tmp/tmpv5rrn602/{from.md → to.md}
RENAMED
|
@@ -7,28 +7,7 @@ long double riemann_zetal(long double x);
|
|
| 7 |
```
|
| 8 |
|
| 9 |
*Effects:* These functions compute the Riemann zeta function of their
|
| 10 |
respective arguments `x`.
|
| 11 |
|
| 12 |
-
*Returns:*
|
| 13 |
-
\mathsf{\zeta}(x) =
|
| 14 |
-
\left\{
|
| 15 |
-
\begin{array}{cl}
|
| 16 |
-
\displaystyle
|
| 17 |
-
\sum_{k=1}^\infty k^{-x},
|
| 18 |
-
& \mbox{for $x > 1$}
|
| 19 |
-
\\
|
| 20 |
-
\\
|
| 21 |
-
\displaystyle
|
| 22 |
-
\frac{1}
|
| 23 |
-
{1 - 2^{1-x}}
|
| 24 |
-
\sum_{k=1}^\infty (-1)^{k-1} k^{-x},
|
| 25 |
-
& \mbox{for $0 \le x \le 1$}
|
| 26 |
-
\\
|
| 27 |
-
\\
|
| 28 |
-
\displaystyle
|
| 29 |
-
2^x \pi^{x-1} \sin(\frac{\pi x}{2}) \, \Gamma(1-x) \, \zeta(1-x),
|
| 30 |
-
& \mbox{for $x < 0$}
|
| 31 |
-
\end{array}
|
| 32 |
-
\right.
|
| 33 |
-
\;$$ where x is `x`.
|
| 34 |
|
|
|
|
| 7 |
```
|
| 8 |
|
| 9 |
*Effects:* These functions compute the Riemann zeta function of their
|
| 10 |
respective arguments `x`.
|
| 11 |
|
| 12 |
+
*Returns:* ζ(x), where ζ is given by and x is `x`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|