From Jason Turner

[sf.cmath.sph.legendre]

Diff to HTML by rtfpessoa

tmp/tmpe3eaa7zg/{from.md → to.md} RENAMED
@@ -8,16 +8,12 @@ long double sph_legendrel(unsigned l, unsigned m, long double theta);
8
 
9
  *Effects:* These functions compute the spherical associated Legendre
10
  functions of their respective arguments `l`, `m`, and `theta` (`theta`
11
  measured in radians).
12
 
13
- *Returns:* $$\mathsf{Y}_\ell^m(\theta, 0)$$ where
14
- $$\mathsf{Y}_\ell^m(\theta, \phi) =
15
- (-1)^m \left[\frac{(2 \ell + 1)}{4 \pi} \frac{(\ell - m)!}{(\ell + m)!}\right]^{1/2}
16
- \mathsf{P}_\ell^m (\cos\theta) e^{i m \phi}
17
- \text{ ,\quad for $|m| \le \ell$,}$$ and l is `l`, m is `m`, and θ
18
- is `theta`.
19
 
20
  *Remarks:* The effect of calling each of these functions is
21
  *implementation-defined* if `l >= 128`.
22
 
23
  See also [[sf.cmath.assoc.legendre]].
 
8
 
9
  *Effects:* These functions compute the spherical associated Legendre
10
  functions of their respective arguments `l`, `m`, and `theta` (`theta`
11
  measured in radians).
12
 
13
+ *Returns:* Y_ℓ^m(θ, 0), where Y_ℓ^m is given by , l is `l`, m is `m`,
14
+ and θ is `theta`.
 
 
 
 
15
 
16
  *Remarks:* The effect of calling each of these functions is
17
  *implementation-defined* if `l >= 128`.
18
 
19
  See also [[sf.cmath.assoc.legendre]].