns:* The complex arc sine of `x`.
|
| 17 |
|
| 18 |
*Remarks:* Behaves the same as the C function `casin`. See also: ISO C
|
| 19 |
7.3.5.2
|
| 20 |
|
| 21 |
``` cpp
|
| 22 |
+
template<class T> constexpr complex<T> atan(const complex<T>& x);
|
| 23 |
```
|
| 24 |
|
| 25 |
*Returns:* The complex arc tangent of `x`.
|
| 26 |
|
| 27 |
*Remarks:* Behaves the same as the C function `catan`. See also: ISO C
|
| 28 |
7.3.5.3
|
| 29 |
|
| 30 |
``` cpp
|
| 31 |
+
template<class T> constexpr complex<T> acosh(const complex<T>& x);
|
| 32 |
```
|
| 33 |
|
| 34 |
*Returns:* The complex arc hyperbolic cosine of `x`.
|
| 35 |
|
| 36 |
*Remarks:* Behaves the same as the C function `cacosh`. See also: ISO C
|
| 37 |
7.3.6.1
|
| 38 |
|
| 39 |
``` cpp
|
| 40 |
+
template<class T> constexpr complex<T> asinh(const complex<T>& x);
|
| 41 |
```
|
| 42 |
|
| 43 |
*Returns:* The complex arc hyperbolic sine of `x`.
|
| 44 |
|
| 45 |
*Remarks:* Behaves the same as the C function `casinh`. See also: ISO C
|
| 46 |
7.3.6.2
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
+
template<class T> constexpr complex<T> atanh(const complex<T>& x);
|
| 50 |
```
|
| 51 |
|
| 52 |
*Returns:* The complex arc hyperbolic tangent of `x`.
|
| 53 |
|
| 54 |
*Remarks:* Behaves the same as the C function `catanh`. See also: ISO C
|
| 55 |
7.3.6.3
|
| 56 |
|
| 57 |
``` cpp
|
| 58 |
+
template<class T> constexpr complex<T> cos(const complex<T>& x);
|
| 59 |
```
|
| 60 |
|
| 61 |
*Returns:* The complex cosine of `x`.
|
| 62 |
|
| 63 |
``` cpp
|
| 64 |
+
template<class T> constexpr complex<T> cosh(const complex<T>& x);
|
| 65 |
```
|
| 66 |
|
| 67 |
*Returns:* The complex hyperbolic cosine of `x`.
|
| 68 |
|
| 69 |
``` cpp
|
| 70 |
+
template<class T> constexpr complex<T> exp(const complex<T>& x);
|
| 71 |
```
|
| 72 |
|
| 73 |
*Returns:* The complex base-e exponential of `x`.
|
| 74 |
|
| 75 |
``` cpp
|
| 76 |
+
template<class T> constexpr complex<T> log(const complex<T>& x);
|
| 77 |
```
|
| 78 |
|
| 79 |
*Returns:* The complex natural (base-e) logarithm of `x`. For all `x`,
|
| 80 |
`imag(log(x))` lies in the interval \[-π, π\].
|
| 81 |
|
|
|
|
| 83 |
in C++ as they are for `clog` in C. — *end note*]
|
| 84 |
|
| 85 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 86 |
|
| 87 |
``` cpp
|
| 88 |
+
template<class T> constexpr complex<T> log10(const complex<T>& x);
|
| 89 |
```
|
| 90 |
|
| 91 |
*Returns:* The complex common (base-10) logarithm of `x`, defined as
|
| 92 |
`log(x) / log(10)`.
|
| 93 |
|
| 94 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 95 |
|
| 96 |
``` cpp
|
| 97 |
+
template<class T> constexpr complex<T> pow(const complex<T>& x, const complex<T>& y);
|
| 98 |
+
template<class T> constexpr complex<T> pow(const complex<T>& x, const T& y);
|
| 99 |
+
template<class T> constexpr complex<T> pow(const T& x, const complex<T>& y);
|
| 100 |
```
|
| 101 |
|
| 102 |
*Returns:* The complex power of base `x` raised to the `y`ᵗʰ power,
|
| 103 |
defined as `exp(y * log(x))`. The value returned for `pow(0, 0)` is
|
| 104 |
*implementation-defined*.
|
| 105 |
|
| 106 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 107 |
|
| 108 |
``` cpp
|
| 109 |
+
template<class T> constexpr complex<T> sin(const complex<T>& x);
|
| 110 |
```
|
| 111 |
|
| 112 |
*Returns:* The complex sine of `x`.
|
| 113 |
|
| 114 |
``` cpp
|
| 115 |
+
template<class T> constexpr complex<T> sinh(const complex<T>& x);
|
| 116 |
```
|
| 117 |
|
| 118 |
*Returns:* The complex hyperbolic sine of `x`.
|
| 119 |
|
| 120 |
``` cpp
|
| 121 |
+
template<class T> constexpr complex<T> sqrt(const complex<T>& x);
|
| 122 |
```
|
| 123 |
|
| 124 |
*Returns:* The complex square root of `x`, in the range of the right
|
| 125 |
half-plane.
|
| 126 |
|
|
|
|
| 128 |
in C++ as they are for `csqrt` in C. — *end note*]
|
| 129 |
|
| 130 |
*Remarks:* The branch cuts are along the negative real axis.
|
| 131 |
|
| 132 |
``` cpp
|
| 133 |
+
template<class T> constexpr complex<T> tan(const complex<T>& x);
|
| 134 |
```
|
| 135 |
|
| 136 |
*Returns:* The complex tangent of `x`.
|
| 137 |
|
| 138 |
``` cpp
|
| 139 |
+
template<class T> constexpr complex<T> tanh(const complex<T>& x);
|
| 140 |
```
|
| 141 |
|
| 142 |
*Returns:* The complex hyperbolic tangent of `x`.
|
| 143 |
|