tmp/tmp8n0nkpz9/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Closure types <a id="expr.prim.lambda.closure">[[expr.prim.lambda.closure]]</a>
|
| 2 |
+
|
| 3 |
+
The type of a *lambda-expression* (which is also the type of the closure
|
| 4 |
+
object) is a unique, unnamed non-union class type, called the *closure
|
| 5 |
+
type*, whose properties are described below.
|
| 6 |
+
|
| 7 |
+
The closure type is declared in the smallest block scope, class scope,
|
| 8 |
+
or namespace scope that contains the corresponding *lambda-expression*.
|
| 9 |
+
|
| 10 |
+
[*Note 1*: This determines the set of namespaces and classes associated
|
| 11 |
+
with the closure type ([[basic.lookup.argdep]]). The parameter types of
|
| 12 |
+
a *lambda-declarator* do not affect these associated namespaces and
|
| 13 |
+
classes. — *end note*]
|
| 14 |
+
|
| 15 |
+
The closure type is not an aggregate type ([[dcl.init.aggr]]). An
|
| 16 |
+
implementation may define the closure type differently from what is
|
| 17 |
+
described below provided this does not alter the observable behavior of
|
| 18 |
+
the program other than by changing:
|
| 19 |
+
|
| 20 |
+
- the size and/or alignment of the closure type,
|
| 21 |
+
- whether the closure type is trivially copyable (Clause [[class]]),
|
| 22 |
+
- whether the closure type is a standard-layout class (Clause
|
| 23 |
+
[[class]]), or
|
| 24 |
+
- whether the closure type is a POD class (Clause [[class]]).
|
| 25 |
+
|
| 26 |
+
An implementation shall not add members of rvalue reference type to the
|
| 27 |
+
closure type.
|
| 28 |
+
|
| 29 |
+
The closure type for a non-generic *lambda-expression* has a public
|
| 30 |
+
inline function call operator ([[over.call]]) whose parameters and
|
| 31 |
+
return type are described by the *lambda-expression*’s
|
| 32 |
+
*parameter-declaration-clause* and *trailing-return-type* respectively.
|
| 33 |
+
For a generic lambda, the closure type has a public inline function call
|
| 34 |
+
operator member template ([[temp.mem]]) whose *template-parameter-list*
|
| 35 |
+
consists of one invented type *template-parameter* for each occurrence
|
| 36 |
+
of `auto` in the lambda’s *parameter-declaration-clause*, in order of
|
| 37 |
+
appearance. The invented type *template-parameter* is a parameter pack
|
| 38 |
+
if the corresponding *parameter-declaration* declares a function
|
| 39 |
+
parameter pack ([[dcl.fct]]). The return type and function parameters
|
| 40 |
+
of the function call operator template are derived from the
|
| 41 |
+
*lambda-expression*'s *trailing-return-type* and
|
| 42 |
+
*parameter-declaration-clause* by replacing each occurrence of `auto` in
|
| 43 |
+
the *decl-specifier*s of the *parameter-declaration-clause* with the
|
| 44 |
+
name of the corresponding invented *template-parameter*.
|
| 45 |
+
|
| 46 |
+
[*Example 1*:
|
| 47 |
+
|
| 48 |
+
``` cpp
|
| 49 |
+
auto glambda = [](auto a, auto&& b) { return a < b; };
|
| 50 |
+
bool b = glambda(3, 3.14); // OK
|
| 51 |
+
|
| 52 |
+
auto vglambda = [](auto printer) {
|
| 53 |
+
return [=](auto&& ... ts) { // OK: ts is a function parameter pack
|
| 54 |
+
printer(std::forward<decltype(ts)>(ts)...);
|
| 55 |
+
|
| 56 |
+
return [=]() {
|
| 57 |
+
printer(ts ...);
|
| 58 |
+
};
|
| 59 |
+
};
|
| 60 |
+
};
|
| 61 |
+
auto p = vglambda( [](auto v1, auto v2, auto v3)
|
| 62 |
+
{ std::cout << v1 << v2 << v3; } );
|
| 63 |
+
auto q = p(1, 'a', 3.14); // OK: outputs 1a3.14
|
| 64 |
+
q(); // OK: outputs 1a3.14
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
— *end example*]
|
| 68 |
+
|
| 69 |
+
The function call operator or operator template is declared `const` (
|
| 70 |
+
[[class.mfct.non-static]]) if and only if the *lambda-expression*’s
|
| 71 |
+
*parameter-declaration-clause* is not followed by `mutable`. It is
|
| 72 |
+
neither virtual nor declared `volatile`. Any *noexcept-specifier*
|
| 73 |
+
specified on a *lambda-expression* applies to the corresponding function
|
| 74 |
+
call operator or operator template. An *attribute-specifier-seq* in a
|
| 75 |
+
*lambda-declarator* appertains to the type of the corresponding function
|
| 76 |
+
call operator or operator template. The function call operator or any
|
| 77 |
+
given operator template specialization is a constexpr function if either
|
| 78 |
+
the corresponding *lambda-expression*'s *parameter-declaration-clause*
|
| 79 |
+
is followed by `constexpr`, or it satisfies the requirements for a
|
| 80 |
+
constexpr function ([[dcl.constexpr]]).
|
| 81 |
+
|
| 82 |
+
[*Note 2*: Names referenced in the *lambda-declarator* are looked up in
|
| 83 |
+
the context in which the *lambda-expression* appears. — *end note*]
|
| 84 |
+
|
| 85 |
+
[*Example 2*:
|
| 86 |
+
|
| 87 |
+
``` cpp
|
| 88 |
+
auto ID = [](auto a) { return a; };
|
| 89 |
+
static_assert(ID(3) == 3); // OK
|
| 90 |
+
|
| 91 |
+
struct NonLiteral {
|
| 92 |
+
NonLiteral(int n) : n(n) { }
|
| 93 |
+
int n;
|
| 94 |
+
};
|
| 95 |
+
static_assert(ID(NonLiteral{3}).n == 3); // ill-formed
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
— *end example*]
|
| 99 |
+
|
| 100 |
+
[*Example 3*:
|
| 101 |
+
|
| 102 |
+
``` cpp
|
| 103 |
+
auto monoid = [](auto v) { return [=] { return v; }; };
|
| 104 |
+
auto add = [](auto m1) constexpr {
|
| 105 |
+
auto ret = m1();
|
| 106 |
+
return [=](auto m2) mutable {
|
| 107 |
+
auto m1val = m1();
|
| 108 |
+
auto plus = [=](auto m2val) mutable constexpr
|
| 109 |
+
{ return m1val += m2val; };
|
| 110 |
+
ret = plus(m2());
|
| 111 |
+
return monoid(ret);
|
| 112 |
+
};
|
| 113 |
+
};
|
| 114 |
+
constexpr auto zero = monoid(0);
|
| 115 |
+
constexpr auto one = monoid(1);
|
| 116 |
+
static_assert(add(one)(zero)() == one()); // OK
|
| 117 |
+
|
| 118 |
+
// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
|
| 119 |
+
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)
|
| 120 |
+
// in a constant expression.
|
| 121 |
+
auto two = monoid(2);
|
| 122 |
+
assert(two() == 2); // OK, not a constant expression.
|
| 123 |
+
static_assert(add(one)(one)() == two()); // ill-formed: two() is not a constant expression
|
| 124 |
+
static_assert(add(one)(one)() == monoid(2)()); // OK
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
— *end example*]
|
| 128 |
+
|
| 129 |
+
The closure type for a non-generic *lambda-expression* with no
|
| 130 |
+
*lambda-capture* has a conversion function to pointer to function with
|
| 131 |
+
C++language linkage ([[dcl.link]]) having the same parameter and return
|
| 132 |
+
types as the closure type’s function call operator. The conversion is to
|
| 133 |
+
“pointer to `noexcept` function” if the function call operator has a
|
| 134 |
+
non-throwing exception specification. The value returned by this
|
| 135 |
+
conversion function is the address of a function `F` that, when invoked,
|
| 136 |
+
has the same effect as invoking the closure type’s function call
|
| 137 |
+
operator. `F` is a constexpr function if the function call operator is a
|
| 138 |
+
constexpr function. For a generic lambda with no *lambda-capture*, the
|
| 139 |
+
closure type has a conversion function template to pointer to function.
|
| 140 |
+
The conversion function template has the same invented
|
| 141 |
+
*template-parameter-list*, and the pointer to function has the same
|
| 142 |
+
parameter types, as the function call operator template. The return type
|
| 143 |
+
of the pointer to function shall behave as if it were a
|
| 144 |
+
*decltype-specifier* denoting the return type of the corresponding
|
| 145 |
+
function call operator template specialization.
|
| 146 |
+
|
| 147 |
+
[*Note 3*:
|
| 148 |
+
|
| 149 |
+
If the generic lambda has no *trailing-return-type* or the
|
| 150 |
+
*trailing-return-type* contains a placeholder type, return type
|
| 151 |
+
deduction of the corresponding function call operator template
|
| 152 |
+
specialization has to be done. The corresponding specialization is that
|
| 153 |
+
instantiation of the function call operator template with the same
|
| 154 |
+
template arguments as those deduced for the conversion function
|
| 155 |
+
template. Consider the following:
|
| 156 |
+
|
| 157 |
+
``` cpp
|
| 158 |
+
auto glambda = [](auto a) { return a; };
|
| 159 |
+
int (*fp)(int) = glambda;
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
The behavior of the conversion function of `glambda` above is like that
|
| 163 |
+
of the following conversion function:
|
| 164 |
+
|
| 165 |
+
``` cpp
|
| 166 |
+
struct Closure {
|
| 167 |
+
template<class T> auto operator()(T t) const { ... }
|
| 168 |
+
template<class T> static auto lambda_call_operator_invoker(T a) {
|
| 169 |
+
// forwards execution to operator()(a) and therefore has
|
| 170 |
+
// the same return type deduced
|
| 171 |
+
...
|
| 172 |
+
}
|
| 173 |
+
template<class T> using fptr_t =
|
| 174 |
+
decltype(lambda_call_operator_invoker(declval<T>())) (*)(T);
|
| 175 |
+
|
| 176 |
+
template<class T> operator fptr_t<T>() const
|
| 177 |
+
{ return &lambda_call_operator_invoker; }
|
| 178 |
+
};
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
— *end note*]
|
| 182 |
+
|
| 183 |
+
[*Example 4*:
|
| 184 |
+
|
| 185 |
+
``` cpp
|
| 186 |
+
void f1(int (*)(int)) { }
|
| 187 |
+
void f2(char (*)(int)) { }
|
| 188 |
+
|
| 189 |
+
void g(int (*)(int)) { } // #1
|
| 190 |
+
void g(char (*)(char)) { } // #2
|
| 191 |
+
|
| 192 |
+
void h(int (*)(int)) { } // #3
|
| 193 |
+
void h(char (*)(int)) { } // #4
|
| 194 |
+
|
| 195 |
+
auto glambda = [](auto a) { return a; };
|
| 196 |
+
f1(glambda); // OK
|
| 197 |
+
f2(glambda); // error: ID is not convertible
|
| 198 |
+
g(glambda); // error: ambiguous
|
| 199 |
+
h(glambda); // OK: calls #3 since it is convertible from ID
|
| 200 |
+
int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
— *end example*]
|
| 204 |
+
|
| 205 |
+
The value returned by any given specialization of this conversion
|
| 206 |
+
function template is the address of a function `F` that, when invoked,
|
| 207 |
+
has the same effect as invoking the generic lambda’s corresponding
|
| 208 |
+
function call operator template specialization. `F` is a constexpr
|
| 209 |
+
function if the corresponding specialization is a constexpr function.
|
| 210 |
+
|
| 211 |
+
[*Note 4*: This will result in the implicit instantiation of the
|
| 212 |
+
generic lambda’s body. The instantiated generic lambda’s return type and
|
| 213 |
+
parameter types shall match the return type and parameter types of the
|
| 214 |
+
pointer to function. — *end note*]
|
| 215 |
+
|
| 216 |
+
[*Example 5*:
|
| 217 |
+
|
| 218 |
+
``` cpp
|
| 219 |
+
auto GL = [](auto a) { std::cout << a; return a; };
|
| 220 |
+
int (*GL_int)(int) = GL; // OK: through conversion function template
|
| 221 |
+
GL_int(3); // OK: same as GL(3)
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
— *end example*]
|
| 225 |
+
|
| 226 |
+
The conversion function or conversion function template is public,
|
| 227 |
+
constexpr, non-virtual, non-explicit, const, and has a non-throwing
|
| 228 |
+
exception specification ([[except.spec]]).
|
| 229 |
+
|
| 230 |
+
[*Example 6*:
|
| 231 |
+
|
| 232 |
+
``` cpp
|
| 233 |
+
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
|
| 234 |
+
auto C = [](auto a) { return a; };
|
| 235 |
+
|
| 236 |
+
static_assert(Fwd(C,3) == 3); // OK
|
| 237 |
+
|
| 238 |
+
// No specialization of the function call operator template can be constexpr (due to the local static).
|
| 239 |
+
auto NC = [](auto a) { static int s; return a; };
|
| 240 |
+
static_assert(Fwd(NC,3) == 3); // ill-formed
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
— *end example*]
|
| 244 |
+
|
| 245 |
+
The *lambda-expression*’s *compound-statement* yields the
|
| 246 |
+
*function-body* ([[dcl.fct.def]]) of the function call operator, but
|
| 247 |
+
for purposes of name lookup ([[basic.lookup]]), determining the type
|
| 248 |
+
and value of `this` ([[class.this]]) and transforming *id-expression*s
|
| 249 |
+
referring to non-static class members into class member access
|
| 250 |
+
expressions using `(*this)` ([[class.mfct.non-static]]), the
|
| 251 |
+
*compound-statement* is considered in the context of the
|
| 252 |
+
*lambda-expression*.
|
| 253 |
+
|
| 254 |
+
[*Example 7*:
|
| 255 |
+
|
| 256 |
+
``` cpp
|
| 257 |
+
struct S1 {
|
| 258 |
+
int x, y;
|
| 259 |
+
int operator()(int);
|
| 260 |
+
void f() {
|
| 261 |
+
[=]()->int {
|
| 262 |
+
return operator()(this->x + y); // equivalent to S1::operator()(this->x + (*this).y)
|
| 263 |
+
// this has type S1*
|
| 264 |
+
};
|
| 265 |
+
}
|
| 266 |
+
};
|
| 267 |
+
```
|
| 268 |
+
|
| 269 |
+
— *end example*]
|
| 270 |
+
|
| 271 |
+
Further, a variable `__func__` is implicitly defined at the beginning of
|
| 272 |
+
the *compound-statement* of the *lambda-expression*, with semantics as
|
| 273 |
+
described in [[dcl.fct.def.general]].
|
| 274 |
+
|
| 275 |
+
The closure type associated with a *lambda-expression* has no default
|
| 276 |
+
constructor and a deleted copy assignment operator. It has a defaulted
|
| 277 |
+
copy constructor and a defaulted move constructor ([[class.copy]]).
|
| 278 |
+
|
| 279 |
+
[*Note 5*: These special member functions are implicitly defined as
|
| 280 |
+
usual, and might therefore be defined as deleted. — *end note*]
|
| 281 |
+
|
| 282 |
+
The closure type associated with a *lambda-expression* has an
|
| 283 |
+
implicitly-declared destructor ([[class.dtor]]).
|
| 284 |
+
|
| 285 |
+
A member of a closure type shall not be explicitly instantiated (
|
| 286 |
+
[[temp.explicit]]), explicitly specialized ([[temp.expl.spec]]), or
|
| 287 |
+
named in a `friend` declaration ([[class.friend]]).
|
| 288 |
+
|