From Jason Turner

[rand.dist.norm.cauchy]

Diff to HTML by rtfpessoa

tmp/tmp5lbpthqs/{from.md → to.md} RENAMED
@@ -1,23 +1,22 @@
1
  ##### Class template `cauchy_distribution` <a id="rand.dist.norm.cauchy">[[rand.dist.norm.cauchy]]</a>
2
 
3
  A `cauchy_distribution` random number distribution produces random
4
- numbers x distributed according to the probability density function $$%
5
- p(x\,|\,a,b)
6
- = \left( \pi b \left( 1 + \left( \frac{x-a}{b} \right)^2 \;\right)\right)^{-1}
7
- \; \mbox{.}$$
8
 
9
  ``` cpp
10
  template<class RealType = double>
11
  class cauchy_distribution {
12
  public:
13
  // types
14
  using result_type = RealType;
15
  using param_type = unspecified;
16
 
17
  // constructor and reset functions
18
- explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
 
19
  explicit cauchy_distribution(const param_type& parm);
20
  void reset();
21
 
22
  // generating functions
23
  template<class URBG>
@@ -34,17 +33,17 @@ template<class RealType = double>
34
  result_type max() const;
35
  };
36
  ```
37
 
38
  ``` cpp
39
- explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
40
  ```
41
 
42
- *Requires:* 0 < `b`.
43
 
44
- *Effects:* Constructs a `cauchy_distribution` object; `a` and `b`
45
- correspond to the respective parameters of the distribution.
46
 
47
  ``` cpp
48
  RealType a() const;
49
  ```
50
 
 
1
  ##### Class template `cauchy_distribution` <a id="rand.dist.norm.cauchy">[[rand.dist.norm.cauchy]]</a>
2
 
3
  A `cauchy_distribution` random number distribution produces random
4
+ numbers x distributed according to the probability density function
5
+ $$p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .}$$
 
 
6
 
7
  ``` cpp
8
  template<class RealType = double>
9
  class cauchy_distribution {
10
  public:
11
  // types
12
  using result_type = RealType;
13
  using param_type = unspecified;
14
 
15
  // constructor and reset functions
16
+ cauchy_distribution() : cauchy_distribution(0.0) {}
17
+ explicit cauchy_distribution(RealType a, RealType b = 1.0);
18
  explicit cauchy_distribution(const param_type& parm);
19
  void reset();
20
 
21
  // generating functions
22
  template<class URBG>
 
33
  result_type max() const;
34
  };
35
  ```
36
 
37
  ``` cpp
38
+ explicit cauchy_distribution(RealType a, RealType b = 1.0);
39
  ```
40
 
41
+ *Preconditions:* 0 < `b`.
42
 
43
+ *Remarks:* `a` and `b` correspond to the respective parameters of the
44
+ distribution.
45
 
46
  ``` cpp
47
  RealType a() const;
48
  ```
49