tmp/tmpts9puygr/{from.md → to.md}
RENAMED
|
@@ -27,10 +27,11 @@ outside its stated domain.
|
|
| 27 |
A `uniform_int_distribution` random number distribution produces random
|
| 28 |
integers i, a ≤ i ≤ b, distributed according to the constant discrete
|
| 29 |
probability function $$P(i\,|\,a,b) = 1 / (b - a + 1) \text{ .}$$
|
| 30 |
|
| 31 |
``` cpp
|
|
|
|
| 32 |
template<class IntType = int>
|
| 33 |
class uniform_int_distribution {
|
| 34 |
public:
|
| 35 |
// types
|
| 36 |
using result_type = IntType;
|
|
@@ -40,10 +41,13 @@ template<class IntType = int>
|
|
| 40 |
uniform_int_distribution() : uniform_int_distribution(0) {}
|
| 41 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 42 |
explicit uniform_int_distribution(const param_type& parm);
|
| 43 |
void reset();
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
// generating functions
|
| 46 |
template<class URBG>
|
| 47 |
result_type operator()(URBG& g);
|
| 48 |
template<class URBG>
|
| 49 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -53,11 +57,20 @@ template<class IntType = int>
|
|
| 53 |
result_type b() const;
|
| 54 |
param_type param() const;
|
| 55 |
void param(const param_type& parm);
|
| 56 |
result_type min() const;
|
| 57 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
};
|
|
|
|
| 59 |
```
|
| 60 |
|
| 61 |
``` cpp
|
| 62 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 63 |
```
|
|
@@ -89,10 +102,11 @@ density function $$p(x\,|\,a,b) = 1 / (b - a) \text{ .}$$
|
|
| 89 |
|
| 90 |
[*Note 1*: This implies that p(x | a,b) is undefined when
|
| 91 |
`a == b`. — *end note*]
|
| 92 |
|
| 93 |
``` cpp
|
|
|
|
| 94 |
template<class RealType = double>
|
| 95 |
class uniform_real_distribution {
|
| 96 |
public:
|
| 97 |
// types
|
| 98 |
using result_type = RealType;
|
|
@@ -102,10 +116,14 @@ template<class RealType = double>
|
|
| 102 |
uniform_real_distribution() : uniform_real_distribution(0.0) {}
|
| 103 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 104 |
explicit uniform_real_distribution(const param_type& parm);
|
| 105 |
void reset();
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
// generating functions
|
| 108 |
template<class URBG>
|
| 109 |
result_type operator()(URBG& g);
|
| 110 |
template<class URBG>
|
| 111 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -115,11 +133,20 @@ template<class RealType = double>
|
|
| 115 |
result_type b() const;
|
| 116 |
param_type param() const;
|
| 117 |
void param(const param_type& parm);
|
| 118 |
result_type min() const;
|
| 119 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
};
|
|
|
|
| 121 |
```
|
| 122 |
|
| 123 |
``` cpp
|
| 124 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 125 |
```
|
|
@@ -154,10 +181,11 @@ $$P(b\,|\,p) = \left\{ \begin{array}{ll}
|
|
| 154 |
p & \text{ if $b = \tcode{true}$, or} \\
|
| 155 |
1 - p & \text{ if $b = \tcode{false}$.}
|
| 156 |
\end{array}\right.$$
|
| 157 |
|
| 158 |
``` cpp
|
|
|
|
| 159 |
class bernoulli_distribution {
|
| 160 |
public:
|
| 161 |
// types
|
| 162 |
using result_type = bool;
|
| 163 |
using param_type = unspecified;
|
|
@@ -166,10 +194,13 @@ public:
|
|
| 166 |
bernoulli_distribution() : bernoulli_distribution(0.5) {}
|
| 167 |
explicit bernoulli_distribution(double p);
|
| 168 |
explicit bernoulli_distribution(const param_type& parm);
|
| 169 |
void reset();
|
| 170 |
|
|
|
|
|
|
|
|
|
|
| 171 |
// generating functions
|
| 172 |
template<class URBG>
|
| 173 |
result_type operator()(URBG& g);
|
| 174 |
template<class URBG>
|
| 175 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -178,11 +209,20 @@ public:
|
|
| 178 |
double p() const;
|
| 179 |
param_type param() const;
|
| 180 |
void param(const param_type& parm);
|
| 181 |
result_type min() const;
|
| 182 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
};
|
|
|
|
| 184 |
```
|
| 185 |
|
| 186 |
``` cpp
|
| 187 |
explicit bernoulli_distribution(double p);
|
| 188 |
```
|
|
@@ -203,10 +243,11 @@ constructed.
|
|
| 203 |
A `binomial_distribution` random number distribution produces integer
|
| 204 |
values i ≥ 0 distributed according to the discrete probability function
|
| 205 |
$$P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .}$$
|
| 206 |
|
| 207 |
``` cpp
|
|
|
|
| 208 |
template<class IntType = int>
|
| 209 |
class binomial_distribution {
|
| 210 |
public:
|
| 211 |
// types
|
| 212 |
using result_type = IntType;
|
|
@@ -216,10 +257,13 @@ template<class IntType = int>
|
|
| 216 |
binomial_distribution() : binomial_distribution(1) {}
|
| 217 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 218 |
explicit binomial_distribution(const param_type& parm);
|
| 219 |
void reset();
|
| 220 |
|
|
|
|
|
|
|
|
|
|
| 221 |
// generating functions
|
| 222 |
template<class URBG>
|
| 223 |
result_type operator()(URBG& g);
|
| 224 |
template<class URBG>
|
| 225 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -229,11 +273,20 @@ template<class IntType = int>
|
|
| 229 |
double p() const;
|
| 230 |
param_type param() const;
|
| 231 |
void param(const param_type& parm);
|
| 232 |
result_type min() const;
|
| 233 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
};
|
|
|
|
| 235 |
```
|
| 236 |
|
| 237 |
``` cpp
|
| 238 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 239 |
```
|
|
@@ -262,10 +315,11 @@ constructed.
|
|
| 262 |
A `geometric_distribution` random number distribution produces integer
|
| 263 |
values i ≥ 0 distributed according to the discrete probability function
|
| 264 |
$$P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .}$$
|
| 265 |
|
| 266 |
``` cpp
|
|
|
|
| 267 |
template<class IntType = int>
|
| 268 |
class geometric_distribution {
|
| 269 |
public:
|
| 270 |
// types
|
| 271 |
using result_type = IntType;
|
|
@@ -275,10 +329,13 @@ template<class IntType = int>
|
|
| 275 |
geometric_distribution() : geometric_distribution(0.5) {}
|
| 276 |
explicit geometric_distribution(double p);
|
| 277 |
explicit geometric_distribution(const param_type& parm);
|
| 278 |
void reset();
|
| 279 |
|
|
|
|
|
|
|
|
|
|
| 280 |
// generating functions
|
| 281 |
template<class URBG>
|
| 282 |
result_type operator()(URBG& g);
|
| 283 |
template<class URBG>
|
| 284 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -287,11 +344,20 @@ template<class IntType = int>
|
|
| 287 |
double p() const;
|
| 288 |
param_type param() const;
|
| 289 |
void param(const param_type& parm);
|
| 290 |
result_type min() const;
|
| 291 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
};
|
|
|
|
| 293 |
```
|
| 294 |
|
| 295 |
``` cpp
|
| 296 |
explicit geometric_distribution(double p);
|
| 297 |
```
|
|
@@ -316,10 +382,11 @@ $$P(i\,|\,k,p) = \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i \text{ .}$$
|
|
| 316 |
|
| 317 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 318 |
`p == 1`. — *end note*]
|
| 319 |
|
| 320 |
``` cpp
|
|
|
|
| 321 |
template<class IntType = int>
|
| 322 |
class negative_binomial_distribution {
|
| 323 |
public:
|
| 324 |
// types
|
| 325 |
using result_type = IntType;
|
|
@@ -329,10 +396,14 @@ template<class IntType = int>
|
|
| 329 |
negative_binomial_distribution() : negative_binomial_distribution(1) {}
|
| 330 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 331 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 332 |
void reset();
|
| 333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
// generating functions
|
| 335 |
template<class URBG>
|
| 336 |
result_type operator()(URBG& g);
|
| 337 |
template<class URBG>
|
| 338 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -342,11 +413,20 @@ template<class IntType = int>
|
|
| 342 |
double p() const;
|
| 343 |
param_type param() const;
|
| 344 |
void param(const param_type& parm);
|
| 345 |
result_type min() const;
|
| 346 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
};
|
|
|
|
| 348 |
```
|
| 349 |
|
| 350 |
``` cpp
|
| 351 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 352 |
```
|
|
@@ -392,10 +472,13 @@ template<class IntType = int>
|
|
| 392 |
poisson_distribution() : poisson_distribution(1.0) {}
|
| 393 |
explicit poisson_distribution(double mean);
|
| 394 |
explicit poisson_distribution(const param_type& parm);
|
| 395 |
void reset();
|
| 396 |
|
|
|
|
|
|
|
|
|
|
| 397 |
// generating functions
|
| 398 |
template<class URBG>
|
| 399 |
result_type operator()(URBG& g);
|
| 400 |
template<class URBG>
|
| 401 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -404,10 +487,18 @@ template<class IntType = int>
|
|
| 404 |
double mean() const;
|
| 405 |
param_type param() const;
|
| 406 |
void param(const param_type& parm);
|
| 407 |
result_type min() const;
|
| 408 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
};
|
| 410 |
```
|
| 411 |
|
| 412 |
``` cpp
|
| 413 |
explicit poisson_distribution(double mean);
|
|
@@ -429,10 +520,11 @@ constructed.
|
|
| 429 |
An `exponential_distribution` random number distribution produces random
|
| 430 |
numbers x > 0 distributed according to the probability density function
|
| 431 |
$$p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .}$$
|
| 432 |
|
| 433 |
``` cpp
|
|
|
|
| 434 |
template<class RealType = double>
|
| 435 |
class exponential_distribution {
|
| 436 |
public:
|
| 437 |
// types
|
| 438 |
using result_type = RealType;
|
|
@@ -442,10 +534,13 @@ template<class RealType = double>
|
|
| 442 |
exponential_distribution() : exponential_distribution(1.0) {}
|
| 443 |
explicit exponential_distribution(RealType lambda);
|
| 444 |
explicit exponential_distribution(const param_type& parm);
|
| 445 |
void reset();
|
| 446 |
|
|
|
|
|
|
|
|
|
|
| 447 |
// generating functions
|
| 448 |
template<class URBG>
|
| 449 |
result_type operator()(URBG& g);
|
| 450 |
template<class URBG>
|
| 451 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -454,11 +549,20 @@ template<class RealType = double>
|
|
| 454 |
RealType lambda() const;
|
| 455 |
param_type param() const;
|
| 456 |
void param(const param_type& parm);
|
| 457 |
result_type min() const;
|
| 458 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
};
|
|
|
|
| 460 |
```
|
| 461 |
|
| 462 |
``` cpp
|
| 463 |
explicit exponential_distribution(RealType lambda);
|
| 464 |
```
|
|
@@ -481,10 +585,11 @@ numbers x > 0 distributed according to the probability density function
|
|
| 481 |
$$p(x\,|\,\alpha,\beta) =
|
| 482 |
\frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \, \cdot \, x^{\, \alpha-1}
|
| 483 |
\text{ .}$$
|
| 484 |
|
| 485 |
``` cpp
|
|
|
|
| 486 |
template<class RealType = double>
|
| 487 |
class gamma_distribution {
|
| 488 |
public:
|
| 489 |
// types
|
| 490 |
using result_type = RealType;
|
|
@@ -494,10 +599,13 @@ template<class RealType = double>
|
|
| 494 |
gamma_distribution() : gamma_distribution(1.0) {}
|
| 495 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 496 |
explicit gamma_distribution(const param_type& parm);
|
| 497 |
void reset();
|
| 498 |
|
|
|
|
|
|
|
|
|
|
| 499 |
// generating functions
|
| 500 |
template<class URBG>
|
| 501 |
result_type operator()(URBG& g);
|
| 502 |
template<class URBG>
|
| 503 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -507,11 +615,20 @@ template<class RealType = double>
|
|
| 507 |
RealType beta() const;
|
| 508 |
param_type param() const;
|
| 509 |
void param(const param_type& parm);
|
| 510 |
result_type min() const;
|
| 511 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
};
|
|
|
|
| 513 |
```
|
| 514 |
|
| 515 |
``` cpp
|
| 516 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 517 |
```
|
|
@@ -543,10 +660,11 @@ $$p(x\,|\,a,b) = \frac{a}{b}
|
|
| 543 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 544 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 545 |
\text{ .}$$
|
| 546 |
|
| 547 |
``` cpp
|
|
|
|
| 548 |
template<class RealType = double>
|
| 549 |
class weibull_distribution {
|
| 550 |
public:
|
| 551 |
// types
|
| 552 |
using result_type = RealType;
|
|
@@ -556,10 +674,13 @@ template<class RealType = double>
|
|
| 556 |
weibull_distribution() : weibull_distribution(1.0) {}
|
| 557 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 558 |
explicit weibull_distribution(const param_type& parm);
|
| 559 |
void reset();
|
| 560 |
|
|
|
|
|
|
|
|
|
|
| 561 |
// generating functions
|
| 562 |
template<class URBG>
|
| 563 |
result_type operator()(URBG& g);
|
| 564 |
template<class URBG>
|
| 565 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -569,11 +690,20 @@ template<class RealType = double>
|
|
| 569 |
RealType b() const;
|
| 570 |
param_type param() const;
|
| 571 |
void param(const param_type& parm);
|
| 572 |
result_type min() const;
|
| 573 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
};
|
|
|
|
| 575 |
```
|
| 576 |
|
| 577 |
``` cpp
|
| 578 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 579 |
```
|
|
@@ -599,15 +729,18 @@ constructed.
|
|
| 599 |
|
| 600 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 601 |
|
| 602 |
An `extreme_value_distribution` random number distribution produces
|
| 603 |
random numbers x distributed according to the probability density
|
| 604 |
-
function[^
|
|
|
|
|
|
|
| 605 |
\cdot \exp\left(\frac{a-x}{b} - \exp\left(\frac{a-x}{b}\right)\right)
|
| 606 |
\text{ .}$$
|
| 607 |
|
| 608 |
``` cpp
|
|
|
|
| 609 |
template<class RealType = double>
|
| 610 |
class extreme_value_distribution {
|
| 611 |
public:
|
| 612 |
// types
|
| 613 |
using result_type = RealType;
|
|
@@ -617,10 +750,14 @@ template<class RealType = double>
|
|
| 617 |
extreme_value_distribution() : extreme_value_distribution(0.0) {}
|
| 618 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 619 |
explicit extreme_value_distribution(const param_type& parm);
|
| 620 |
void reset();
|
| 621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
// generating functions
|
| 623 |
template<class URBG>
|
| 624 |
result_type operator()(URBG& g);
|
| 625 |
template<class URBG>
|
| 626 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -630,11 +767,20 @@ template<class RealType = double>
|
|
| 630 |
RealType b() const;
|
| 631 |
param_type param() const;
|
| 632 |
void param(const param_type& parm);
|
| 633 |
result_type min() const;
|
| 634 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
};
|
|
|
|
| 636 |
```
|
| 637 |
|
| 638 |
``` cpp
|
| 639 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 640 |
```
|
|
@@ -674,10 +820,11 @@ numbers x distributed according to the probability density function $$%
|
|
| 674 |
}
|
| 675 |
\text{ .}$$ The distribution parameters μ and σ are also known as this
|
| 676 |
distribution’s *mean* and *standard deviation*.
|
| 677 |
|
| 678 |
``` cpp
|
|
|
|
| 679 |
template<class RealType = double>
|
| 680 |
class normal_distribution {
|
| 681 |
public:
|
| 682 |
// types
|
| 683 |
using result_type = RealType;
|
|
@@ -687,10 +834,13 @@ template<class RealType = double>
|
|
| 687 |
normal_distribution() : normal_distribution(0.0) {}
|
| 688 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 689 |
explicit normal_distribution(const param_type& parm);
|
| 690 |
void reset();
|
| 691 |
|
|
|
|
|
|
|
|
|
|
| 692 |
// generating functions
|
| 693 |
template<class URBG>
|
| 694 |
result_type operator()(URBG& g);
|
| 695 |
template<class URBG>
|
| 696 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -700,11 +850,20 @@ template<class RealType = double>
|
|
| 700 |
RealType stddev() const;
|
| 701 |
param_type param() const;
|
| 702 |
void param(const param_type& parm);
|
| 703 |
result_type min() const;
|
| 704 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
};
|
|
|
|
| 706 |
```
|
| 707 |
|
| 708 |
``` cpp
|
| 709 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 710 |
```
|
|
@@ -735,10 +894,11 @@ numbers x > 0 distributed according to the probability density function
|
|
| 735 |
$$p(x\,|\,m,s) = \frac{1}{s x \sqrt{2 \pi}}
|
| 736 |
\cdot \exp{\left(-\frac{(\ln{x} - m)^2}{2 s^2}\right)}
|
| 737 |
\text{ .}$$
|
| 738 |
|
| 739 |
``` cpp
|
|
|
|
| 740 |
template<class RealType = double>
|
| 741 |
class lognormal_distribution {
|
| 742 |
public:
|
| 743 |
// types
|
| 744 |
using result_type = RealType;
|
|
@@ -748,10 +908,13 @@ template<class RealType = double>
|
|
| 748 |
lognormal_distribution() : lognormal_distribution(0.0) {}
|
| 749 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 750 |
explicit lognormal_distribution(const param_type& parm);
|
| 751 |
void reset();
|
| 752 |
|
|
|
|
|
|
|
|
|
|
| 753 |
// generating functions
|
| 754 |
template<class URBG>
|
| 755 |
result_type operator()(URBG& g);
|
| 756 |
template<class URBG>
|
| 757 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -761,11 +924,20 @@ template<class RealType = double>
|
|
| 761 |
RealType s() const;
|
| 762 |
param_type param() const;
|
| 763 |
void param(const param_type& parm);
|
| 764 |
result_type min() const;
|
| 765 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 766 |
};
|
|
|
|
| 767 |
```
|
| 768 |
|
| 769 |
``` cpp
|
| 770 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 771 |
```
|
|
@@ -794,10 +966,11 @@ constructed.
|
|
| 794 |
A `chi_squared_distribution` random number distribution produces random
|
| 795 |
numbers x > 0 distributed according to the probability density function
|
| 796 |
$$p(x\,|\,n) = \frac{x^{(n/2)-1} \cdot e^{-x/2}}{\Gamma(n/2) \cdot 2^{n/2}} \text{ .}$$
|
| 797 |
|
| 798 |
``` cpp
|
|
|
|
| 799 |
template<class RealType = double>
|
| 800 |
class chi_squared_distribution {
|
| 801 |
public:
|
| 802 |
// types
|
| 803 |
using result_type = RealType;
|
|
@@ -807,10 +980,13 @@ template<class RealType = double>
|
|
| 807 |
chi_squared_distribution() : chi_squared_distribution(1.0) {}
|
| 808 |
explicit chi_squared_distribution(RealType n);
|
| 809 |
explicit chi_squared_distribution(const param_type& parm);
|
| 810 |
void reset();
|
| 811 |
|
|
|
|
|
|
|
|
|
|
| 812 |
// generating functions
|
| 813 |
template<class URBG>
|
| 814 |
result_type operator()(URBG& g);
|
| 815 |
template<class URBG>
|
| 816 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -819,11 +995,20 @@ template<class RealType = double>
|
|
| 819 |
RealType n() const;
|
| 820 |
param_type param() const;
|
| 821 |
void param(const param_type& parm);
|
| 822 |
result_type min() const;
|
| 823 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
};
|
|
|
|
| 825 |
```
|
| 826 |
|
| 827 |
``` cpp
|
| 828 |
explicit chi_squared_distribution(RealType n);
|
| 829 |
```
|
|
@@ -844,10 +1029,11 @@ constructed.
|
|
| 844 |
A `cauchy_distribution` random number distribution produces random
|
| 845 |
numbers x distributed according to the probability density function
|
| 846 |
$$p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .}$$
|
| 847 |
|
| 848 |
``` cpp
|
|
|
|
| 849 |
template<class RealType = double>
|
| 850 |
class cauchy_distribution {
|
| 851 |
public:
|
| 852 |
// types
|
| 853 |
using result_type = RealType;
|
|
@@ -857,10 +1043,13 @@ template<class RealType = double>
|
|
| 857 |
cauchy_distribution() : cauchy_distribution(0.0) {}
|
| 858 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 859 |
explicit cauchy_distribution(const param_type& parm);
|
| 860 |
void reset();
|
| 861 |
|
|
|
|
|
|
|
|
|
|
| 862 |
// generating functions
|
| 863 |
template<class URBG>
|
| 864 |
result_type operator()(URBG& g);
|
| 865 |
template<class URBG>
|
| 866 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -870,11 +1059,20 @@ template<class RealType = double>
|
|
| 870 |
RealType b() const;
|
| 871 |
param_type param() const;
|
| 872 |
void param(const param_type& parm);
|
| 873 |
result_type min() const;
|
| 874 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 875 |
};
|
|
|
|
| 876 |
```
|
| 877 |
|
| 878 |
``` cpp
|
| 879 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 880 |
```
|
|
@@ -907,10 +1105,11 @@ $$p(x\,|\,m,n) = \frac{\Gamma\big((m+n)/2\big)}{\Gamma(m/2) \; \Gamma(n/2)}
|
|
| 907 |
\cdot x^{(m/2)-1}
|
| 908 |
\cdot \left(1 + \frac{m x}{n}\right)^{-(m + n)/2}
|
| 909 |
\text{ .}$$
|
| 910 |
|
| 911 |
``` cpp
|
|
|
|
| 912 |
template<class RealType = double>
|
| 913 |
class fisher_f_distribution {
|
| 914 |
public:
|
| 915 |
// types
|
| 916 |
using result_type = RealType;
|
|
@@ -920,10 +1119,13 @@ template<class RealType = double>
|
|
| 920 |
fisher_f_distribution() : fisher_f_distribution(1.0) {}
|
| 921 |
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
|
| 922 |
explicit fisher_f_distribution(const param_type& parm);
|
| 923 |
void reset();
|
| 924 |
|
|
|
|
|
|
|
|
|
|
| 925 |
// generating functions
|
| 926 |
template<class URBG>
|
| 927 |
result_type operator()(URBG& g);
|
| 928 |
template<class URBG>
|
| 929 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -933,11 +1135,20 @@ template<class RealType = double>
|
|
| 933 |
RealType n() const;
|
| 934 |
param_type param() const;
|
| 935 |
void param(const param_type& parm);
|
| 936 |
result_type min() const;
|
| 937 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 938 |
};
|
|
|
|
| 939 |
```
|
| 940 |
|
| 941 |
``` cpp
|
| 942 |
explicit fisher_f_distribution(RealType m, RealType n = 1);
|
| 943 |
```
|
|
@@ -969,10 +1180,11 @@ $$p(x\,|\,n) = \frac{1}{\sqrt{n \pi}}
|
|
| 969 |
\cdot \frac{\Gamma\big((n+1)/2\big)}{\Gamma(n/2)}
|
| 970 |
\cdot \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2}
|
| 971 |
\text{ .}$$
|
| 972 |
|
| 973 |
``` cpp
|
|
|
|
| 974 |
template<class RealType = double>
|
| 975 |
class student_t_distribution {
|
| 976 |
public:
|
| 977 |
// types
|
| 978 |
using result_type = RealType;
|
|
@@ -982,10 +1194,13 @@ template<class RealType = double>
|
|
| 982 |
student_t_distribution() : student_t_distribution(1.0) {}
|
| 983 |
explicit student_t_distribution(RealType n);
|
| 984 |
explicit student_t_distribution(const param_type& parm);
|
| 985 |
void reset();
|
| 986 |
|
|
|
|
|
|
|
|
|
|
| 987 |
// generating functions
|
| 988 |
template<class URBG>
|
| 989 |
result_type operator()(URBG& g);
|
| 990 |
template<class URBG>
|
| 991 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -994,11 +1209,20 @@ template<class RealType = double>
|
|
| 994 |
RealType n() const;
|
| 995 |
param_type param() const;
|
| 996 |
void param(const param_type& parm);
|
| 997 |
result_type min() const;
|
| 998 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 999 |
};
|
|
|
|
| 1000 |
```
|
| 1001 |
|
| 1002 |
``` cpp
|
| 1003 |
explicit student_t_distribution(RealType n);
|
| 1004 |
```
|
|
@@ -1027,10 +1251,11 @@ as: pₖ = {wₖ / S} for k = 0, …, n - 1, in which the values wₖ, commonly
|
|
| 1027 |
known as the *weights* , shall be non-negative, non-NaN, and
|
| 1028 |
non-infinity. Moreover, the following relation shall hold:
|
| 1029 |
$0 < S = w_0 + \dotsb + w_{n - 1}$.
|
| 1030 |
|
| 1031 |
``` cpp
|
|
|
|
| 1032 |
template<class IntType = int>
|
| 1033 |
class discrete_distribution {
|
| 1034 |
public:
|
| 1035 |
// types
|
| 1036 |
using result_type = IntType;
|
|
@@ -1044,10 +1269,13 @@ template<class IntType = int>
|
|
| 1044 |
template<class UnaryOperation>
|
| 1045 |
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
|
| 1046 |
explicit discrete_distribution(const param_type& parm);
|
| 1047 |
void reset();
|
| 1048 |
|
|
|
|
|
|
|
|
|
|
| 1049 |
// generating functions
|
| 1050 |
template<class URBG>
|
| 1051 |
result_type operator()(URBG& g);
|
| 1052 |
template<class URBG>
|
| 1053 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1056,11 +1284,20 @@ template<class IntType = int>
|
|
| 1056 |
vector<double> probabilities() const;
|
| 1057 |
param_type param() const;
|
| 1058 |
void param(const param_type& parm);
|
| 1059 |
result_type min() const;
|
| 1060 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1061 |
};
|
|
|
|
| 1062 |
```
|
| 1063 |
|
| 1064 |
``` cpp
|
| 1065 |
discrete_distribution();
|
| 1066 |
```
|
|
@@ -1136,10 +1373,11 @@ $$\rho_k = \frac{w_k}{S \cdot (b_{k+1}-b_k)} \text{ for } k = 0, \dotsc, n - 1 \
|
|
| 1136 |
in which the values wₖ, commonly known as the *weights* , shall be
|
| 1137 |
non-negative, non-NaN, and non-infinity. Moreover, the following
|
| 1138 |
relation shall hold: 0 < S = w₀ + … + wₙ₋₁.
|
| 1139 |
|
| 1140 |
``` cpp
|
|
|
|
| 1141 |
template<class RealType = double>
|
| 1142 |
class piecewise_constant_distribution {
|
| 1143 |
public:
|
| 1144 |
// types
|
| 1145 |
using result_type = RealType;
|
|
@@ -1156,10 +1394,14 @@ template<class RealType = double>
|
|
| 1156 |
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,
|
| 1157 |
UnaryOperation fw);
|
| 1158 |
explicit piecewise_constant_distribution(const param_type& parm);
|
| 1159 |
void reset();
|
| 1160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1161 |
// generating functions
|
| 1162 |
template<class URBG>
|
| 1163 |
result_type operator()(URBG& g);
|
| 1164 |
template<class URBG>
|
| 1165 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1169,11 +1411,20 @@ template<class RealType = double>
|
|
| 1169 |
vector<result_type> densities() const;
|
| 1170 |
param_type param() const;
|
| 1171 |
void param(const param_type& parm);
|
| 1172 |
result_type min() const;
|
| 1173 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1174 |
};
|
|
|
|
| 1175 |
```
|
| 1176 |
|
| 1177 |
``` cpp
|
| 1178 |
piecewise_constant_distribution();
|
| 1179 |
```
|
|
@@ -1272,10 +1523,11 @@ in which the values wₖ, commonly known as the *weights at boundaries* ,
|
|
| 1272 |
shall be non-negative, non-NaN, and non-infinity. Moreover, the
|
| 1273 |
following relation shall hold:
|
| 1274 |
$$0 < S = \frac{1}{2} \cdot \sum_{k=0}^{n-1} (w_k + w_{k+1}) \cdot (b_{k+1} - b_k) \text{ .}$$
|
| 1275 |
|
| 1276 |
``` cpp
|
|
|
|
| 1277 |
template<class RealType = double>
|
| 1278 |
class piecewise_linear_distribution {
|
| 1279 |
public:
|
| 1280 |
// types
|
| 1281 |
using result_type = RealType;
|
|
@@ -1291,10 +1543,14 @@ template<class RealType = double>
|
|
| 1291 |
template<class UnaryOperation>
|
| 1292 |
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
|
| 1293 |
explicit piecewise_linear_distribution(const param_type& parm);
|
| 1294 |
void reset();
|
| 1295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1296 |
// generating functions
|
| 1297 |
template<class URBG>
|
| 1298 |
result_type operator()(URBG& g);
|
| 1299 |
template<class URBG>
|
| 1300 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1304,11 +1560,20 @@ template<class RealType = double>
|
|
| 1304 |
vector<result_type> densities() const;
|
| 1305 |
param_type param() const;
|
| 1306 |
void param(const param_type& parm);
|
| 1307 |
result_type min() const;
|
| 1308 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1309 |
};
|
|
|
|
| 1310 |
```
|
| 1311 |
|
| 1312 |
``` cpp
|
| 1313 |
piecewise_linear_distribution();
|
| 1314 |
```
|
|
|
|
| 27 |
A `uniform_int_distribution` random number distribution produces random
|
| 28 |
integers i, a ≤ i ≤ b, distributed according to the constant discrete
|
| 29 |
probability function $$P(i\,|\,a,b) = 1 / (b - a + 1) \text{ .}$$
|
| 30 |
|
| 31 |
``` cpp
|
| 32 |
+
namespace std {
|
| 33 |
template<class IntType = int>
|
| 34 |
class uniform_int_distribution {
|
| 35 |
public:
|
| 36 |
// types
|
| 37 |
using result_type = IntType;
|
|
|
|
| 41 |
uniform_int_distribution() : uniform_int_distribution(0) {}
|
| 42 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 43 |
explicit uniform_int_distribution(const param_type& parm);
|
| 44 |
void reset();
|
| 45 |
|
| 46 |
+
// equality operators
|
| 47 |
+
friend bool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y);
|
| 48 |
+
|
| 49 |
// generating functions
|
| 50 |
template<class URBG>
|
| 51 |
result_type operator()(URBG& g);
|
| 52 |
template<class URBG>
|
| 53 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 57 |
result_type b() const;
|
| 58 |
param_type param() const;
|
| 59 |
void param(const param_type& parm);
|
| 60 |
result_type min() const;
|
| 61 |
result_type max() const;
|
| 62 |
+
|
| 63 |
+
// inserters and extractors
|
| 64 |
+
template<class charT, class traits>
|
| 65 |
+
friend basic_ostream<charT, traits>&
|
| 66 |
+
operator<<(basic_ostream<charT, traits>& os, const uniform_int_distribution& x);
|
| 67 |
+
template<class charT, class traits>
|
| 68 |
+
friend basic_istream<charT, traits>&
|
| 69 |
+
operator>>(basic_istream<charT, traits>& is, uniform_int_distribution& x);
|
| 70 |
};
|
| 71 |
+
}
|
| 72 |
```
|
| 73 |
|
| 74 |
``` cpp
|
| 75 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 76 |
```
|
|
|
|
| 102 |
|
| 103 |
[*Note 1*: This implies that p(x | a,b) is undefined when
|
| 104 |
`a == b`. — *end note*]
|
| 105 |
|
| 106 |
``` cpp
|
| 107 |
+
namespace std {
|
| 108 |
template<class RealType = double>
|
| 109 |
class uniform_real_distribution {
|
| 110 |
public:
|
| 111 |
// types
|
| 112 |
using result_type = RealType;
|
|
|
|
| 116 |
uniform_real_distribution() : uniform_real_distribution(0.0) {}
|
| 117 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 118 |
explicit uniform_real_distribution(const param_type& parm);
|
| 119 |
void reset();
|
| 120 |
|
| 121 |
+
// equality operators
|
| 122 |
+
friend bool operator==(const uniform_real_distribution& x,
|
| 123 |
+
const uniform_real_distribution& y);
|
| 124 |
+
|
| 125 |
// generating functions
|
| 126 |
template<class URBG>
|
| 127 |
result_type operator()(URBG& g);
|
| 128 |
template<class URBG>
|
| 129 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 133 |
result_type b() const;
|
| 134 |
param_type param() const;
|
| 135 |
void param(const param_type& parm);
|
| 136 |
result_type min() const;
|
| 137 |
result_type max() const;
|
| 138 |
+
|
| 139 |
+
// inserters and extractors
|
| 140 |
+
template<class charT, class traits>
|
| 141 |
+
friend basic_ostream<charT, traits>&
|
| 142 |
+
operator<<(basic_ostream<charT, traits>& os, const uniform_real_distribution& x);
|
| 143 |
+
template<class charT, class traits>
|
| 144 |
+
friend basic_istream<charT, traits>&
|
| 145 |
+
operator>>(basic_istream<charT, traits>& is, uniform_real_distribution& x);
|
| 146 |
};
|
| 147 |
+
}
|
| 148 |
```
|
| 149 |
|
| 150 |
``` cpp
|
| 151 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 152 |
```
|
|
|
|
| 181 |
p & \text{ if $b = \tcode{true}$, or} \\
|
| 182 |
1 - p & \text{ if $b = \tcode{false}$.}
|
| 183 |
\end{array}\right.$$
|
| 184 |
|
| 185 |
``` cpp
|
| 186 |
+
namespace std {
|
| 187 |
class bernoulli_distribution {
|
| 188 |
public:
|
| 189 |
// types
|
| 190 |
using result_type = bool;
|
| 191 |
using param_type = unspecified;
|
|
|
|
| 194 |
bernoulli_distribution() : bernoulli_distribution(0.5) {}
|
| 195 |
explicit bernoulli_distribution(double p);
|
| 196 |
explicit bernoulli_distribution(const param_type& parm);
|
| 197 |
void reset();
|
| 198 |
|
| 199 |
+
// equality operators
|
| 200 |
+
friend bool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y);
|
| 201 |
+
|
| 202 |
// generating functions
|
| 203 |
template<class URBG>
|
| 204 |
result_type operator()(URBG& g);
|
| 205 |
template<class URBG>
|
| 206 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 209 |
double p() const;
|
| 210 |
param_type param() const;
|
| 211 |
void param(const param_type& parm);
|
| 212 |
result_type min() const;
|
| 213 |
result_type max() const;
|
| 214 |
+
|
| 215 |
+
// inserters and extractors
|
| 216 |
+
template<class charT, class traits>
|
| 217 |
+
friend basic_ostream<charT, traits>&
|
| 218 |
+
operator<<(basic_ostream<charT, traits>& os, const bernoulli_distribution& x);
|
| 219 |
+
template<class charT, class traits>
|
| 220 |
+
friend basic_istream<charT, traits>&
|
| 221 |
+
operator>>(basic_istream<charT, traits>& is, bernoulli_distribution& x);
|
| 222 |
};
|
| 223 |
+
}
|
| 224 |
```
|
| 225 |
|
| 226 |
``` cpp
|
| 227 |
explicit bernoulli_distribution(double p);
|
| 228 |
```
|
|
|
|
| 243 |
A `binomial_distribution` random number distribution produces integer
|
| 244 |
values i ≥ 0 distributed according to the discrete probability function
|
| 245 |
$$P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .}$$
|
| 246 |
|
| 247 |
``` cpp
|
| 248 |
+
namespace std {
|
| 249 |
template<class IntType = int>
|
| 250 |
class binomial_distribution {
|
| 251 |
public:
|
| 252 |
// types
|
| 253 |
using result_type = IntType;
|
|
|
|
| 257 |
binomial_distribution() : binomial_distribution(1) {}
|
| 258 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 259 |
explicit binomial_distribution(const param_type& parm);
|
| 260 |
void reset();
|
| 261 |
|
| 262 |
+
// equality operators
|
| 263 |
+
friend bool operator==(const binomial_distribution& x, const binomial_distribution& y);
|
| 264 |
+
|
| 265 |
// generating functions
|
| 266 |
template<class URBG>
|
| 267 |
result_type operator()(URBG& g);
|
| 268 |
template<class URBG>
|
| 269 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 273 |
double p() const;
|
| 274 |
param_type param() const;
|
| 275 |
void param(const param_type& parm);
|
| 276 |
result_type min() const;
|
| 277 |
result_type max() const;
|
| 278 |
+
|
| 279 |
+
// inserters and extractors
|
| 280 |
+
template<class charT, class traits>
|
| 281 |
+
friend basic_ostream<charT, traits>&
|
| 282 |
+
operator<<(basic_ostream<charT, traits>& os, const binomial_distribution& x);
|
| 283 |
+
template<class charT, class traits>
|
| 284 |
+
friend basic_istream<charT, traits>&
|
| 285 |
+
operator>>(basic_istream<charT, traits>& is, binomial_distribution& x);
|
| 286 |
};
|
| 287 |
+
}
|
| 288 |
```
|
| 289 |
|
| 290 |
``` cpp
|
| 291 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 292 |
```
|
|
|
|
| 315 |
A `geometric_distribution` random number distribution produces integer
|
| 316 |
values i ≥ 0 distributed according to the discrete probability function
|
| 317 |
$$P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .}$$
|
| 318 |
|
| 319 |
``` cpp
|
| 320 |
+
namespace std {
|
| 321 |
template<class IntType = int>
|
| 322 |
class geometric_distribution {
|
| 323 |
public:
|
| 324 |
// types
|
| 325 |
using result_type = IntType;
|
|
|
|
| 329 |
geometric_distribution() : geometric_distribution(0.5) {}
|
| 330 |
explicit geometric_distribution(double p);
|
| 331 |
explicit geometric_distribution(const param_type& parm);
|
| 332 |
void reset();
|
| 333 |
|
| 334 |
+
// equality operators
|
| 335 |
+
friend bool operator==(const geometric_distribution& x, const geometric_distribution& y);
|
| 336 |
+
|
| 337 |
// generating functions
|
| 338 |
template<class URBG>
|
| 339 |
result_type operator()(URBG& g);
|
| 340 |
template<class URBG>
|
| 341 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 344 |
double p() const;
|
| 345 |
param_type param() const;
|
| 346 |
void param(const param_type& parm);
|
| 347 |
result_type min() const;
|
| 348 |
result_type max() const;
|
| 349 |
+
|
| 350 |
+
// inserters and extractors
|
| 351 |
+
template<class charT, class traits>
|
| 352 |
+
friend basic_ostream<charT, traits>&
|
| 353 |
+
operator<<(basic_ostream<charT, traits>& os, const geometric_distribution& x);
|
| 354 |
+
template<class charT, class traits>
|
| 355 |
+
friend basic_istream<charT, traits>&
|
| 356 |
+
operator>>(basic_istream<charT, traits>& is, geometric_distribution& x);
|
| 357 |
};
|
| 358 |
+
}
|
| 359 |
```
|
| 360 |
|
| 361 |
``` cpp
|
| 362 |
explicit geometric_distribution(double p);
|
| 363 |
```
|
|
|
|
| 382 |
|
| 383 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 384 |
`p == 1`. — *end note*]
|
| 385 |
|
| 386 |
``` cpp
|
| 387 |
+
namespace std {
|
| 388 |
template<class IntType = int>
|
| 389 |
class negative_binomial_distribution {
|
| 390 |
public:
|
| 391 |
// types
|
| 392 |
using result_type = IntType;
|
|
|
|
| 396 |
negative_binomial_distribution() : negative_binomial_distribution(1) {}
|
| 397 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 398 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 399 |
void reset();
|
| 400 |
|
| 401 |
+
// equality operators
|
| 402 |
+
friend bool operator==(const negative_binomial_distribution& x,
|
| 403 |
+
const negative_binomial_distribution& y);
|
| 404 |
+
|
| 405 |
// generating functions
|
| 406 |
template<class URBG>
|
| 407 |
result_type operator()(URBG& g);
|
| 408 |
template<class URBG>
|
| 409 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 413 |
double p() const;
|
| 414 |
param_type param() const;
|
| 415 |
void param(const param_type& parm);
|
| 416 |
result_type min() const;
|
| 417 |
result_type max() const;
|
| 418 |
+
|
| 419 |
+
// inserters and extractors
|
| 420 |
+
template<class charT, class traits>
|
| 421 |
+
friend basic_ostream<charT, traits>&
|
| 422 |
+
operator<<(basic_ostream<charT, traits>& os, const negative_binomial_distribution& x);
|
| 423 |
+
template<class charT, class traits>
|
| 424 |
+
friend basic_istream<charT, traits>&
|
| 425 |
+
operator>>(basic_istream<charT, traits>& is, negative_binomial_distribution& x);
|
| 426 |
};
|
| 427 |
+
}
|
| 428 |
```
|
| 429 |
|
| 430 |
``` cpp
|
| 431 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 432 |
```
|
|
|
|
| 472 |
poisson_distribution() : poisson_distribution(1.0) {}
|
| 473 |
explicit poisson_distribution(double mean);
|
| 474 |
explicit poisson_distribution(const param_type& parm);
|
| 475 |
void reset();
|
| 476 |
|
| 477 |
+
// equality operators
|
| 478 |
+
friend bool operator==(const poisson_distribution& x, const poisson_distribution& y);
|
| 479 |
+
|
| 480 |
// generating functions
|
| 481 |
template<class URBG>
|
| 482 |
result_type operator()(URBG& g);
|
| 483 |
template<class URBG>
|
| 484 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 487 |
double mean() const;
|
| 488 |
param_type param() const;
|
| 489 |
void param(const param_type& parm);
|
| 490 |
result_type min() const;
|
| 491 |
result_type max() const;
|
| 492 |
+
|
| 493 |
+
// inserters and extractors
|
| 494 |
+
template<class charT, class traits>
|
| 495 |
+
friend basic_ostream<charT, traits>&
|
| 496 |
+
operator<<(basic_ostream<charT, traits>& os, const poisson_distribution& x);
|
| 497 |
+
template<class charT, class traits>
|
| 498 |
+
friend basic_istream<charT, traits>&
|
| 499 |
+
operator>>(basic_istream<charT, traits>& is, poisson_distribution& x);
|
| 500 |
};
|
| 501 |
```
|
| 502 |
|
| 503 |
``` cpp
|
| 504 |
explicit poisson_distribution(double mean);
|
|
|
|
| 520 |
An `exponential_distribution` random number distribution produces random
|
| 521 |
numbers x > 0 distributed according to the probability density function
|
| 522 |
$$p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .}$$
|
| 523 |
|
| 524 |
``` cpp
|
| 525 |
+
namespace std {
|
| 526 |
template<class RealType = double>
|
| 527 |
class exponential_distribution {
|
| 528 |
public:
|
| 529 |
// types
|
| 530 |
using result_type = RealType;
|
|
|
|
| 534 |
exponential_distribution() : exponential_distribution(1.0) {}
|
| 535 |
explicit exponential_distribution(RealType lambda);
|
| 536 |
explicit exponential_distribution(const param_type& parm);
|
| 537 |
void reset();
|
| 538 |
|
| 539 |
+
// equality operators
|
| 540 |
+
friend bool operator==(const exponential_distribution& x, const exponential_distribution& y);
|
| 541 |
+
|
| 542 |
// generating functions
|
| 543 |
template<class URBG>
|
| 544 |
result_type operator()(URBG& g);
|
| 545 |
template<class URBG>
|
| 546 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 549 |
RealType lambda() const;
|
| 550 |
param_type param() const;
|
| 551 |
void param(const param_type& parm);
|
| 552 |
result_type min() const;
|
| 553 |
result_type max() const;
|
| 554 |
+
|
| 555 |
+
// inserters and extractors
|
| 556 |
+
template<class charT, class traits>
|
| 557 |
+
friend basic_ostream<charT, traits>&
|
| 558 |
+
operator<<(basic_ostream<charT, traits>& os, const exponential_distribution& x);
|
| 559 |
+
template<class charT, class traits>
|
| 560 |
+
friend basic_istream<charT, traits>&
|
| 561 |
+
operator>>(basic_istream<charT, traits>& is, exponential_distribution& x);
|
| 562 |
};
|
| 563 |
+
}
|
| 564 |
```
|
| 565 |
|
| 566 |
``` cpp
|
| 567 |
explicit exponential_distribution(RealType lambda);
|
| 568 |
```
|
|
|
|
| 585 |
$$p(x\,|\,\alpha,\beta) =
|
| 586 |
\frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \, \cdot \, x^{\, \alpha-1}
|
| 587 |
\text{ .}$$
|
| 588 |
|
| 589 |
``` cpp
|
| 590 |
+
namespace std {
|
| 591 |
template<class RealType = double>
|
| 592 |
class gamma_distribution {
|
| 593 |
public:
|
| 594 |
// types
|
| 595 |
using result_type = RealType;
|
|
|
|
| 599 |
gamma_distribution() : gamma_distribution(1.0) {}
|
| 600 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 601 |
explicit gamma_distribution(const param_type& parm);
|
| 602 |
void reset();
|
| 603 |
|
| 604 |
+
// equality operators
|
| 605 |
+
friend bool operator==(const gamma_distribution& x, const gamma_distribution& y);
|
| 606 |
+
|
| 607 |
// generating functions
|
| 608 |
template<class URBG>
|
| 609 |
result_type operator()(URBG& g);
|
| 610 |
template<class URBG>
|
| 611 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 615 |
RealType beta() const;
|
| 616 |
param_type param() const;
|
| 617 |
void param(const param_type& parm);
|
| 618 |
result_type min() const;
|
| 619 |
result_type max() const;
|
| 620 |
+
|
| 621 |
+
// inserters and extractors
|
| 622 |
+
template<class charT, class traits>
|
| 623 |
+
friend basic_ostream<charT, traits>&
|
| 624 |
+
operator<<(basic_ostream<charT, traits>& os, const gamma_distribution& x);
|
| 625 |
+
template<class charT, class traits>
|
| 626 |
+
friend basic_istream<charT, traits>&
|
| 627 |
+
operator>>(basic_istream<charT, traits>& is, gamma_distribution& x);
|
| 628 |
};
|
| 629 |
+
}
|
| 630 |
```
|
| 631 |
|
| 632 |
``` cpp
|
| 633 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 634 |
```
|
|
|
|
| 660 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 661 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 662 |
\text{ .}$$
|
| 663 |
|
| 664 |
``` cpp
|
| 665 |
+
namespace std {
|
| 666 |
template<class RealType = double>
|
| 667 |
class weibull_distribution {
|
| 668 |
public:
|
| 669 |
// types
|
| 670 |
using result_type = RealType;
|
|
|
|
| 674 |
weibull_distribution() : weibull_distribution(1.0) {}
|
| 675 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 676 |
explicit weibull_distribution(const param_type& parm);
|
| 677 |
void reset();
|
| 678 |
|
| 679 |
+
// equality operators
|
| 680 |
+
friend bool operator==(const weibull_distribution& x, const weibull_distribution& y);
|
| 681 |
+
|
| 682 |
// generating functions
|
| 683 |
template<class URBG>
|
| 684 |
result_type operator()(URBG& g);
|
| 685 |
template<class URBG>
|
| 686 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 690 |
RealType b() const;
|
| 691 |
param_type param() const;
|
| 692 |
void param(const param_type& parm);
|
| 693 |
result_type min() const;
|
| 694 |
result_type max() const;
|
| 695 |
+
|
| 696 |
+
// inserters and extractors
|
| 697 |
+
template<class charT, class traits>
|
| 698 |
+
friend basic_ostream<charT, traits>&
|
| 699 |
+
operator<<(basic_ostream<charT, traits>& os, const weibull_distribution& x);
|
| 700 |
+
template<class charT, class traits>
|
| 701 |
+
friend basic_istream<charT, traits>&
|
| 702 |
+
operator>>(basic_istream<charT, traits>& is, weibull_distribution& x);
|
| 703 |
};
|
| 704 |
+
}
|
| 705 |
```
|
| 706 |
|
| 707 |
``` cpp
|
| 708 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 709 |
```
|
|
|
|
| 729 |
|
| 730 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 731 |
|
| 732 |
An `extreme_value_distribution` random number distribution produces
|
| 733 |
random numbers x distributed according to the probability density
|
| 734 |
+
function[^7]
|
| 735 |
+
|
| 736 |
+
$$p(x\,|\,a,b) = \frac{1}{b}
|
| 737 |
\cdot \exp\left(\frac{a-x}{b} - \exp\left(\frac{a-x}{b}\right)\right)
|
| 738 |
\text{ .}$$
|
| 739 |
|
| 740 |
``` cpp
|
| 741 |
+
namespace std {
|
| 742 |
template<class RealType = double>
|
| 743 |
class extreme_value_distribution {
|
| 744 |
public:
|
| 745 |
// types
|
| 746 |
using result_type = RealType;
|
|
|
|
| 750 |
extreme_value_distribution() : extreme_value_distribution(0.0) {}
|
| 751 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 752 |
explicit extreme_value_distribution(const param_type& parm);
|
| 753 |
void reset();
|
| 754 |
|
| 755 |
+
// equality operators
|
| 756 |
+
friend bool operator==(const extreme_value_distribution& x,
|
| 757 |
+
const extreme_value_distribution& y);
|
| 758 |
+
|
| 759 |
// generating functions
|
| 760 |
template<class URBG>
|
| 761 |
result_type operator()(URBG& g);
|
| 762 |
template<class URBG>
|
| 763 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 767 |
RealType b() const;
|
| 768 |
param_type param() const;
|
| 769 |
void param(const param_type& parm);
|
| 770 |
result_type min() const;
|
| 771 |
result_type max() const;
|
| 772 |
+
|
| 773 |
+
// inserters and extractors
|
| 774 |
+
template<class charT, class traits>
|
| 775 |
+
friend basic_ostream<charT, traits>&
|
| 776 |
+
operator<<(basic_ostream<charT, traits>& os, const extreme_value_distribution& x);
|
| 777 |
+
template<class charT, class traits>
|
| 778 |
+
friend basic_istream<charT, traits>&
|
| 779 |
+
operator>>(basic_istream<charT, traits>& is, extreme_value_distribution& x);
|
| 780 |
};
|
| 781 |
+
}
|
| 782 |
```
|
| 783 |
|
| 784 |
``` cpp
|
| 785 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 786 |
```
|
|
|
|
| 820 |
}
|
| 821 |
\text{ .}$$ The distribution parameters μ and σ are also known as this
|
| 822 |
distribution’s *mean* and *standard deviation*.
|
| 823 |
|
| 824 |
``` cpp
|
| 825 |
+
namespace std {
|
| 826 |
template<class RealType = double>
|
| 827 |
class normal_distribution {
|
| 828 |
public:
|
| 829 |
// types
|
| 830 |
using result_type = RealType;
|
|
|
|
| 834 |
normal_distribution() : normal_distribution(0.0) {}
|
| 835 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 836 |
explicit normal_distribution(const param_type& parm);
|
| 837 |
void reset();
|
| 838 |
|
| 839 |
+
// equality operators
|
| 840 |
+
friend bool operator==(const normal_distribution& x, const normal_distribution& y);
|
| 841 |
+
|
| 842 |
// generating functions
|
| 843 |
template<class URBG>
|
| 844 |
result_type operator()(URBG& g);
|
| 845 |
template<class URBG>
|
| 846 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 850 |
RealType stddev() const;
|
| 851 |
param_type param() const;
|
| 852 |
void param(const param_type& parm);
|
| 853 |
result_type min() const;
|
| 854 |
result_type max() const;
|
| 855 |
+
|
| 856 |
+
// inserters and extractors
|
| 857 |
+
template<class charT, class traits>
|
| 858 |
+
friend basic_ostream<charT, traits>&
|
| 859 |
+
operator<<(basic_ostream<charT, traits>& os, const normal_distribution& x);
|
| 860 |
+
template<class charT, class traits>
|
| 861 |
+
friend basic_istream<charT, traits>&
|
| 862 |
+
operator>>(basic_istream<charT, traits>& is, normal_distribution& x);
|
| 863 |
};
|
| 864 |
+
}
|
| 865 |
```
|
| 866 |
|
| 867 |
``` cpp
|
| 868 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 869 |
```
|
|
|
|
| 894 |
$$p(x\,|\,m,s) = \frac{1}{s x \sqrt{2 \pi}}
|
| 895 |
\cdot \exp{\left(-\frac{(\ln{x} - m)^2}{2 s^2}\right)}
|
| 896 |
\text{ .}$$
|
| 897 |
|
| 898 |
``` cpp
|
| 899 |
+
namespace std {
|
| 900 |
template<class RealType = double>
|
| 901 |
class lognormal_distribution {
|
| 902 |
public:
|
| 903 |
// types
|
| 904 |
using result_type = RealType;
|
|
|
|
| 908 |
lognormal_distribution() : lognormal_distribution(0.0) {}
|
| 909 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 910 |
explicit lognormal_distribution(const param_type& parm);
|
| 911 |
void reset();
|
| 912 |
|
| 913 |
+
// equality operators
|
| 914 |
+
friend bool operator==(const lognormal_distribution& x, const lognormal_distribution& y);
|
| 915 |
+
|
| 916 |
// generating functions
|
| 917 |
template<class URBG>
|
| 918 |
result_type operator()(URBG& g);
|
| 919 |
template<class URBG>
|
| 920 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 924 |
RealType s() const;
|
| 925 |
param_type param() const;
|
| 926 |
void param(const param_type& parm);
|
| 927 |
result_type min() const;
|
| 928 |
result_type max() const;
|
| 929 |
+
|
| 930 |
+
// inserters and extractors
|
| 931 |
+
template<class charT, class traits>
|
| 932 |
+
friend basic_ostream<charT, traits>&
|
| 933 |
+
operator<<(basic_ostream<charT, traits>& os, const lognormal_distribution& x);
|
| 934 |
+
template<class charT, class traits>
|
| 935 |
+
friend basic_istream<charT, traits>&
|
| 936 |
+
operator>>(basic_istream<charT, traits>& is, lognormal_distribution& x);
|
| 937 |
};
|
| 938 |
+
}
|
| 939 |
```
|
| 940 |
|
| 941 |
``` cpp
|
| 942 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 943 |
```
|
|
|
|
| 966 |
A `chi_squared_distribution` random number distribution produces random
|
| 967 |
numbers x > 0 distributed according to the probability density function
|
| 968 |
$$p(x\,|\,n) = \frac{x^{(n/2)-1} \cdot e^{-x/2}}{\Gamma(n/2) \cdot 2^{n/2}} \text{ .}$$
|
| 969 |
|
| 970 |
``` cpp
|
| 971 |
+
namespace std {
|
| 972 |
template<class RealType = double>
|
| 973 |
class chi_squared_distribution {
|
| 974 |
public:
|
| 975 |
// types
|
| 976 |
using result_type = RealType;
|
|
|
|
| 980 |
chi_squared_distribution() : chi_squared_distribution(1.0) {}
|
| 981 |
explicit chi_squared_distribution(RealType n);
|
| 982 |
explicit chi_squared_distribution(const param_type& parm);
|
| 983 |
void reset();
|
| 984 |
|
| 985 |
+
// equality operators
|
| 986 |
+
friend bool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y);
|
| 987 |
+
|
| 988 |
// generating functions
|
| 989 |
template<class URBG>
|
| 990 |
result_type operator()(URBG& g);
|
| 991 |
template<class URBG>
|
| 992 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 995 |
RealType n() const;
|
| 996 |
param_type param() const;
|
| 997 |
void param(const param_type& parm);
|
| 998 |
result_type min() const;
|
| 999 |
result_type max() const;
|
| 1000 |
+
|
| 1001 |
+
// inserters and extractors
|
| 1002 |
+
template<class charT, class traits>
|
| 1003 |
+
friend basic_ostream<charT, traits>&
|
| 1004 |
+
operator<<(basic_ostream<charT, traits>& os, const chi_squared_distribution& x);
|
| 1005 |
+
template<class charT, class traits>
|
| 1006 |
+
friend basic_istream<charT, traits>&
|
| 1007 |
+
operator>>(basic_istream<charT, traits>& is, chi_squared_distribution& x);
|
| 1008 |
};
|
| 1009 |
+
}
|
| 1010 |
```
|
| 1011 |
|
| 1012 |
``` cpp
|
| 1013 |
explicit chi_squared_distribution(RealType n);
|
| 1014 |
```
|
|
|
|
| 1029 |
A `cauchy_distribution` random number distribution produces random
|
| 1030 |
numbers x distributed according to the probability density function
|
| 1031 |
$$p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .}$$
|
| 1032 |
|
| 1033 |
``` cpp
|
| 1034 |
+
namespace std {
|
| 1035 |
template<class RealType = double>
|
| 1036 |
class cauchy_distribution {
|
| 1037 |
public:
|
| 1038 |
// types
|
| 1039 |
using result_type = RealType;
|
|
|
|
| 1043 |
cauchy_distribution() : cauchy_distribution(0.0) {}
|
| 1044 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 1045 |
explicit cauchy_distribution(const param_type& parm);
|
| 1046 |
void reset();
|
| 1047 |
|
| 1048 |
+
// equality operators
|
| 1049 |
+
friend bool operator==(const cauchy_distribution& x, const cauchy_distribution& y);
|
| 1050 |
+
|
| 1051 |
// generating functions
|
| 1052 |
template<class URBG>
|
| 1053 |
result_type operator()(URBG& g);
|
| 1054 |
template<class URBG>
|
| 1055 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1059 |
RealType b() const;
|
| 1060 |
param_type param() const;
|
| 1061 |
void param(const param_type& parm);
|
| 1062 |
result_type min() const;
|
| 1063 |
result_type max() const;
|
| 1064 |
+
|
| 1065 |
+
// inserters and extractors
|
| 1066 |
+
template<class charT, class traits>
|
| 1067 |
+
friend basic_ostream<charT, traits>&
|
| 1068 |
+
operator<<(basic_ostream<charT, traits>& os, const cauchy_distribution& x);
|
| 1069 |
+
template<class charT, class traits>
|
| 1070 |
+
friend basic_istream<charT, traits>&
|
| 1071 |
+
operator>>(basic_istream<charT, traits>& is, cauchy_distribution& x);
|
| 1072 |
};
|
| 1073 |
+
}
|
| 1074 |
```
|
| 1075 |
|
| 1076 |
``` cpp
|
| 1077 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 1078 |
```
|
|
|
|
| 1105 |
\cdot x^{(m/2)-1}
|
| 1106 |
\cdot \left(1 + \frac{m x}{n}\right)^{-(m + n)/2}
|
| 1107 |
\text{ .}$$
|
| 1108 |
|
| 1109 |
``` cpp
|
| 1110 |
+
namespace std {
|
| 1111 |
template<class RealType = double>
|
| 1112 |
class fisher_f_distribution {
|
| 1113 |
public:
|
| 1114 |
// types
|
| 1115 |
using result_type = RealType;
|
|
|
|
| 1119 |
fisher_f_distribution() : fisher_f_distribution(1.0) {}
|
| 1120 |
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
|
| 1121 |
explicit fisher_f_distribution(const param_type& parm);
|
| 1122 |
void reset();
|
| 1123 |
|
| 1124 |
+
// equality operators
|
| 1125 |
+
friend bool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y);
|
| 1126 |
+
|
| 1127 |
// generating functions
|
| 1128 |
template<class URBG>
|
| 1129 |
result_type operator()(URBG& g);
|
| 1130 |
template<class URBG>
|
| 1131 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1135 |
RealType n() const;
|
| 1136 |
param_type param() const;
|
| 1137 |
void param(const param_type& parm);
|
| 1138 |
result_type min() const;
|
| 1139 |
result_type max() const;
|
| 1140 |
+
|
| 1141 |
+
// inserters and extractors
|
| 1142 |
+
template<class charT, class traits>
|
| 1143 |
+
friend basic_ostream<charT, traits>&
|
| 1144 |
+
operator<<(basic_ostream<charT, traits>& os, const fisher_f_distribution& x);
|
| 1145 |
+
template<class charT, class traits>
|
| 1146 |
+
friend basic_istream<charT, traits>&
|
| 1147 |
+
operator>>(basic_istream<charT, traits>& is, fisher_f_distribution& x);
|
| 1148 |
};
|
| 1149 |
+
}
|
| 1150 |
```
|
| 1151 |
|
| 1152 |
``` cpp
|
| 1153 |
explicit fisher_f_distribution(RealType m, RealType n = 1);
|
| 1154 |
```
|
|
|
|
| 1180 |
\cdot \frac{\Gamma\big((n+1)/2\big)}{\Gamma(n/2)}
|
| 1181 |
\cdot \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2}
|
| 1182 |
\text{ .}$$
|
| 1183 |
|
| 1184 |
``` cpp
|
| 1185 |
+
namespace std {
|
| 1186 |
template<class RealType = double>
|
| 1187 |
class student_t_distribution {
|
| 1188 |
public:
|
| 1189 |
// types
|
| 1190 |
using result_type = RealType;
|
|
|
|
| 1194 |
student_t_distribution() : student_t_distribution(1.0) {}
|
| 1195 |
explicit student_t_distribution(RealType n);
|
| 1196 |
explicit student_t_distribution(const param_type& parm);
|
| 1197 |
void reset();
|
| 1198 |
|
| 1199 |
+
// equality operators
|
| 1200 |
+
friend bool operator==(const student_t_distribution& x, const student_t_distribution& y);
|
| 1201 |
+
|
| 1202 |
// generating functions
|
| 1203 |
template<class URBG>
|
| 1204 |
result_type operator()(URBG& g);
|
| 1205 |
template<class URBG>
|
| 1206 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1209 |
RealType n() const;
|
| 1210 |
param_type param() const;
|
| 1211 |
void param(const param_type& parm);
|
| 1212 |
result_type min() const;
|
| 1213 |
result_type max() const;
|
| 1214 |
+
|
| 1215 |
+
// inserters and extractors
|
| 1216 |
+
template<class charT, class traits>
|
| 1217 |
+
friend basic_ostream<charT, traits>&
|
| 1218 |
+
operator<<(basic_ostream<charT, traits>& os, const student_t_distribution& x);
|
| 1219 |
+
template<class charT, class traits>
|
| 1220 |
+
friend basic_istream<charT, traits>&
|
| 1221 |
+
operator>>(basic_istream<charT, traits>& is, student_t_distribution& x);
|
| 1222 |
};
|
| 1223 |
+
}
|
| 1224 |
```
|
| 1225 |
|
| 1226 |
``` cpp
|
| 1227 |
explicit student_t_distribution(RealType n);
|
| 1228 |
```
|
|
|
|
| 1251 |
known as the *weights* , shall be non-negative, non-NaN, and
|
| 1252 |
non-infinity. Moreover, the following relation shall hold:
|
| 1253 |
$0 < S = w_0 + \dotsb + w_{n - 1}$.
|
| 1254 |
|
| 1255 |
``` cpp
|
| 1256 |
+
namespace std {
|
| 1257 |
template<class IntType = int>
|
| 1258 |
class discrete_distribution {
|
| 1259 |
public:
|
| 1260 |
// types
|
| 1261 |
using result_type = IntType;
|
|
|
|
| 1269 |
template<class UnaryOperation>
|
| 1270 |
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
|
| 1271 |
explicit discrete_distribution(const param_type& parm);
|
| 1272 |
void reset();
|
| 1273 |
|
| 1274 |
+
// equality operators
|
| 1275 |
+
friend bool operator==(const discrete_distribution& x, const discrete_distribution& y);
|
| 1276 |
+
|
| 1277 |
// generating functions
|
| 1278 |
template<class URBG>
|
| 1279 |
result_type operator()(URBG& g);
|
| 1280 |
template<class URBG>
|
| 1281 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1284 |
vector<double> probabilities() const;
|
| 1285 |
param_type param() const;
|
| 1286 |
void param(const param_type& parm);
|
| 1287 |
result_type min() const;
|
| 1288 |
result_type max() const;
|
| 1289 |
+
|
| 1290 |
+
// inserters and extractors
|
| 1291 |
+
template<class charT, class traits>
|
| 1292 |
+
friend basic_ostream<charT, traits>&
|
| 1293 |
+
operator<<(basic_ostream<charT, traits>& os, const discrete_distribution& x);
|
| 1294 |
+
template<class charT, class traits>
|
| 1295 |
+
friend basic_istream<charT, traits>&
|
| 1296 |
+
operator>>(basic_istream<charT, traits>& is, discrete_distribution& x);
|
| 1297 |
};
|
| 1298 |
+
}
|
| 1299 |
```
|
| 1300 |
|
| 1301 |
``` cpp
|
| 1302 |
discrete_distribution();
|
| 1303 |
```
|
|
|
|
| 1373 |
in which the values wₖ, commonly known as the *weights* , shall be
|
| 1374 |
non-negative, non-NaN, and non-infinity. Moreover, the following
|
| 1375 |
relation shall hold: 0 < S = w₀ + … + wₙ₋₁.
|
| 1376 |
|
| 1377 |
``` cpp
|
| 1378 |
+
namespace std {
|
| 1379 |
template<class RealType = double>
|
| 1380 |
class piecewise_constant_distribution {
|
| 1381 |
public:
|
| 1382 |
// types
|
| 1383 |
using result_type = RealType;
|
|
|
|
| 1394 |
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,
|
| 1395 |
UnaryOperation fw);
|
| 1396 |
explicit piecewise_constant_distribution(const param_type& parm);
|
| 1397 |
void reset();
|
| 1398 |
|
| 1399 |
+
// equality operators
|
| 1400 |
+
friend bool operator==(const piecewise_constant_distribution& x,
|
| 1401 |
+
const piecewise_constant_distribution& y);
|
| 1402 |
+
|
| 1403 |
// generating functions
|
| 1404 |
template<class URBG>
|
| 1405 |
result_type operator()(URBG& g);
|
| 1406 |
template<class URBG>
|
| 1407 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1411 |
vector<result_type> densities() const;
|
| 1412 |
param_type param() const;
|
| 1413 |
void param(const param_type& parm);
|
| 1414 |
result_type min() const;
|
| 1415 |
result_type max() const;
|
| 1416 |
+
|
| 1417 |
+
// inserters and extractors
|
| 1418 |
+
template<class charT, class traits>
|
| 1419 |
+
friend basic_ostream<charT, traits>&
|
| 1420 |
+
operator<<(basic_ostream<charT, traits>& os, const piecewise_constant_distribution& x);
|
| 1421 |
+
template<class charT, class traits>
|
| 1422 |
+
friend basic_istream<charT, traits>&
|
| 1423 |
+
operator>>(basic_istream<charT, traits>& is, piecewise_constant_distribution& x);
|
| 1424 |
};
|
| 1425 |
+
}
|
| 1426 |
```
|
| 1427 |
|
| 1428 |
``` cpp
|
| 1429 |
piecewise_constant_distribution();
|
| 1430 |
```
|
|
|
|
| 1523 |
shall be non-negative, non-NaN, and non-infinity. Moreover, the
|
| 1524 |
following relation shall hold:
|
| 1525 |
$$0 < S = \frac{1}{2} \cdot \sum_{k=0}^{n-1} (w_k + w_{k+1}) \cdot (b_{k+1} - b_k) \text{ .}$$
|
| 1526 |
|
| 1527 |
``` cpp
|
| 1528 |
+
namespace std {
|
| 1529 |
template<class RealType = double>
|
| 1530 |
class piecewise_linear_distribution {
|
| 1531 |
public:
|
| 1532 |
// types
|
| 1533 |
using result_type = RealType;
|
|
|
|
| 1543 |
template<class UnaryOperation>
|
| 1544 |
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
|
| 1545 |
explicit piecewise_linear_distribution(const param_type& parm);
|
| 1546 |
void reset();
|
| 1547 |
|
| 1548 |
+
// equality operators
|
| 1549 |
+
friend bool operator==(const piecewise_linear_distribution& x,
|
| 1550 |
+
const piecewise_linear_distribution& y);
|
| 1551 |
+
|
| 1552 |
// generating functions
|
| 1553 |
template<class URBG>
|
| 1554 |
result_type operator()(URBG& g);
|
| 1555 |
template<class URBG>
|
| 1556 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1560 |
vector<result_type> densities() const;
|
| 1561 |
param_type param() const;
|
| 1562 |
void param(const param_type& parm);
|
| 1563 |
result_type min() const;
|
| 1564 |
result_type max() const;
|
| 1565 |
+
|
| 1566 |
+
// inserters and extractors
|
| 1567 |
+
template<class charT, class traits>
|
| 1568 |
+
friend basic_ostream<charT, traits>&
|
| 1569 |
+
operator<<(basic_ostream<charT, traits>& os, const piecewise_linear_distribution& x);
|
| 1570 |
+
template<class charT, class traits>
|
| 1571 |
+
friend basic_istream<charT, traits>&
|
| 1572 |
+
operator>>(basic_istream<charT, traits>& is, piecewise_linear_distribution& x);
|
| 1573 |
};
|
| 1574 |
+
}
|
| 1575 |
```
|
| 1576 |
|
| 1577 |
``` cpp
|
| 1578 |
piecewise_linear_distribution();
|
| 1579 |
```
|