From Jason Turner

[rand.dist.norm.cauchy]

Diff to HTML by rtfpessoa

tmp/tmpvcm32xzo/{from.md → to.md} RENAMED
@@ -6,27 +6,26 @@ numbers x distributed according to the probability density function $$%
6
  = \left( \pi b \left( 1 + \left( \frac{x-a}{b} \right)^2 \;\right)\right)^{-1}
7
  \; \mbox{.}$$
8
 
9
  ``` cpp
10
  template<class RealType = double>
11
- class cauchy_distribution
12
- {
13
  public:
14
  // types
15
- typedef RealType result_type;
16
- typedef unspecified param_type;
17
 
18
  // constructor and reset functions
19
  explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
20
  explicit cauchy_distribution(const param_type& parm);
21
  void reset();
22
 
23
  // generating functions
24
- template<class URNG>
25
- result_type operator()(URNG& g);
26
- template<class URNG>
27
- result_type operator()(URNG& g, const param_type& parm);
28
 
29
  // property functions
30
  RealType a() const;
31
  RealType b() const;
32
  param_type param() const;
 
6
  = \left( \pi b \left( 1 + \left( \frac{x-a}{b} \right)^2 \;\right)\right)^{-1}
7
  \; \mbox{.}$$
8
 
9
  ``` cpp
10
  template<class RealType = double>
11
+ class cauchy_distribution {
 
12
  public:
13
  // types
14
+ using result_type = RealType;
15
+ using param_type = unspecified;
16
 
17
  // constructor and reset functions
18
  explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
19
  explicit cauchy_distribution(const param_type& parm);
20
  void reset();
21
 
22
  // generating functions
23
+ template<class URBG>
24
+ result_type operator()(URBG& g);
25
+ template<class URBG>
26
+ result_type operator()(URBG& g, const param_type& parm);
27
 
28
  // property functions
29
  RealType a() const;
30
  RealType b() const;
31
  param_type param() const;