tmp/tmp7miprf_g/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Class template `philox_engine` <a id="rand.eng.philox">[[rand.eng.philox]]</a>
|
| 2 |
+
|
| 3 |
+
A `philox_engine` random number engine produces unsigned integer random
|
| 4 |
+
numbers in the interval \[`0`, m), where m = 2ʷ and the template
|
| 5 |
+
parameter w defines the range of the produced numbers. The state of a
|
| 6 |
+
`philox_engine` object consists of a sequence X of n unsigned integer
|
| 7 |
+
values of width w, a sequence K of n/2 values of `result_type`, a
|
| 8 |
+
sequence Y of n values of `result_type`, and a scalar i, where
|
| 9 |
+
|
| 10 |
+
- X is the interpretation of the unsigned integer *counter* value
|
| 11 |
+
$Z \cedef \sum_{j = 0}^{n - 1} X_j \cdot 2^{wj}$ of n ⋅ w bits,
|
| 12 |
+
- K are keys, which are generated once from the seed (see constructors
|
| 13 |
+
below) and remain constant unless the `seed` function [[rand.req.eng]]
|
| 14 |
+
is invoked,
|
| 15 |
+
- Y stores a batch of output values, and
|
| 16 |
+
- i is an index for an element of the sequence Y.
|
| 17 |
+
|
| 18 |
+
The generation algorithm returns Yᵢ, the value stored in the iᵗʰ element
|
| 19 |
+
of Y after applying the transition algorithm.
|
| 20 |
+
|
| 21 |
+
The state transition is performed as if by the following algorithm:
|
| 22 |
+
|
| 23 |
+
``` cpp
|
| 24 |
+
i = i + 1
|
| 25 |
+
if (i == n) {
|
| 26 |
+
Y = Philox(K, X) // see below
|
| 27 |
+
Z = Z + 1
|
| 28 |
+
i = 0
|
| 29 |
+
}
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
The `Philox` function maps the length-n/2 sequence K and the length-n
|
| 33 |
+
sequence X into a length-n output sequence Y. Philox applies an r-round
|
| 34 |
+
substitution-permutation network to the values in X. A single round of
|
| 35 |
+
the generation algorithm performs the following steps:
|
| 36 |
+
|
| 37 |
+
- The output sequence X' of the previous round (X in case of the first
|
| 38 |
+
round) is permuted to obtain the intermediate state V:
|
| 39 |
+
``` cpp
|
| 40 |
+
Vⱼ = X'_{fₙ(j)}
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
where j = 0, …, n - 1 and fₙ(j) is defined in [[rand.eng.philox.f]].
|
| 44 |
+
**Table: Values for the word permutation $\bm{f}_{\bm{n}}\bm{(j)}$** <a id="rand.eng.philox.f">[rand.eng.philox.f]</a>
|
| 45 |
+
|
| 46 |
+
| | |
|
| 47 |
+
| --------------------------------------------- | ---------------------------- |
|
| 48 |
+
| *[spans 2 columns]* $\bm{f}_{\bm{n}}\bm{(j)}$ | *[spans 4 columns]* $\bm{j}$ |
|
| 49 |
+
| \multicolumn{2}{|c|} | 0 | 1 | 2 | 3 |
|
| 50 |
+
| $\bm{n} $ | 2 | 0 | 1 | \multicolumn{2}{c|} |
|
| 51 |
+
| | 4 | 2 | 1 | 0 | 3 |
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
\[*Note 1*: For n = 2 the sequence is not permuted. — *end note*]
|
| 55 |
+
- The following computations are applied to the elements of the V
|
| 56 |
+
sequence:
|
| 57 |
+
``` cpp
|
| 58 |
+
X_2k + 0} = \mulhi(V_2k, Mₖ, w) \xor key^qₖ \xor V_2k + 1}
|
| 59 |
+
X_2k + 1} = \mullo(V_2k, Mₖ, w)
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
where:
|
| 63 |
+
- μllo(`a`, `b`, `w`) is the low half of the modular multiplication of
|
| 64 |
+
`a` and `b`: $(\tcode{a} \cdot \tcode{b}) \mod 2^w$,
|
| 65 |
+
- μlhi(`a`, `b`, `w`) is the high half of the modular multiplication
|
| 66 |
+
of `a` and `b`: (⌊ (`a` ⋅ `b`) / 2ʷ ⌋),
|
| 67 |
+
- k = 0, …, n/2 - 1 is the index in the sequences,
|
| 68 |
+
- q = 0, …, r - 1 is the index of the round,
|
| 69 |
+
- $\mathit{key}^q_k$ is the kᵗʰ round key for round q,
|
| 70 |
+
$\mathit{key}^q_k \cedef (K_k + q \cdot C_k) \mod 2^w$,
|
| 71 |
+
- Kₖ are the elements of the key sequence K,
|
| 72 |
+
- Mₖ is `multipliers[k]`, and
|
| 73 |
+
- Cₖ is `round_consts[k]`.
|
| 74 |
+
|
| 75 |
+
After r applications of the single-round function, `Philox` returns the
|
| 76 |
+
sequence Y = X'.
|
| 77 |
+
|
| 78 |
+
``` cpp
|
| 79 |
+
namespace std {
|
| 80 |
+
template<class UIntType, size_t w, size_t n, size_t r, UIntType... consts>
|
| 81 |
+
class philox_engine {
|
| 82 |
+
static constexpr size_t array-size = n / 2; // exposition only
|
| 83 |
+
public:
|
| 84 |
+
// types
|
| 85 |
+
using result_type = UIntType;
|
| 86 |
+
|
| 87 |
+
// engine characteristics
|
| 88 |
+
static constexpr size_t word_size = w;
|
| 89 |
+
static constexpr size_t word_count = n;
|
| 90 |
+
static constexpr size_t round_count = r;
|
| 91 |
+
static constexpr array<result_type, array-size> multipliers;
|
| 92 |
+
static constexpr array<result_type, array-size> round_consts;
|
| 93 |
+
static constexpr result_type min() { return 0; }
|
| 94 |
+
static constexpr result_type max() { return m - 1; }
|
| 95 |
+
static constexpr result_type default_seed = 20111115u;
|
| 96 |
+
|
| 97 |
+
// constructors and seeding functions
|
| 98 |
+
philox_engine() : philox_engine(default_seed) {}
|
| 99 |
+
explicit philox_engine(result_type value);
|
| 100 |
+
template<class Sseq> explicit philox_engine(Sseq& q);
|
| 101 |
+
void seed(result_type value = default_seed);
|
| 102 |
+
template<class Sseq> void seed(Sseq& q);
|
| 103 |
+
|
| 104 |
+
void set_counter(const array<result_type, n>& counter);
|
| 105 |
+
|
| 106 |
+
// equality operators
|
| 107 |
+
friend bool operator==(const philox_engine& x, const philox_engine& y);
|
| 108 |
+
|
| 109 |
+
// generating functions
|
| 110 |
+
result_type operator()();
|
| 111 |
+
void discard(unsigned long long z);
|
| 112 |
+
|
| 113 |
+
// inserters and extractors
|
| 114 |
+
template<class charT, class traits>
|
| 115 |
+
friend basic_ostream<charT, traits>&
|
| 116 |
+
operator<<(basic_ostream<charT, traits>& os, const philox_engine& x); // hosted
|
| 117 |
+
template<class charT, class traits>
|
| 118 |
+
friend basic_istream<charT, traits>&
|
| 119 |
+
operator>>(basic_istream<charT, traits>& is, philox_engine& x); // hosted
|
| 120 |
+
};
|
| 121 |
+
}
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
*Mandates:*
|
| 125 |
+
|
| 126 |
+
- `sizeof...(consts) == n` is `true`, and
|
| 127 |
+
- `n == 2 || n == 4` is `true`, and
|
| 128 |
+
- `0 < r` is `true`, and
|
| 129 |
+
- `0 < w && w <= numeric_limits<UIntType>::digits` is `true`.
|
| 130 |
+
|
| 131 |
+
The template parameter pack `consts` represents the Mₖ and Cₖ constants
|
| 132 |
+
which are grouped as follows:
|
| 133 |
+
$[ M_0, C_0, M_1, C_1, M_2, C_2, \dotsc, M_{n/2 - 1}, C_{n/2 - 1} ]$.
|
| 134 |
+
|
| 135 |
+
The textual representation consists of the values of
|
| 136 |
+
$K_0, \dotsc, K_{n/2 - 1}, X_{0}, \dotsc, X_{n - 1}, i$, in that order.
|
| 137 |
+
|
| 138 |
+
[*Note 2*: The stream extraction operator can reconstruct Y from K and
|
| 139 |
+
X, as needed. — *end note*]
|
| 140 |
+
|
| 141 |
+
``` cpp
|
| 142 |
+
explicit philox_engine(result_type value);
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
*Effects:* Sets the K₀ element of sequence K to
|
| 146 |
+
$\texttt{value} \mod 2^w$. All elements of sequences X and K (except K₀)
|
| 147 |
+
are set to `0`. The value of i is set to n - 1.
|
| 148 |
+
|
| 149 |
+
``` cpp
|
| 150 |
+
template<class Sseq> explicit philox_engine(Sseq& q);
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
*Effects:* With p = ⌈ w / 32 ⌉ and an array (or equivalent) `a` of
|
| 154 |
+
length (n/2) ⋅ p, invokes `q.generate(a + 0, a + n / 2 * `p`)` and then
|
| 155 |
+
iteratively for k = 0, …, n/2 - 1, sets Kₖ to
|
| 156 |
+
$\left(\sum_{j = 0}^{p - 1} a_{k p + j} \cdot 2^{32j} \right) \mod 2^w$.
|
| 157 |
+
All elements of sequence X are set to `0`. The value of i is set to
|
| 158 |
+
n - 1.
|
| 159 |
+
|
| 160 |
+
``` cpp
|
| 161 |
+
void set_counter(const array<result_type, n>& c);
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
*Effects:* For j = 0, …, n - 1 sets Xⱼ to $C_{n - 1 - j} \mod 2^w$. The
|
| 165 |
+
value of i is set to n - 1.
|
| 166 |
+
|
| 167 |
+
[*Note 1*: The counter is the value Z introduced at the beginning of
|
| 168 |
+
this subclause. — *end note*]
|
| 169 |
+
|