From Jason Turner

[sf.cmath.riemann.zeta]

Diff to HTML by rtfpessoa

Files changed (1) hide show
  1. tmp/tmpv5rrn602/{from.md → to.md} +1 -22
tmp/tmpv5rrn602/{from.md → to.md} RENAMED
@@ -7,28 +7,7 @@ long double riemann_zetal(long double x);
7
  ```
8
 
9
  *Effects:* These functions compute the Riemann zeta function of their
10
  respective arguments `x`.
11
 
12
- *Returns:* $$%
13
- \mathsf{\zeta}(x) =
14
- \left\{
15
- \begin{array}{cl}
16
- \displaystyle
17
- \sum_{k=1}^\infty k^{-x},
18
- & \mbox{for $x > 1$}
19
- \\
20
- \\
21
- \displaystyle
22
- \frac{1}
23
- {1 - 2^{1-x}}
24
- \sum_{k=1}^\infty (-1)^{k-1} k^{-x},
25
- & \mbox{for $0 \le x \le 1$}
26
- \\
27
- \\
28
- \displaystyle
29
- 2^x \pi^{x-1} \sin(\frac{\pi x}{2}) \, \Gamma(1-x) \, \zeta(1-x),
30
- & \mbox{for $x < 0$}
31
- \end{array}
32
- \right.
33
- \;$$ where x is `x`.
34
 
 
7
  ```
8
 
9
  *Effects:* These functions compute the Riemann zeta function of their
10
  respective arguments `x`.
11
 
12
+ *Returns:* ζ(x), where ζ is given by and x is `x`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13