- tmp/tmp44o4276u/{from.md → to.md} +150 -108
tmp/tmp44o4276u/{from.md → to.md}
RENAMED
|
@@ -16,14 +16,14 @@ then
|
|
| 16 |
|
| 17 |
- for some argument j, ICSʲ(`F₁`) is a better conversion sequence than
|
| 18 |
ICSʲ(`F₂`), or, if not that,
|
| 19 |
- the context is an initialization by user-defined conversion (see
|
| 20 |
[[dcl.init]], [[over.match.conv]], and [[over.match.ref]]) and the
|
| 21 |
-
standard conversion sequence from the
|
| 22 |
destination type (i.e., the type of the entity being initialized) is a
|
| 23 |
better conversion sequence than the standard conversion sequence from
|
| 24 |
-
the
|
| 25 |
\[*Example 1*:
|
| 26 |
``` cpp
|
| 27 |
struct A {
|
| 28 |
A();
|
| 29 |
operator int();
|
|
@@ -37,13 +37,13 @@ then
|
|
| 37 |
|
| 38 |
— *end example*]
|
| 39 |
or, if not that,
|
| 40 |
- the context is an initialization by conversion function for direct
|
| 41 |
reference binding [[over.match.ref]] of a reference to function type,
|
| 42 |
-
the return type of `
|
| 43 |
rvalue) as the reference being initialized, and the return type of
|
| 44 |
-
`
|
| 45 |
\[*Example 2*:
|
| 46 |
``` cpp
|
| 47 |
template <class T> struct A {
|
| 48 |
operator T&(); // #1
|
| 49 |
operator T&&(); // #2
|
|
@@ -54,24 +54,38 @@ then
|
|
| 54 |
Fn&& rf = a; // calls #2
|
| 55 |
```
|
| 56 |
|
| 57 |
— *end example*]
|
| 58 |
or, if not that,
|
| 59 |
-
- `
|
| 60 |
template specialization, or, if not that,
|
| 61 |
-
- `
|
| 62 |
-
template for `
|
| 63 |
according to the partial ordering rules described in
|
| 64 |
[[temp.func.order]], or, if not that,
|
| 65 |
-
- `
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
base class `B` of `D`, and for all arguments the corresponding
|
| 71 |
-
parameters of `
|
| 72 |
-
\[*Example
|
| 73 |
``` cpp
|
| 74 |
struct A {
|
| 75 |
A(int = 0);
|
| 76 |
};
|
| 77 |
|
|
@@ -85,48 +99,48 @@ then
|
|
| 85 |
}
|
| 86 |
```
|
| 87 |
|
| 88 |
— *end example*]
|
| 89 |
or, if not that,
|
| 90 |
-
- `
|
| 91 |
-
\[*Example
|
| 92 |
``` cpp
|
| 93 |
struct S {
|
| 94 |
friend auto operator<=>(const S&, const S&) = default; // #1
|
| 95 |
friend bool operator<(const S&, const S&); // #2
|
| 96 |
};
|
| 97 |
bool b = S() < S(); // calls #2
|
| 98 |
```
|
| 99 |
|
| 100 |
— *end example*]
|
| 101 |
or, if not that,
|
| 102 |
-
- `
|
| 103 |
-
candidate with reversed order of parameters and `
|
| 104 |
-
\[*Example
|
| 105 |
``` cpp
|
| 106 |
struct S {
|
| 107 |
friend std::weak_ordering operator<=>(const S&, int); // #1
|
| 108 |
friend std::weak_ordering operator<=>(int, const S&); // #2
|
| 109 |
};
|
| 110 |
bool b = 1 < S(); // calls #2
|
| 111 |
```
|
| 112 |
|
| 113 |
— *end example*]
|
| 114 |
-
or, if not that
|
| 115 |
-
- `
|
| 116 |
-
[[over.match.class.deduct]] for a class `D`, and `
|
| 117 |
-
from inheriting constructors from a base class of `D` while `
|
| 118 |
not, and for each explicit function argument, the corresponding
|
| 119 |
-
parameters of `
|
| 120 |
type, or, if not that,
|
| 121 |
-
- `
|
| 122 |
-
and `
|
| 123 |
-
- `
|
| 124 |
-
`
|
| 125 |
-
- `
|
| 126 |
generated from a constructor template.
|
| 127 |
-
\[*Example
|
| 128 |
``` cpp
|
| 129 |
template <class T> struct A {
|
| 130 |
using value_type = T;
|
| 131 |
A(value_type); // #1
|
| 132 |
A(const A&); // #2
|
|
@@ -154,11 +168,11 @@ then
|
|
| 154 |
|
| 155 |
If there is exactly one viable function that is a better function than
|
| 156 |
all other viable functions, then it is the one selected by overload
|
| 157 |
resolution; otherwise the call is ill-formed.[^7]
|
| 158 |
|
| 159 |
-
[*Example
|
| 160 |
|
| 161 |
``` cpp
|
| 162 |
void Fcn(const int*, short);
|
| 163 |
void Fcn(int*, int);
|
| 164 |
|
|
@@ -177,35 +191,13 @@ void f() {
|
|
| 177 |
}
|
| 178 |
```
|
| 179 |
|
| 180 |
— *end example*]
|
| 181 |
|
| 182 |
-
If the best viable function
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
viable, the program is ill-formed.
|
| 186 |
-
|
| 187 |
-
[*Example 8*:
|
| 188 |
-
|
| 189 |
-
``` cpp
|
| 190 |
-
namespace A {
|
| 191 |
-
extern "C" void f(int = 5);
|
| 192 |
-
}
|
| 193 |
-
namespace B {
|
| 194 |
-
extern "C" void f(int = 5);
|
| 195 |
-
}
|
| 196 |
-
|
| 197 |
-
using A::f;
|
| 198 |
-
using B::f;
|
| 199 |
-
|
| 200 |
-
void use() {
|
| 201 |
-
f(3); // OK, default argument was not used for viability
|
| 202 |
-
f(); // error: found default argument twice
|
| 203 |
-
}
|
| 204 |
-
```
|
| 205 |
-
|
| 206 |
-
— *end example*]
|
| 207 |
|
| 208 |
#### Implicit conversion sequences <a id="over.best.ics">[[over.best.ics]]</a>
|
| 209 |
|
| 210 |
##### General <a id="over.best.ics.general">[[over.best.ics.general]]</a>
|
| 211 |
|
|
@@ -218,17 +210,17 @@ single expression [[dcl.init]], [[dcl.init.ref]].
|
|
| 218 |
|
| 219 |
Implicit conversion sequences are concerned only with the type,
|
| 220 |
cv-qualification, and value category of the argument and how these are
|
| 221 |
converted to match the corresponding properties of the parameter.
|
| 222 |
|
| 223 |
-
[*Note 1*: Other properties, such as the lifetime, storage
|
| 224 |
-
alignment, accessibility of the argument, whether the argument
|
| 225 |
-
bit-field, and whether a function is deleted
|
| 226 |
-
ignored. So, although an implicit conversion
|
| 227 |
-
a given argument-parameter pair, the
|
| 228 |
-
parameter might still be ill-formed
|
| 229 |
-
analysis. — *end note*]
|
| 230 |
|
| 231 |
A well-formed implicit conversion sequence is one of the following
|
| 232 |
forms:
|
| 233 |
|
| 234 |
- a standard conversion sequence [[over.ics.scs]],
|
|
@@ -285,40 +277,40 @@ parameter.
|
|
| 285 |
[*Note 3*: When the parameter has a class type, this is a conceptual
|
| 286 |
conversion defined for the purposes of [[over]]; the actual
|
| 287 |
initialization is defined in terms of constructors and is not a
|
| 288 |
conversion. — *end note*]
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
When the parameter has a class type and the argument expression has the
|
| 299 |
-
same type, the implicit conversion sequence is an identity conversion.
|
| 300 |
-
When the parameter has a class type and the argument expression has a
|
| 301 |
-
derived class type, the implicit conversion sequence is a
|
| 302 |
-
derived-to-base conversion from the derived class to the base class. A
|
| 303 |
-
derived-to-base conversion has Conversion rank [[over.ics.scs]].
|
| 304 |
|
| 305 |
[*Note 4*: There is no such standard conversion; this derived-to-base
|
| 306 |
conversion exists only in the description of implicit conversion
|
| 307 |
sequences. — *end note*]
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
When the parameter is the implicit object parameter of a static member
|
| 310 |
function, the implicit conversion sequence is a standard conversion
|
| 311 |
sequence that is neither better nor worse than any other standard
|
| 312 |
conversion sequence.
|
| 313 |
|
| 314 |
In all contexts, when converting to the implicit object parameter or
|
| 315 |
when converting to the left operand of an assignment operation only
|
| 316 |
standard conversion sequences are allowed.
|
| 317 |
|
| 318 |
-
[*Note 5*: When
|
| 319 |
-
user-defined conversion sequences
|
| 320 |
|
| 321 |
If no conversions are required to match an argument to a parameter type,
|
| 322 |
the implicit conversion sequence is the standard conversion sequence
|
| 323 |
consisting of the identity conversion [[over.ics.scs]].
|
| 324 |
|
|
@@ -425,11 +417,11 @@ the special rules for initialization by user-defined conversion apply
|
|
| 425 |
when selecting the best user-defined conversion for a user-defined
|
| 426 |
conversion sequence (see [[over.match.best]] and [[over.best.ics]]).
|
| 427 |
|
| 428 |
If the user-defined conversion is specified by a specialization of a
|
| 429 |
conversion function template, the second standard conversion sequence
|
| 430 |
-
shall have
|
| 431 |
|
| 432 |
A conversion of an expression of class type to the same class type is
|
| 433 |
given Exact Match rank, and a conversion of an expression of class type
|
| 434 |
to a base class of that type is given Conversion rank, in spite of the
|
| 435 |
fact that a constructor (i.e., a user-defined conversion function) is
|
|
@@ -441,34 +433,47 @@ An ellipsis conversion sequence occurs when an argument in a function
|
|
| 441 |
call is matched with the ellipsis parameter specification of the
|
| 442 |
function called (see [[expr.call]]).
|
| 443 |
|
| 444 |
##### Reference binding <a id="over.ics.ref">[[over.ics.ref]]</a>
|
| 445 |
|
| 446 |
-
When a parameter of
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
sequence is a derived-to-base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
|
| 452 |
[*Example 4*:
|
| 453 |
|
| 454 |
``` cpp
|
| 455 |
struct A {};
|
| 456 |
struct B : public A {} b;
|
| 457 |
int f(A&);
|
| 458 |
int f(B&);
|
| 459 |
int i = f(b); // calls f(B&), an exact match, rather than f(A&), a conversion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
```
|
| 461 |
|
| 462 |
— *end example*]
|
| 463 |
|
| 464 |
If the parameter binds directly to the result of applying a conversion
|
| 465 |
function to the argument expression, the implicit conversion sequence is
|
| 466 |
a user-defined conversion sequence [[over.ics.user]] whose second
|
| 467 |
-
standard conversion sequence is
|
| 468 |
-
conversion function returns an entity of a type that is a derived class
|
| 469 |
-
of the parameter type, a derived-to-base conversion.
|
| 470 |
|
| 471 |
When a parameter of reference type is not bound directly to an argument
|
| 472 |
expression, the conversion sequence is the one required to convert the
|
| 473 |
argument expression to the referenced type according to
|
| 474 |
[[over.best.ics]]. Conceptually, this conversion sequence corresponds to
|
|
@@ -478,11 +483,11 @@ the initialization itself and does not constitute a conversion.
|
|
| 478 |
|
| 479 |
Except for an implicit object parameter, for which see
|
| 480 |
[[over.match.funcs]], an implicit conversion sequence cannot be formed
|
| 481 |
if it requires binding an lvalue reference other than a reference to a
|
| 482 |
non-volatile `const` type to an rvalue or binding an rvalue reference to
|
| 483 |
-
an lvalue
|
| 484 |
|
| 485 |
[*Note 9*: This means, for example, that a candidate function cannot be
|
| 486 |
a viable function if it has a non-`const` lvalue reference parameter
|
| 487 |
(other than the implicit object parameter) and the corresponding
|
| 488 |
argument would require a temporary to be created to initialize the
|
|
@@ -505,16 +510,17 @@ non-`const` lvalue reference to a bit-field
|
|
| 505 |
|
| 506 |
When an argument is an initializer list [[dcl.init.list]], it is not an
|
| 507 |
expression and special rules apply for converting it to a parameter
|
| 508 |
type.
|
| 509 |
|
| 510 |
-
If the initializer list is a *designated-initializer-list*
|
| 511 |
-
is
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
|
|
|
| 516 |
|
| 517 |
[*Note 10*:
|
| 518 |
|
| 519 |
Aggregate initialization does not require that the members are declared
|
| 520 |
in designation order. If, after overload resolution, the order does not
|
|
@@ -570,11 +576,11 @@ f( {1,2,3} ); // OK, f(initializer_list<int>) identity convers
|
|
| 570 |
f( {'a','b'} ); // OK, f(initializer_list<int>) integral promotion
|
| 571 |
f( {1.0} ); // error: narrowing
|
| 572 |
|
| 573 |
struct A {
|
| 574 |
A(std::initializer_list<double>); // #1
|
| 575 |
-
A(std::initializer_list<complex<double>>);
|
| 576 |
A(std::initializer_list<std::string>); // #3
|
| 577 |
};
|
| 578 |
A a{ 1.0,2.0 }; // OK, uses #1
|
| 579 |
|
| 580 |
void g(A);
|
|
@@ -818,12 +824,12 @@ conversion sequences unless one of the following rules applies:
|
|
| 818 |
```
|
| 819 |
|
| 820 |
— *end example*]
|
| 821 |
or, if not that,
|
| 822 |
- `S1` and `S2` include reference bindings [[dcl.init.ref]] and `S1`
|
| 823 |
-
binds an lvalue reference to
|
| 824 |
-
rvalue reference to
|
| 825 |
\[*Example 4*:
|
| 826 |
``` cpp
|
| 827 |
int f(void(&)()); // #1
|
| 828 |
int f(void(&&)()); // #2
|
| 829 |
void g();
|
|
@@ -831,28 +837,33 @@ conversion sequences unless one of the following rules applies:
|
|
| 831 |
```
|
| 832 |
|
| 833 |
— *end example*]
|
| 834 |
or, if not that,
|
| 835 |
- `S1` and `S2` differ only in their qualification conversion
|
| 836 |
-
[[conv.qual]] and yield similar types `T1` and `T2`, respectively
|
| 837 |
-
where
|
|
|
|
|
|
|
|
|
|
| 838 |
\[*Example 5*:
|
| 839 |
``` cpp
|
| 840 |
int f(const volatile int *);
|
| 841 |
int f(const int *);
|
| 842 |
int i;
|
| 843 |
int j = f(&i); // calls f(const int*)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 844 |
```
|
| 845 |
|
| 846 |
— *end example*]
|
| 847 |
or, if not that,
|
| 848 |
- `S1`
|
| 849 |
-
and `S2`
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
`S2` refers is more cv-qualified than the type to which the
|
| 853 |
-
reference initialized by `S1` refers.
|
| 854 |
\[*Example 6*:
|
| 855 |
``` cpp
|
| 856 |
int f(const int &);
|
| 857 |
int f(int &);
|
| 858 |
int g(const int &);
|
|
@@ -868,20 +879,51 @@ conversion sequences unless one of the following rules applies:
|
|
| 868 |
};
|
| 869 |
void g(const X& a, X b) {
|
| 870 |
a.f(); // calls X::f() const
|
| 871 |
b.f(); // calls X::f()
|
| 872 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 873 |
```
|
| 874 |
|
| 875 |
— *end example*]
|
| 876 |
- User-defined conversion sequence `U1` is a better conversion sequence
|
| 877 |
than another user-defined conversion sequence `U2` if they contain the
|
| 878 |
same user-defined conversion function or constructor or they
|
| 879 |
initialize the same class in an aggregate initialization and in either
|
| 880 |
case the second standard conversion sequence of `U1` is better than
|
| 881 |
the second standard conversion sequence of `U2`.
|
| 882 |
-
\[*Example
|
| 883 |
``` cpp
|
| 884 |
struct A {
|
| 885 |
operator short();
|
| 886 |
} a;
|
| 887 |
int f(int);
|
|
@@ -909,11 +951,11 @@ indistinguishable unless one of the following rules applies:
|
|
| 909 |
to the rank of `FP2`, and
|
| 910 |
- `T3` is not a floating-point type, or `T3` is a floating-point type
|
| 911 |
whose rank is not equal to the rank of `FP1`, or the floating-point
|
| 912 |
conversion subrank [[conv.rank]] of `FP2` is greater than the
|
| 913 |
subrank of `T3`.
|
| 914 |
-
\[*Example
|
| 915 |
``` cpp
|
| 916 |
int f(std::float32_t);
|
| 917 |
int f(std::float64_t);
|
| 918 |
int f(long long);
|
| 919 |
float x;
|
|
@@ -930,11 +972,11 @@ indistinguishable unless one of the following rules applies:
|
|
| 930 |
of `B*` to `void*`.
|
| 931 |
- If class `B` is derived directly or indirectly from class `A` and
|
| 932 |
class `C` is derived directly or indirectly from `B`,
|
| 933 |
- conversion of `C*` to `B*` is better than conversion of `C*` to
|
| 934 |
`A*`,
|
| 935 |
-
\[*Example
|
| 936 |
``` cpp
|
| 937 |
struct A {};
|
| 938 |
struct B : public A {};
|
| 939 |
struct C : public B {};
|
| 940 |
C* pc;
|
|
|
|
| 16 |
|
| 17 |
- for some argument j, ICSʲ(`F₁`) is a better conversion sequence than
|
| 18 |
ICSʲ(`F₂`), or, if not that,
|
| 19 |
- the context is an initialization by user-defined conversion (see
|
| 20 |
[[dcl.init]], [[over.match.conv]], and [[over.match.ref]]) and the
|
| 21 |
+
standard conversion sequence from the result of `F₁` to the
|
| 22 |
destination type (i.e., the type of the entity being initialized) is a
|
| 23 |
better conversion sequence than the standard conversion sequence from
|
| 24 |
+
the result of `F₂` to the destination type
|
| 25 |
\[*Example 1*:
|
| 26 |
``` cpp
|
| 27 |
struct A {
|
| 28 |
A();
|
| 29 |
operator int();
|
|
|
|
| 37 |
|
| 38 |
— *end example*]
|
| 39 |
or, if not that,
|
| 40 |
- the context is an initialization by conversion function for direct
|
| 41 |
reference binding [[over.match.ref]] of a reference to function type,
|
| 42 |
+
the return type of `F₁` is the same kind of reference (lvalue or
|
| 43 |
rvalue) as the reference being initialized, and the return type of
|
| 44 |
+
`F₂` is not
|
| 45 |
\[*Example 2*:
|
| 46 |
``` cpp
|
| 47 |
template <class T> struct A {
|
| 48 |
operator T&(); // #1
|
| 49 |
operator T&&(); // #2
|
|
|
|
| 54 |
Fn&& rf = a; // calls #2
|
| 55 |
```
|
| 56 |
|
| 57 |
— *end example*]
|
| 58 |
or, if not that,
|
| 59 |
+
- `F₁` is not a function template specialization and `F₂` is a function
|
| 60 |
template specialization, or, if not that,
|
| 61 |
+
- `F₁` and `F₂` are function template specializations, and the function
|
| 62 |
+
template for `F₁` is more specialized than the template for `F₂`
|
| 63 |
according to the partial ordering rules described in
|
| 64 |
[[temp.func.order]], or, if not that,
|
| 65 |
+
- `F₁` and `F₂` are non-template functions and `F₁` is more
|
| 66 |
+
partial-ordering-constrained than `F₂` [[temp.constr.order]]
|
| 67 |
+
\[*Example 3*:
|
| 68 |
+
``` cpp
|
| 69 |
+
template <typename T = int>
|
| 70 |
+
struct S {
|
| 71 |
+
constexpr void f(); // #1
|
| 72 |
+
constexpr void f(this S&) requires true; // #2
|
| 73 |
+
};
|
| 74 |
+
|
| 75 |
+
void test() {
|
| 76 |
+
S<> s;
|
| 77 |
+
s.f(); // calls #2
|
| 78 |
+
}
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
— *end example*]
|
| 82 |
+
or, if not that,
|
| 83 |
+
- `F₁` is a constructor for a class `D`, `F₂` is a constructor for a
|
| 84 |
base class `B` of `D`, and for all arguments the corresponding
|
| 85 |
+
parameters of `F₁` and `F₂` have the same type
|
| 86 |
+
\[*Example 4*:
|
| 87 |
``` cpp
|
| 88 |
struct A {
|
| 89 |
A(int = 0);
|
| 90 |
};
|
| 91 |
|
|
|
|
| 99 |
}
|
| 100 |
```
|
| 101 |
|
| 102 |
— *end example*]
|
| 103 |
or, if not that,
|
| 104 |
+
- `F₂` is a rewritten candidate [[over.match.oper]] and `F₁` is not
|
| 105 |
+
\[*Example 5*:
|
| 106 |
``` cpp
|
| 107 |
struct S {
|
| 108 |
friend auto operator<=>(const S&, const S&) = default; // #1
|
| 109 |
friend bool operator<(const S&, const S&); // #2
|
| 110 |
};
|
| 111 |
bool b = S() < S(); // calls #2
|
| 112 |
```
|
| 113 |
|
| 114 |
— *end example*]
|
| 115 |
or, if not that,
|
| 116 |
+
- `F₁` and `F₂` are rewritten candidates, and `F₂` is a synthesized
|
| 117 |
+
candidate with reversed order of parameters and `F₁` is not
|
| 118 |
+
\[*Example 6*:
|
| 119 |
``` cpp
|
| 120 |
struct S {
|
| 121 |
friend std::weak_ordering operator<=>(const S&, int); // #1
|
| 122 |
friend std::weak_ordering operator<=>(int, const S&); // #2
|
| 123 |
};
|
| 124 |
bool b = 1 < S(); // calls #2
|
| 125 |
```
|
| 126 |
|
| 127 |
— *end example*]
|
| 128 |
+
or, if not that,
|
| 129 |
+
- `F₁` and `F₂` are generated from class template argument deduction
|
| 130 |
+
[[over.match.class.deduct]] for a class `D`, and `F₂` is generated
|
| 131 |
+
from inheriting constructors from a base class of `D` while `F₁` is
|
| 132 |
not, and for each explicit function argument, the corresponding
|
| 133 |
+
parameters of `F₁` and `F₂` are either both ellipses or have the same
|
| 134 |
type, or, if not that,
|
| 135 |
+
- `F₁` is generated from a *deduction-guide* [[over.match.class.deduct]]
|
| 136 |
+
and `F₂` is not, or, if not that,
|
| 137 |
+
- `F₁` is the copy deduction candidate [[over.match.class.deduct]] and
|
| 138 |
+
`F₂` is not, or, if not that,
|
| 139 |
+
- `F₁` is generated from a non-template constructor and `F₂` is
|
| 140 |
generated from a constructor template.
|
| 141 |
+
\[*Example 7*:
|
| 142 |
``` cpp
|
| 143 |
template <class T> struct A {
|
| 144 |
using value_type = T;
|
| 145 |
A(value_type); // #1
|
| 146 |
A(const A&); // #2
|
|
|
|
| 168 |
|
| 169 |
If there is exactly one viable function that is a better function than
|
| 170 |
all other viable functions, then it is the one selected by overload
|
| 171 |
resolution; otherwise the call is ill-formed.[^7]
|
| 172 |
|
| 173 |
+
[*Example 8*:
|
| 174 |
|
| 175 |
``` cpp
|
| 176 |
void Fcn(const int*, short);
|
| 177 |
void Fcn(int*, int);
|
| 178 |
|
|
|
|
| 191 |
}
|
| 192 |
```
|
| 193 |
|
| 194 |
— *end example*]
|
| 195 |
|
| 196 |
+
[*Note 1*: If the best viable function was made viable by one or more
|
| 197 |
+
default arguments, additional requirements apply
|
| 198 |
+
[[over.match.viable]]. — *end note*]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
#### Implicit conversion sequences <a id="over.best.ics">[[over.best.ics]]</a>
|
| 201 |
|
| 202 |
##### General <a id="over.best.ics.general">[[over.best.ics.general]]</a>
|
| 203 |
|
|
|
|
| 210 |
|
| 211 |
Implicit conversion sequences are concerned only with the type,
|
| 212 |
cv-qualification, and value category of the argument and how these are
|
| 213 |
converted to match the corresponding properties of the parameter.
|
| 214 |
|
| 215 |
+
[*Note 1*: Other properties, such as the lifetime, storage duration,
|
| 216 |
+
linkage, alignment, accessibility of the argument, whether the argument
|
| 217 |
+
is a bit-field, and whether a function is deleted
|
| 218 |
+
[[dcl.fct.def.delete]], are ignored. So, although an implicit conversion
|
| 219 |
+
sequence can be defined for a given argument-parameter pair, the
|
| 220 |
+
conversion from the argument to the parameter might still be ill-formed
|
| 221 |
+
in the final analysis. — *end note*]
|
| 222 |
|
| 223 |
A well-formed implicit conversion sequence is one of the following
|
| 224 |
forms:
|
| 225 |
|
| 226 |
- a standard conversion sequence [[over.ics.scs]],
|
|
|
|
| 277 |
[*Note 3*: When the parameter has a class type, this is a conceptual
|
| 278 |
conversion defined for the purposes of [[over]]; the actual
|
| 279 |
initialization is defined in terms of constructors and is not a
|
| 280 |
conversion. — *end note*]
|
| 281 |
|
| 282 |
+
When the cv-unqualified version of the type of the argument expression
|
| 283 |
+
is the same as the parameter type, the implicit conversion sequence is
|
| 284 |
+
an identity conversion. When the parameter has a class type and the
|
| 285 |
+
argument expression has a (possibly cv-qualified) derived class type,
|
| 286 |
+
the implicit conversion sequence is a derived-to-base conversion from
|
| 287 |
+
the derived class to the base class. A derived-to-base conversion has
|
| 288 |
+
Conversion rank [[over.ics.scs]].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
[*Note 4*: There is no such standard conversion; this derived-to-base
|
| 291 |
conversion exists only in the description of implicit conversion
|
| 292 |
sequences. — *end note*]
|
| 293 |
|
| 294 |
+
[*Example 2*: An implicit conversion sequence from an argument of type
|
| 295 |
+
`const A` to a parameter of type `A` can be formed, even if overload
|
| 296 |
+
resolution for copy-initialization of `A` from the argument would not
|
| 297 |
+
find a viable function [[over.match.ctor]], [[over.match.viable]]. The
|
| 298 |
+
implicit conversion sequence for that case is the identity sequence; it
|
| 299 |
+
contains no “conversion” from `const A` to `A`. — *end example*]
|
| 300 |
+
|
| 301 |
When the parameter is the implicit object parameter of a static member
|
| 302 |
function, the implicit conversion sequence is a standard conversion
|
| 303 |
sequence that is neither better nor worse than any other standard
|
| 304 |
conversion sequence.
|
| 305 |
|
| 306 |
In all contexts, when converting to the implicit object parameter or
|
| 307 |
when converting to the left operand of an assignment operation only
|
| 308 |
standard conversion sequences are allowed.
|
| 309 |
|
| 310 |
+
[*Note 5*: When a conversion to the explicit object parameter occurs,
|
| 311 |
+
it can include user-defined conversion sequences. — *end note*]
|
| 312 |
|
| 313 |
If no conversions are required to match an argument to a parameter type,
|
| 314 |
the implicit conversion sequence is the standard conversion sequence
|
| 315 |
consisting of the identity conversion [[over.ics.scs]].
|
| 316 |
|
|
|
|
| 417 |
when selecting the best user-defined conversion for a user-defined
|
| 418 |
conversion sequence (see [[over.match.best]] and [[over.best.ics]]).
|
| 419 |
|
| 420 |
If the user-defined conversion is specified by a specialization of a
|
| 421 |
conversion function template, the second standard conversion sequence
|
| 422 |
+
shall have Exact Match rank.
|
| 423 |
|
| 424 |
A conversion of an expression of class type to the same class type is
|
| 425 |
given Exact Match rank, and a conversion of an expression of class type
|
| 426 |
to a base class of that type is given Conversion rank, in spite of the
|
| 427 |
fact that a constructor (i.e., a user-defined conversion function) is
|
|
|
|
| 433 |
call is matched with the ellipsis parameter specification of the
|
| 434 |
function called (see [[expr.call]]).
|
| 435 |
|
| 436 |
##### Reference binding <a id="over.ics.ref">[[over.ics.ref]]</a>
|
| 437 |
|
| 438 |
+
When a parameter of type “reference to cv `T`” binds directly
|
| 439 |
+
[[dcl.init.ref]] to an argument expression:
|
| 440 |
+
|
| 441 |
+
- If the argument expression has a type that is a derived class of the
|
| 442 |
+
parameter type, the implicit conversion sequence is a derived-to-base
|
| 443 |
+
conversion [[over.best.ics]].
|
| 444 |
+
- Otherwise, if the type of the argument is possibly cv-qualified `T`,
|
| 445 |
+
or if `T` is an array type of unknown bound with element type `U` and
|
| 446 |
+
the argument has an array type of known bound whose element type is
|
| 447 |
+
possibly cv-qualified `U`, the implicit conversion sequence is the
|
| 448 |
+
identity conversion.
|
| 449 |
+
- Otherwise, if `T` is a function type, the implicit conversion sequence
|
| 450 |
+
is a function pointer conversion.
|
| 451 |
+
- Otherwise, the implicit conversion sequence is a qualification
|
| 452 |
+
conversion.
|
| 453 |
|
| 454 |
[*Example 4*:
|
| 455 |
|
| 456 |
``` cpp
|
| 457 |
struct A {};
|
| 458 |
struct B : public A {} b;
|
| 459 |
int f(A&);
|
| 460 |
int f(B&);
|
| 461 |
int i = f(b); // calls f(B&), an exact match, rather than f(A&), a conversion
|
| 462 |
+
|
| 463 |
+
void g() noexcept;
|
| 464 |
+
int h(void (&)() noexcept); // #1
|
| 465 |
+
int h(void (&)()); // #2
|
| 466 |
+
int j = h(g); // calls #1, an exact match, rather than #2, a function pointer conversion
|
| 467 |
```
|
| 468 |
|
| 469 |
— *end example*]
|
| 470 |
|
| 471 |
If the parameter binds directly to the result of applying a conversion
|
| 472 |
function to the argument expression, the implicit conversion sequence is
|
| 473 |
a user-defined conversion sequence [[over.ics.user]] whose second
|
| 474 |
+
standard conversion sequence is determined by the above rules.
|
|
|
|
|
|
|
| 475 |
|
| 476 |
When a parameter of reference type is not bound directly to an argument
|
| 477 |
expression, the conversion sequence is the one required to convert the
|
| 478 |
argument expression to the referenced type according to
|
| 479 |
[[over.best.ics]]. Conceptually, this conversion sequence corresponds to
|
|
|
|
| 483 |
|
| 484 |
Except for an implicit object parameter, for which see
|
| 485 |
[[over.match.funcs]], an implicit conversion sequence cannot be formed
|
| 486 |
if it requires binding an lvalue reference other than a reference to a
|
| 487 |
non-volatile `const` type to an rvalue or binding an rvalue reference to
|
| 488 |
+
an lvalue of object type.
|
| 489 |
|
| 490 |
[*Note 9*: This means, for example, that a candidate function cannot be
|
| 491 |
a viable function if it has a non-`const` lvalue reference parameter
|
| 492 |
(other than the implicit object parameter) and the corresponding
|
| 493 |
argument would require a temporary to be created to initialize the
|
|
|
|
| 510 |
|
| 511 |
When an argument is an initializer list [[dcl.init.list]], it is not an
|
| 512 |
expression and special rules apply for converting it to a parameter
|
| 513 |
type.
|
| 514 |
|
| 515 |
+
If the initializer list is a *designated-initializer-list* and the
|
| 516 |
+
parameter is not a reference, a conversion is only possible if the
|
| 517 |
+
parameter has an aggregate type that can be initialized from the
|
| 518 |
+
initializer list according to the rules for aggregate initialization
|
| 519 |
+
[[dcl.init.aggr]], in which case the implicit conversion sequence is a
|
| 520 |
+
user-defined conversion sequence whose second standard conversion
|
| 521 |
+
sequence is an identity conversion.
|
| 522 |
|
| 523 |
[*Note 10*:
|
| 524 |
|
| 525 |
Aggregate initialization does not require that the members are declared
|
| 526 |
in designation order. If, after overload resolution, the order does not
|
|
|
|
| 576 |
f( {'a','b'} ); // OK, f(initializer_list<int>) integral promotion
|
| 577 |
f( {1.0} ); // error: narrowing
|
| 578 |
|
| 579 |
struct A {
|
| 580 |
A(std::initializer_list<double>); // #1
|
| 581 |
+
A(std::initializer_list<std::complex<double>>); // #2
|
| 582 |
A(std::initializer_list<std::string>); // #3
|
| 583 |
};
|
| 584 |
A a{ 1.0,2.0 }; // OK, uses #1
|
| 585 |
|
| 586 |
void g(A);
|
|
|
|
| 824 |
```
|
| 825 |
|
| 826 |
— *end example*]
|
| 827 |
or, if not that,
|
| 828 |
- `S1` and `S2` include reference bindings [[dcl.init.ref]] and `S1`
|
| 829 |
+
binds an lvalue reference to an lvalue of function type and `S2`
|
| 830 |
+
binds an rvalue reference to an lvalue of function type
|
| 831 |
\[*Example 4*:
|
| 832 |
``` cpp
|
| 833 |
int f(void(&)()); // #1
|
| 834 |
int f(void(&&)()); // #2
|
| 835 |
void g();
|
|
|
|
| 837 |
```
|
| 838 |
|
| 839 |
— *end example*]
|
| 840 |
or, if not that,
|
| 841 |
- `S1` and `S2` differ only in their qualification conversion
|
| 842 |
+
[[conv.qual]] and yield similar types `T1` and `T2`, respectively
|
| 843 |
+
(where a standard conversion sequence that is a reference binding is
|
| 844 |
+
considered to yield the cv-unqualified referenced type), where `T1`
|
| 845 |
+
and `T2` are not the same type, and `const T2` is
|
| 846 |
+
reference-compatible with `T1` [[dcl.init.ref]]
|
| 847 |
\[*Example 5*:
|
| 848 |
``` cpp
|
| 849 |
int f(const volatile int *);
|
| 850 |
int f(const int *);
|
| 851 |
int i;
|
| 852 |
int j = f(&i); // calls f(const int*)
|
| 853 |
+
int g(const int*);
|
| 854 |
+
int g(const volatile int* const&);
|
| 855 |
+
int* p;
|
| 856 |
+
int k = g(p); // calls g(const int*)
|
| 857 |
```
|
| 858 |
|
| 859 |
— *end example*]
|
| 860 |
or, if not that,
|
| 861 |
- `S1`
|
| 862 |
+
and `S2` bind “reference to `T1`” and “reference to `T2`”,
|
| 863 |
+
respectively [[dcl.init.ref]], where `T1` and `T2` are not the same
|
| 864 |
+
type, and `T2` is reference-compatible with `T1`
|
|
|
|
|
|
|
| 865 |
\[*Example 6*:
|
| 866 |
``` cpp
|
| 867 |
int f(const int &);
|
| 868 |
int f(int &);
|
| 869 |
int g(const int &);
|
|
|
|
| 879 |
};
|
| 880 |
void g(const X& a, X b) {
|
| 881 |
a.f(); // calls X::f() const
|
| 882 |
b.f(); // calls X::f()
|
| 883 |
}
|
| 884 |
+
|
| 885 |
+
int h(int (&)[]);
|
| 886 |
+
int h(int (&)[1]);
|
| 887 |
+
void g2() {
|
| 888 |
+
int a[1];
|
| 889 |
+
h(a); // calls h(int (&)[1])
|
| 890 |
+
}
|
| 891 |
+
```
|
| 892 |
+
|
| 893 |
+
— *end example*]
|
| 894 |
+
or, if not that,
|
| 895 |
+
- `S1` and `S2` bind the same reference type “reference to `T`” and
|
| 896 |
+
have source types `V1` and `V2`, respectively, where the standard
|
| 897 |
+
conversion sequence from `V1*` to `T*` is better than the standard
|
| 898 |
+
conversion sequence from `V2*` to `T*`.
|
| 899 |
+
\[*Example 7*:
|
| 900 |
+
``` cpp
|
| 901 |
+
struct Z {};
|
| 902 |
+
|
| 903 |
+
struct A {
|
| 904 |
+
operator Z&();
|
| 905 |
+
operator const Z&(); // #1
|
| 906 |
+
};
|
| 907 |
+
|
| 908 |
+
struct B {
|
| 909 |
+
operator Z();
|
| 910 |
+
operator const Z&&(); // #2
|
| 911 |
+
};
|
| 912 |
+
|
| 913 |
+
const Z& r1 = A(); // OK, uses #1
|
| 914 |
+
const Z&& r2 = B(); // OK, uses #2
|
| 915 |
```
|
| 916 |
|
| 917 |
— *end example*]
|
| 918 |
- User-defined conversion sequence `U1` is a better conversion sequence
|
| 919 |
than another user-defined conversion sequence `U2` if they contain the
|
| 920 |
same user-defined conversion function or constructor or they
|
| 921 |
initialize the same class in an aggregate initialization and in either
|
| 922 |
case the second standard conversion sequence of `U1` is better than
|
| 923 |
the second standard conversion sequence of `U2`.
|
| 924 |
+
\[*Example 8*:
|
| 925 |
``` cpp
|
| 926 |
struct A {
|
| 927 |
operator short();
|
| 928 |
} a;
|
| 929 |
int f(int);
|
|
|
|
| 951 |
to the rank of `FP2`, and
|
| 952 |
- `T3` is not a floating-point type, or `T3` is a floating-point type
|
| 953 |
whose rank is not equal to the rank of `FP1`, or the floating-point
|
| 954 |
conversion subrank [[conv.rank]] of `FP2` is greater than the
|
| 955 |
subrank of `T3`.
|
| 956 |
+
\[*Example 9*:
|
| 957 |
``` cpp
|
| 958 |
int f(std::float32_t);
|
| 959 |
int f(std::float64_t);
|
| 960 |
int f(long long);
|
| 961 |
float x;
|
|
|
|
| 972 |
of `B*` to `void*`.
|
| 973 |
- If class `B` is derived directly or indirectly from class `A` and
|
| 974 |
class `C` is derived directly or indirectly from `B`,
|
| 975 |
- conversion of `C*` to `B*` is better than conversion of `C*` to
|
| 976 |
`A*`,
|
| 977 |
+
\[*Example 10*:
|
| 978 |
``` cpp
|
| 979 |
struct A {};
|
| 980 |
struct B : public A {};
|
| 981 |
struct C : public B {};
|
| 982 |
C* pc;
|