From Jason Turner

[complex.transcendentals]

Diff to HTML by rtfpessoa

Files changed (1) hide show
  1. tmp/tmp1v__nwx2/{from.md → to.md} +15 -17
tmp/tmp1v__nwx2/{from.md → to.md} RENAMED
@@ -62,44 +62,42 @@ template<class T> complex<T> cosh(const complex<T>& x);
62
 
63
  ``` cpp
64
  template<class T> complex<T> exp(const complex<T>& x);
65
  ```
66
 
67
- *Returns:* The complex base e exponential of `x`.
68
 
69
  ``` cpp
70
  template<class T> complex<T> log(const complex<T>& x);
71
  ```
72
 
73
- *Remarks:* the branch cuts are along the negative real axis.
 
 
74
 
75
- *Returns:* The complex natural (base e) logarithm of `x`, in the range
76
- of a strip mathematically unbounded along the real axis and in the
77
- interval \[`-i times pi`, `i times pi`\] along the imaginary axis. When
78
- `x` is a negative real number, `imag(log(x))` is pi.
79
 
80
  ``` cpp
81
  template<class T> complex<T> log10(const complex<T>& x);
82
  ```
83
 
84
- *Remarks:* the branch cuts are along the negative real axis.
85
-
86
- *Returns:* The complex common (base 10) logarithm of `x`, defined as
87
  `log(x) / log(10)`.
88
 
 
 
89
  ``` cpp
90
- template<class T>
91
- complex<T> pow(const complex<T>& x, const complex<T>& y);
92
  template<class T> complex<T> pow(const complex<T>& x, const T& y);
93
  template<class T> complex<T> pow(const T& x, const complex<T>& y);
94
  ```
95
 
96
- *Remarks:* the branch cuts are along the negative real axis.
97
-
98
- *Returns:* The complex power of base `x` raised to the `y`-th power,
99
  defined as `exp(y * log(x))`. The value returned for `pow(0, 0)` is
100
- implementation-defined.
 
 
101
 
102
  ``` cpp
103
  template<class T> complex<T> sin(const complex<T>& x);
104
  ```
105
 
@@ -113,16 +111,16 @@ template<class T> complex<T> sinh (const complex<T>& x);
113
 
114
  ``` cpp
115
  template<class T> complex<T> sqrt(const complex<T>& x);
116
  ```
117
 
118
- *Remarks:* the branch cuts are along the negative real axis.
119
-
120
  *Returns:* The complex square root of `x`, in the range of the right
121
  half-plane. If the argument is a negative real number, the value
122
  returned lies on the positive imaginary axis.
123
 
 
 
124
  ``` cpp
125
  template<class T> complex<T> tan(const complex<T>& x);
126
  ```
127
 
128
  *Returns:* The complex tangent of `x`.
 
62
 
63
  ``` cpp
64
  template<class T> complex<T> exp(const complex<T>& x);
65
  ```
66
 
67
+ *Returns:* The complex base-e exponential of `x`.
68
 
69
  ``` cpp
70
  template<class T> complex<T> log(const complex<T>& x);
71
  ```
72
 
73
+ *Returns:* The complex natural (base-e) logarithm of `x`. For all `x`,
74
+ `imag(log(x))` lies in the interval \[-π, π\], and when `x` is a
75
+ negative real number, `imag(log(x))` is π.
76
 
77
+ *Remarks:* The branch cuts are along the negative real axis.
 
 
 
78
 
79
  ``` cpp
80
  template<class T> complex<T> log10(const complex<T>& x);
81
  ```
82
 
83
+ *Returns:* The complex common (base-10) logarithm of `x`, defined as
 
 
84
  `log(x) / log(10)`.
85
 
86
+ *Remarks:* The branch cuts are along the negative real axis.
87
+
88
  ``` cpp
89
+ template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
 
90
  template<class T> complex<T> pow(const complex<T>& x, const T& y);
91
  template<class T> complex<T> pow(const T& x, const complex<T>& y);
92
  ```
93
 
94
+ *Returns:* The complex power of base `x` raised to the `y`ᵗʰ power,
 
 
95
  defined as `exp(y * log(x))`. The value returned for `pow(0, 0)` is
96
+ *implementation-defined*.
97
+
98
+ *Remarks:* The branch cuts are along the negative real axis.
99
 
100
  ``` cpp
101
  template<class T> complex<T> sin(const complex<T>& x);
102
  ```
103
 
 
111
 
112
  ``` cpp
113
  template<class T> complex<T> sqrt(const complex<T>& x);
114
  ```
115
 
 
 
116
  *Returns:* The complex square root of `x`, in the range of the right
117
  half-plane. If the argument is a negative real number, the value
118
  returned lies on the positive imaginary axis.
119
 
120
+ *Remarks:* The branch cuts are along the negative real axis.
121
+
122
  ``` cpp
123
  template<class T> complex<T> tan(const complex<T>& x);
124
  ```
125
 
126
  *Returns:* The complex tangent of `x`.