tmp/tmpi8ullemh/{from.md → to.md}
RENAMED
|
@@ -205,11 +205,11 @@ constructed.
|
|
| 205 |
|
| 206 |
A `binomial_distribution` random number distribution produces integer
|
| 207 |
values i ≥ 0 distributed according to the discrete probability function
|
| 208 |
$$%
|
| 209 |
P(i\,|\,t,p)
|
| 210 |
-
= {t
|
| 211 |
\; \mbox{.}$$
|
| 212 |
|
| 213 |
``` cpp
|
| 214 |
template<class IntType = int>
|
| 215 |
class binomial_distribution
|
|
@@ -321,11 +321,11 @@ constructed.
|
|
| 321 |
|
| 322 |
A `negative_binomial_distribution` random number distribution produces
|
| 323 |
random integers i ≥ 0 distributed according to the discrete probability
|
| 324 |
function $$%
|
| 325 |
P(i\,|\,k,p)
|
| 326 |
-
= {k+i-1
|
| 327 |
\; \mbox{.}$$
|
| 328 |
|
| 329 |
``` cpp
|
| 330 |
template<class IntType = int>
|
| 331 |
class negative_binomial_distribution
|
|
@@ -495,13 +495,11 @@ constructed.
|
|
| 495 |
|
| 496 |
A `gamma_distribution` random number distribution produces random
|
| 497 |
numbers x > 0 distributed according to the probability density function
|
| 498 |
$$%
|
| 499 |
p(x\,|\,\alpha,\beta)
|
| 500 |
-
= {
|
| 501 |
-
\over {\beta^{\alpha} \cdot \Gamma(\alpha)}
|
| 502 |
-
}
|
| 503 |
\, \cdot \, x^{\, \alpha-1}
|
| 504 |
\; \mbox{.}$$
|
| 505 |
|
| 506 |
``` cpp
|
| 507 |
template<class RealType = double>
|
|
@@ -575,11 +573,11 @@ public:
|
|
| 575 |
// types
|
| 576 |
typedef RealType result_type;
|
| 577 |
typedef unspecified param_type;
|
| 578 |
|
| 579 |
// constructor and reset functions
|
| 580 |
-
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0)
|
| 581 |
explicit weibull_distribution(const param_type& parm);
|
| 582 |
void reset();
|
| 583 |
|
| 584 |
// generating functions
|
| 585 |
template<class URNG>
|
|
@@ -690,11 +688,11 @@ constructed.
|
|
| 690 |
##### Class template `normal_distribution` <a id="rand.dist.norm.normal">[[rand.dist.norm.normal]]</a>
|
| 691 |
|
| 692 |
A `normal_distribution` random number distribution produces random
|
| 693 |
numbers x distributed according to the probability density function $$%
|
| 694 |
p(x\,|\,\mu,\sigma)
|
| 695 |
-
= {1
|
| 696 |
\cdot
|
| 697 |
% e^{-(x-\mu)^2 / (2\sigma^2)}
|
| 698 |
\exp{\left(- \, \frac{(x - \mu)^2}
|
| 699 |
{2 \sigma^2}
|
| 700 |
\right)
|
|
@@ -1184,11 +1182,11 @@ $$%
|
|
| 1184 |
The n+1 distribution parameters bᵢ, also known as this distribution’s
|
| 1185 |
*interval boundaries* , shall satisfy the relation bᵢ < bᵢ₊₁ for
|
| 1186 |
i = 0, …, n-1. Unless specified otherwise, the remaining n distribution
|
| 1187 |
parameters are calculated as: $$%
|
| 1188 |
\rho_k = \;
|
| 1189 |
-
{w_k
|
| 1190 |
\; \mbox{ for } k = 0, \ldots, n\!-\!1,$$ in which the values wₖ,
|
| 1191 |
commonly known as the *weights* , shall be non-negative, non-NaN, and
|
| 1192 |
non-infinity. Moreover, the following relation shall hold:
|
| 1193 |
0 < S = w₀ + ⋯ + wₙ₋₁.
|
| 1194 |
|
|
@@ -1312,12 +1310,12 @@ k = 0, …, n-1.
|
|
| 1312 |
|
| 1313 |
A `piecewise_linear_distribution` random number distribution produces
|
| 1314 |
random numbers x, b₀ ≤ x < bₙ, distributed over each subinterval
|
| 1315 |
[ bᵢ, bᵢ₊₁ ) according to the probability density function $$%
|
| 1316 |
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
|
| 1317 |
-
= \rho_i \cdot {{b_{i+1} - x}
|
| 1318 |
-
+ \rho_{i+1} \cdot {{x - b_i}
|
| 1319 |
\; \mbox{,}
|
| 1320 |
\mbox{ for } b_i \le x < b_{i+1}
|
| 1321 |
\; \mbox{.}$$
|
| 1322 |
|
| 1323 |
The n+1 distribution parameters bᵢ, also known as this distribution’s
|
|
|
|
| 205 |
|
| 206 |
A `binomial_distribution` random number distribution produces integer
|
| 207 |
values i ≥ 0 distributed according to the discrete probability function
|
| 208 |
$$%
|
| 209 |
P(i\,|\,t,p)
|
| 210 |
+
= \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i}
|
| 211 |
\; \mbox{.}$$
|
| 212 |
|
| 213 |
``` cpp
|
| 214 |
template<class IntType = int>
|
| 215 |
class binomial_distribution
|
|
|
|
| 321 |
|
| 322 |
A `negative_binomial_distribution` random number distribution produces
|
| 323 |
random integers i ≥ 0 distributed according to the discrete probability
|
| 324 |
function $$%
|
| 325 |
P(i\,|\,k,p)
|
| 326 |
+
= \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i
|
| 327 |
\; \mbox{.}$$
|
| 328 |
|
| 329 |
``` cpp
|
| 330 |
template<class IntType = int>
|
| 331 |
class negative_binomial_distribution
|
|
|
|
| 495 |
|
| 496 |
A `gamma_distribution` random number distribution produces random
|
| 497 |
numbers x > 0 distributed according to the probability density function
|
| 498 |
$$%
|
| 499 |
p(x\,|\,\alpha,\beta)
|
| 500 |
+
= \frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)}
|
|
|
|
|
|
|
| 501 |
\, \cdot \, x^{\, \alpha-1}
|
| 502 |
\; \mbox{.}$$
|
| 503 |
|
| 504 |
``` cpp
|
| 505 |
template<class RealType = double>
|
|
|
|
| 573 |
// types
|
| 574 |
typedef RealType result_type;
|
| 575 |
typedef unspecified param_type;
|
| 576 |
|
| 577 |
// constructor and reset functions
|
| 578 |
+
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);
|
| 579 |
explicit weibull_distribution(const param_type& parm);
|
| 580 |
void reset();
|
| 581 |
|
| 582 |
// generating functions
|
| 583 |
template<class URNG>
|
|
|
|
| 688 |
##### Class template `normal_distribution` <a id="rand.dist.norm.normal">[[rand.dist.norm.normal]]</a>
|
| 689 |
|
| 690 |
A `normal_distribution` random number distribution produces random
|
| 691 |
numbers x distributed according to the probability density function $$%
|
| 692 |
p(x\,|\,\mu,\sigma)
|
| 693 |
+
= \frac{1}{\sigma \sqrt{2\pi}}
|
| 694 |
\cdot
|
| 695 |
% e^{-(x-\mu)^2 / (2\sigma^2)}
|
| 696 |
\exp{\left(- \, \frac{(x - \mu)^2}
|
| 697 |
{2 \sigma^2}
|
| 698 |
\right)
|
|
|
|
| 1182 |
The n+1 distribution parameters bᵢ, also known as this distribution’s
|
| 1183 |
*interval boundaries* , shall satisfy the relation bᵢ < bᵢ₊₁ for
|
| 1184 |
i = 0, …, n-1. Unless specified otherwise, the remaining n distribution
|
| 1185 |
parameters are calculated as: $$%
|
| 1186 |
\rho_k = \;
|
| 1187 |
+
\frac{w_k}{S \cdot (b_{k+1}-b_k)}
|
| 1188 |
\; \mbox{ for } k = 0, \ldots, n\!-\!1,$$ in which the values wₖ,
|
| 1189 |
commonly known as the *weights* , shall be non-negative, non-NaN, and
|
| 1190 |
non-infinity. Moreover, the following relation shall hold:
|
| 1191 |
0 < S = w₀ + ⋯ + wₙ₋₁.
|
| 1192 |
|
|
|
|
| 1310 |
|
| 1311 |
A `piecewise_linear_distribution` random number distribution produces
|
| 1312 |
random numbers x, b₀ ≤ x < bₙ, distributed over each subinterval
|
| 1313 |
[ bᵢ, bᵢ₊₁ ) according to the probability density function $$%
|
| 1314 |
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
|
| 1315 |
+
= \rho_i \cdot {\frac{b_{i+1} - x}{b_{i+1} - b_i}}
|
| 1316 |
+
+ \rho_{i+1} \cdot {\frac{x - b_i}{b_{i+1} - b_i}}
|
| 1317 |
\; \mbox{,}
|
| 1318 |
\mbox{ for } b_i \le x < b_{i+1}
|
| 1319 |
\; \mbox{.}$$
|
| 1320 |
|
| 1321 |
The n+1 distribution parameters bᵢ, also known as this distribution’s
|