From Jason Turner

[sf.cmath.cyl.bessel.j]

Diff to HTML by rtfpessoa

tmp/tmps2tzogn4/{from.md → to.md} RENAMED
@@ -7,12 +7,11 @@ long double cyl_bessel_jl(long double nu, long double x);
7
  ```
8
 
9
  *Effects:* These functions compute the cylindrical Bessel functions of
10
  the first kind of their respective arguments `nu` and `x`.
11
 
12
- *Returns:* $$\mathsf{J}_\nu(x) =
13
- \sum_{k=0}^\infty \frac{(-1)^k (x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
14
- \text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
15
 
16
  *Remarks:* The effect of calling each of these functions is
17
  *implementation-defined* if `nu >= 128`.
18
 
 
7
  ```
8
 
9
  *Effects:* These functions compute the cylindrical Bessel functions of
10
  the first kind of their respective arguments `nu` and `x`.
11
 
12
+ *Returns:* $\mathsf{J}_\nu(x)$, where $\mathsf{J}_\nu$ is given by ,
13
+ $\nu$ is `nu`, and x is `x`.
 
14
 
15
  *Remarks:* The effect of calling each of these functions is
16
  *implementation-defined* if `nu >= 128`.
17