tmp/tmpok3t6qy_/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Header `<linalg>` synopsis <a id="linalg.syn">[[linalg.syn]]</a>
|
| 2 |
+
|
| 3 |
+
``` cpp
|
| 4 |
+
namespace std::linalg {
|
| 5 |
+
// [linalg.tags.order], storage order tags
|
| 6 |
+
struct column_major_t;
|
| 7 |
+
inline constexpr column_major_t column_major;
|
| 8 |
+
struct row_major_t;
|
| 9 |
+
inline constexpr row_major_t row_major;
|
| 10 |
+
|
| 11 |
+
// [linalg.tags.triangle], triangle tags
|
| 12 |
+
struct upper_triangle_t;
|
| 13 |
+
inline constexpr upper_triangle_t upper_triangle;
|
| 14 |
+
struct lower_triangle_t;
|
| 15 |
+
inline constexpr lower_triangle_t lower_triangle;
|
| 16 |
+
|
| 17 |
+
// [linalg.tags.diagonal], diagonal tags
|
| 18 |
+
struct implicit_unit_diagonal_t;
|
| 19 |
+
inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal;
|
| 20 |
+
struct explicit_diagonal_t;
|
| 21 |
+
inline constexpr explicit_diagonal_t explicit_diagonal;
|
| 22 |
+
|
| 23 |
+
// [linalg.layout.packed], class template layout_blas_packed
|
| 24 |
+
template<class Triangle, class StorageOrder>
|
| 25 |
+
class layout_blas_packed;
|
| 26 |
+
|
| 27 |
+
// [linalg.helpers], exposition-only helpers
|
| 28 |
+
|
| 29 |
+
// [linalg.helpers.concepts], linear algebra argument concepts
|
| 30 |
+
template<class T>
|
| 31 |
+
constexpr bool is-mdspan = see below; // exposition only
|
| 32 |
+
|
| 33 |
+
template<class T>
|
| 34 |
+
concept in-vector = see below; // exposition only
|
| 35 |
+
|
| 36 |
+
template<class T>
|
| 37 |
+
concept out-vector = see below; // exposition only
|
| 38 |
+
|
| 39 |
+
template<class T>
|
| 40 |
+
concept inout-vector = see below; // exposition only
|
| 41 |
+
|
| 42 |
+
template<class T>
|
| 43 |
+
concept in-matrix = see below; // exposition only
|
| 44 |
+
|
| 45 |
+
template<class T>
|
| 46 |
+
concept out-matrix = see below; // exposition only
|
| 47 |
+
|
| 48 |
+
template<class T>
|
| 49 |
+
concept inout-matrix = see below; // exposition only
|
| 50 |
+
|
| 51 |
+
template<class T>
|
| 52 |
+
concept possibly-packed-inout-matrix = see below; // exposition only
|
| 53 |
+
|
| 54 |
+
template<class T>
|
| 55 |
+
concept in-object = see below; // exposition only
|
| 56 |
+
|
| 57 |
+
template<class T>
|
| 58 |
+
concept out-object = see below; // exposition only
|
| 59 |
+
|
| 60 |
+
template<class T>
|
| 61 |
+
concept inout-object = see below; // exposition only
|
| 62 |
+
|
| 63 |
+
// [linalg.scaled], scaled in-place transformation
|
| 64 |
+
|
| 65 |
+
// [linalg.scaled.scaledaccessor], class template scaled_accessor
|
| 66 |
+
template<class ScalingFactor, class NestedAccessor>
|
| 67 |
+
class scaled_accessor;
|
| 68 |
+
|
| 69 |
+
// [linalg.scaled.scaled], function template scaled
|
| 70 |
+
template<class ScalingFactor,
|
| 71 |
+
class ElementType, class Extents, class Layout, class Accessor>
|
| 72 |
+
constexpr auto scaled(ScalingFactor alpha, mdspan<ElementType, Extents, Layout, Accessor> x);
|
| 73 |
+
|
| 74 |
+
// [linalg.conj], conjugated in-place transformation
|
| 75 |
+
|
| 76 |
+
// [linalg.conj.conjugatedaccessor], class template conjugated_accessor
|
| 77 |
+
template<class NestedAccessor>
|
| 78 |
+
class conjugated_accessor;
|
| 79 |
+
|
| 80 |
+
// [linalg.conj.conjugated], function template conjugated
|
| 81 |
+
template<class ElementType, class Extents, class Layout, class Accessor>
|
| 82 |
+
constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a);
|
| 83 |
+
|
| 84 |
+
// [linalg.transp], transpose in-place transformation
|
| 85 |
+
|
| 86 |
+
// [linalg.transp.layout.transpose], class template layout_transpose
|
| 87 |
+
template<class Layout>
|
| 88 |
+
class layout_transpose;
|
| 89 |
+
|
| 90 |
+
// [linalg.transp.transposed], function template transposed
|
| 91 |
+
template<class ElementType, class Extents, class Layout, class Accessor>
|
| 92 |
+
constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a);
|
| 93 |
+
|
| 94 |
+
// [linalg.conjtransposed], conjugated transpose in-place transformation
|
| 95 |
+
template<class ElementType, class Extents, class Layout, class Accessor>
|
| 96 |
+
constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a);
|
| 97 |
+
|
| 98 |
+
// [linalg.algs.blas1], BLAS 1 algorithms
|
| 99 |
+
|
| 100 |
+
// [linalg.algs.blas1.givens], Givens rotations
|
| 101 |
+
|
| 102 |
+
// [linalg.algs.blas1.givens.lartg], compute Givens rotation
|
| 103 |
+
|
| 104 |
+
template<class Real>
|
| 105 |
+
struct setup_givens_rotation_result {
|
| 106 |
+
Real c;
|
| 107 |
+
Real s;
|
| 108 |
+
Real r;
|
| 109 |
+
};
|
| 110 |
+
template<class Real>
|
| 111 |
+
struct setup_givens_rotation_result<complex<Real>> {
|
| 112 |
+
Real c;
|
| 113 |
+
complex<Real> s;
|
| 114 |
+
complex<Real> r;
|
| 115 |
+
};
|
| 116 |
+
|
| 117 |
+
template<class Real>
|
| 118 |
+
setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept;
|
| 119 |
+
|
| 120 |
+
template<class Real>
|
| 121 |
+
setup_givens_rotation_result<complex<Real>>
|
| 122 |
+
setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept;
|
| 123 |
+
|
| 124 |
+
// [linalg.algs.blas1.givens.rot], apply computed Givens rotation
|
| 125 |
+
template<inout-vector InOutVec1, inout-vector InOutVec2, class Real>
|
| 126 |
+
void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s);
|
| 127 |
+
template<class ExecutionPolicy, inout-vector InOutVec1, inout-vector InOutVec2, class Real>
|
| 128 |
+
void apply_givens_rotation(ExecutionPolicy&& exec,
|
| 129 |
+
InOutVec1 x, InOutVec2 y, Real c, Real s);
|
| 130 |
+
template<inout-vector InOutVec1, inout-vector InOutVec2, class Real>
|
| 131 |
+
void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s);
|
| 132 |
+
template<class ExecutionPolicy, inout-vector InOutVec1, inout-vector InOutVec2, class Real>
|
| 133 |
+
void apply_givens_rotation(ExecutionPolicy&& exec,
|
| 134 |
+
InOutVec1 x, InOutVec2 y, Real c, complex<Real> s);
|
| 135 |
+
|
| 136 |
+
// [linalg.algs.blas1.swap], swap elements
|
| 137 |
+
template<inout-object InOutObj1, inout-object InOutObj2>
|
| 138 |
+
void swap_elements(InOutObj1 x, InOutObj2 y);
|
| 139 |
+
template<class ExecutionPolicy, inout-object InOutObj1, inout-object InOutObj2>
|
| 140 |
+
void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y);
|
| 141 |
+
|
| 142 |
+
// [linalg.algs.blas1.scal], multiply elements by scalar
|
| 143 |
+
template<class Scalar, inout-object InOutObj>
|
| 144 |
+
void scale(Scalar alpha, InOutObj x);
|
| 145 |
+
template<class ExecutionPolicy, class Scalar, inout-object InOutObj>
|
| 146 |
+
void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x);
|
| 147 |
+
|
| 148 |
+
// [linalg.algs.blas1.copy], copy elements
|
| 149 |
+
template<in-object InObj, out-object OutObj>
|
| 150 |
+
void copy(InObj x, OutObj y);
|
| 151 |
+
template<class ExecutionPolicy, in-object InObj, out-object OutObj>
|
| 152 |
+
void copy(ExecutionPolicy&& exec, InObj x, OutObj y);
|
| 153 |
+
|
| 154 |
+
// [linalg.algs.blas1.add], add elementwise
|
| 155 |
+
template<in-object InObj1, in-object InObj2, out-object OutObj>
|
| 156 |
+
void add(InObj1 x, InObj2 y, OutObj z);
|
| 157 |
+
template<class ExecutionPolicy, in-object InObj1, in-object InObj2, out-object OutObj>
|
| 158 |
+
void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z);
|
| 159 |
+
|
| 160 |
+
// [linalg.algs.blas1.dot], dot product of two vectors
|
| 161 |
+
template<in-vector InVec1, in-vector InVec2, class Scalar>
|
| 162 |
+
Scalar dot(InVec1 v1, InVec2 v2, Scalar init);
|
| 163 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, class Scalar>
|
| 164 |
+
Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init);
|
| 165 |
+
template<in-vector InVec1, in-vector InVec2>
|
| 166 |
+
auto dot(InVec1 v1, InVec2 v2);
|
| 167 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2>
|
| 168 |
+
auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2);
|
| 169 |
+
|
| 170 |
+
template<in-vector InVec1, in-vector InVec2, class Scalar>
|
| 171 |
+
Scalar dotc(InVec1 v1, InVec2 v2, Scalar init);
|
| 172 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, class Scalar>
|
| 173 |
+
Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init);
|
| 174 |
+
template<in-vector InVec1, in-vector InVec2>
|
| 175 |
+
auto dotc(InVec1 v1, InVec2 v2);
|
| 176 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2>
|
| 177 |
+
auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2);
|
| 178 |
+
|
| 179 |
+
// [linalg.algs.blas1.ssq], scaled sum of squares of a vector's elements
|
| 180 |
+
template<class Scalar>
|
| 181 |
+
struct sum_of_squares_result {
|
| 182 |
+
Scalar scaling_factor;
|
| 183 |
+
Scalar scaled_sum_of_squares;
|
| 184 |
+
};
|
| 185 |
+
template<in-vector InVec, class Scalar>
|
| 186 |
+
sum_of_squares_result<Scalar>
|
| 187 |
+
vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init);
|
| 188 |
+
template<class ExecutionPolicy, in-vector InVec, class Scalar>
|
| 189 |
+
sum_of_squares_result<Scalar>
|
| 190 |
+
vector_sum_of_squares(ExecutionPolicy&& exec,
|
| 191 |
+
InVec v, sum_of_squares_result<Scalar> init);
|
| 192 |
+
|
| 193 |
+
// [linalg.algs.blas1.nrm2], Euclidean norm of a vector
|
| 194 |
+
template<in-vector InVec, class Scalar>
|
| 195 |
+
Scalar vector_two_norm(InVec v, Scalar init);
|
| 196 |
+
template<class ExecutionPolicy, in-vector InVec, class Scalar>
|
| 197 |
+
Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init);
|
| 198 |
+
template<in-vector InVec>
|
| 199 |
+
auto vector_two_norm(InVec v);
|
| 200 |
+
template<class ExecutionPolicy, in-vector InVec>
|
| 201 |
+
auto vector_two_norm(ExecutionPolicy&& exec, InVec v);
|
| 202 |
+
|
| 203 |
+
// [linalg.algs.blas1.asum], sum of absolute values of vector elements
|
| 204 |
+
template<in-vector InVec, class Scalar>
|
| 205 |
+
Scalar vector_abs_sum(InVec v, Scalar init);
|
| 206 |
+
template<class ExecutionPolicy, in-vector InVec, class Scalar>
|
| 207 |
+
Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init);
|
| 208 |
+
template<in-vector InVec>
|
| 209 |
+
auto vector_abs_sum(InVec v);
|
| 210 |
+
template<class ExecutionPolicy, in-vector InVec>
|
| 211 |
+
auto vector_abs_sum(ExecutionPolicy&& exec, InVec v);
|
| 212 |
+
|
| 213 |
+
// [linalg.algs.blas1.iamax], index of maximum absolute value of vector elements
|
| 214 |
+
template<in-vector InVec>
|
| 215 |
+
typename InVec::extents_type vector_idx_abs_max(InVec v);
|
| 216 |
+
template<class ExecutionPolicy, in-vector InVec>
|
| 217 |
+
typename InVec::extents_type vector_idx_abs_max(ExecutionPolicy&& exec, InVec v);
|
| 218 |
+
|
| 219 |
+
// [linalg.algs.blas1.matfrobnorm], Frobenius norm of a matrix
|
| 220 |
+
template<in-matrix InMat, class Scalar>
|
| 221 |
+
Scalar matrix_frob_norm(InMat A, Scalar init);
|
| 222 |
+
template<class ExecutionPolicy, in-matrix InMat, class Scalar>
|
| 223 |
+
Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init);
|
| 224 |
+
template<in-matrix InMat>
|
| 225 |
+
auto matrix_frob_norm(InMat A);
|
| 226 |
+
template<class ExecutionPolicy, in-matrix InMat>
|
| 227 |
+
auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A);
|
| 228 |
+
|
| 229 |
+
// [linalg.algs.blas1.matonenorm], one norm of a matrix
|
| 230 |
+
template<in-matrix InMat, class Scalar>
|
| 231 |
+
Scalar matrix_one_norm(InMat A, Scalar init);
|
| 232 |
+
template<class ExecutionPolicy, in-matrix InMat, class Scalar>
|
| 233 |
+
Scalar matrix_one_norm(ExecutionPolicy&& exec, InMat A, Scalar init);
|
| 234 |
+
template<in-matrix InMat>
|
| 235 |
+
auto matrix_one_norm(InMat A);
|
| 236 |
+
template<class ExecutionPolicy, in-matrix InMat>
|
| 237 |
+
auto matrix_one_norm(ExecutionPolicy&& exec, InMat A);
|
| 238 |
+
|
| 239 |
+
// [linalg.algs.blas1.matinfnorm], infinity norm of a matrix
|
| 240 |
+
template<in-matrix InMat, class Scalar>
|
| 241 |
+
Scalar matrix_inf_norm(InMat A, Scalar init);
|
| 242 |
+
template<class ExecutionPolicy, in-matrix InMat, class Scalar>
|
| 243 |
+
Scalar matrix_inf_norm(ExecutionPolicy&& exec, InMat A, Scalar init);
|
| 244 |
+
template<in-matrix InMat>
|
| 245 |
+
auto matrix_inf_norm(InMat A);
|
| 246 |
+
template<class ExecutionPolicy, in-matrix InMat>
|
| 247 |
+
auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A);
|
| 248 |
+
|
| 249 |
+
// [linalg.algs.blas2], BLAS 2 algorithms
|
| 250 |
+
|
| 251 |
+
// [linalg.algs.blas2.gemv], general matrix-vector product
|
| 252 |
+
template<in-matrix InMat, in-vector InVec, out-vector OutVec>
|
| 253 |
+
void matrix_vector_product(InMat A, InVec x, OutVec y);
|
| 254 |
+
template<class ExecutionPolicy, in-matrix InMat, in-vector InVec, out-vector OutVec>
|
| 255 |
+
void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec x, OutVec y);
|
| 256 |
+
template<in-matrix InMat, in-vector InVec1, in-vector InVec2, out-vector OutVec>
|
| 257 |
+
void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z);
|
| 258 |
+
template<class ExecutionPolicy,
|
| 259 |
+
in-matrix InMat, in-vector InVec1, in-vector InVec2, out-vector OutVec>
|
| 260 |
+
void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec1 x, InVec2 y, OutVec z);
|
| 261 |
+
|
| 262 |
+
// [linalg.algs.blas2.symv], symmetric matrix-vector product
|
| 263 |
+
template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
|
| 264 |
+
void symmetric_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y);
|
| 265 |
+
template<class ExecutionPolicy,
|
| 266 |
+
in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
|
| 267 |
+
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
|
| 268 |
+
InMat A, Triangle t, InVec x, OutVec y);
|
| 269 |
+
template<in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2,
|
| 270 |
+
out-vector OutVec>
|
| 271 |
+
void symmetric_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z);
|
| 272 |
+
template<class ExecutionPolicy,
|
| 273 |
+
in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2,
|
| 274 |
+
out-vector OutVec>
|
| 275 |
+
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
|
| 276 |
+
InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z);
|
| 277 |
+
|
| 278 |
+
// [linalg.algs.blas2.hemv], Hermitian matrix-vector product
|
| 279 |
+
template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
|
| 280 |
+
void hermitian_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y);
|
| 281 |
+
template<class ExecutionPolicy,
|
| 282 |
+
in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
|
| 283 |
+
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
|
| 284 |
+
InMat A, Triangle t, InVec x, OutVec y);
|
| 285 |
+
template<in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2,
|
| 286 |
+
out-vector OutVec>
|
| 287 |
+
void hermitian_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z);
|
| 288 |
+
template<class ExecutionPolicy,
|
| 289 |
+
in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2,
|
| 290 |
+
out-vector OutVec>
|
| 291 |
+
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
|
| 292 |
+
InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z);
|
| 293 |
+
|
| 294 |
+
// [linalg.algs.blas2.trmv], triangular matrix-vector product
|
| 295 |
+
|
| 296 |
+
// Overwriting triangular matrix-vector product
|
| 297 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec,
|
| 298 |
+
out-vector OutVec>
|
| 299 |
+
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d,
|
| 300 |
+
InVec x, OutVec y);
|
| 301 |
+
template<class ExecutionPolicy,
|
| 302 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec,
|
| 303 |
+
out-vector OutVec>
|
| 304 |
+
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
|
| 305 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 306 |
+
InVec x, OutVec y);
|
| 307 |
+
|
| 308 |
+
// In-place triangular matrix-vector product
|
| 309 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec>
|
| 310 |
+
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y);
|
| 311 |
+
template<class ExecutionPolicy,
|
| 312 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec>
|
| 313 |
+
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
|
| 314 |
+
InMat A, Triangle t, DiagonalStorage d, InOutVec y);
|
| 315 |
+
|
| 316 |
+
// Updating triangular matrix-vector product
|
| 317 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 318 |
+
in-vector InVec1, in-vector InVec2, out-vector OutVec>
|
| 319 |
+
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d,
|
| 320 |
+
InVec1 x, InVec2 y, OutVec z);
|
| 321 |
+
template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 322 |
+
in-vector InVec1, in-vector InVec2, out-vector OutVec>
|
| 323 |
+
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
|
| 324 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 325 |
+
InVec1 x, InVec2 y, OutVec z);
|
| 326 |
+
|
| 327 |
+
// [linalg.algs.blas2.trsv], solve a triangular linear system
|
| 328 |
+
|
| 329 |
+
// Solve a triangular linear system, not in place
|
| 330 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 331 |
+
in-vector InVec, out-vector OutVec, class BinaryDivideOp>
|
| 332 |
+
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 333 |
+
InVec b, OutVec x, BinaryDivideOp divide);
|
| 334 |
+
template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 335 |
+
in-vector InVec, out-vector OutVec, class BinaryDivideOp>
|
| 336 |
+
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
|
| 337 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 338 |
+
InVec b, OutVec x, BinaryDivideOp divide);
|
| 339 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 340 |
+
in-vector InVec, out-vector OutVec>
|
| 341 |
+
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 342 |
+
InVec b, OutVec x);
|
| 343 |
+
template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 344 |
+
in-vector InVec, out-vector OutVec>
|
| 345 |
+
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
|
| 346 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 347 |
+
InVec b, OutVec x);
|
| 348 |
+
|
| 349 |
+
// Solve a triangular linear system, in place
|
| 350 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 351 |
+
inout-vector InOutVec, class BinaryDivideOp>
|
| 352 |
+
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 353 |
+
InOutVec b, BinaryDivideOp divide);
|
| 354 |
+
template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 355 |
+
inout-vector InOutVec, class BinaryDivideOp>
|
| 356 |
+
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
|
| 357 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 358 |
+
InOutVec b, BinaryDivideOp divide);
|
| 359 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec>
|
| 360 |
+
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b);
|
| 361 |
+
template<class ExecutionPolicy,
|
| 362 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec>
|
| 363 |
+
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
|
| 364 |
+
InMat A, Triangle t, DiagonalStorage d, InOutVec b);
|
| 365 |
+
|
| 366 |
+
// [linalg.algs.blas2.rank1], nonsymmetric rank-1 matrix update
|
| 367 |
+
template<in-vector InVec1, in-vector InVec2, inout-matrix InOutMat>
|
| 368 |
+
void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A);
|
| 369 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, inout-matrix InOutMat>
|
| 370 |
+
void matrix_rank_1_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A);
|
| 371 |
+
|
| 372 |
+
template<in-vector InVec1, in-vector InVec2, inout-matrix InOutMat>
|
| 373 |
+
void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A);
|
| 374 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, inout-matrix InOutMat>
|
| 375 |
+
void matrix_rank_1_update_c(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A);
|
| 376 |
+
|
| 377 |
+
// [linalg.algs.blas2.symherrank1], symmetric or Hermitian rank-1 matrix update
|
| 378 |
+
template<class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 379 |
+
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
|
| 380 |
+
template<class ExecutionPolicy,
|
| 381 |
+
class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 382 |
+
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
|
| 383 |
+
Scalar alpha, InVec x, InOutMat A, Triangle t);
|
| 384 |
+
template<in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 385 |
+
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
|
| 386 |
+
template<class ExecutionPolicy,
|
| 387 |
+
in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 388 |
+
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
|
| 389 |
+
|
| 390 |
+
template<class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 391 |
+
void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
|
| 392 |
+
template<class ExecutionPolicy,
|
| 393 |
+
class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 394 |
+
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
|
| 395 |
+
Scalar alpha, InVec x, InOutMat A, Triangle t);
|
| 396 |
+
template<in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 397 |
+
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
|
| 398 |
+
template<class ExecutionPolicy,
|
| 399 |
+
in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 400 |
+
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
|
| 401 |
+
|
| 402 |
+
// [linalg.algs.blas2.rank2], symmetric and Hermitian rank-2 matrix updates
|
| 403 |
+
|
| 404 |
+
// symmetric rank-2 matrix update
|
| 405 |
+
template<in-vector InVec1, in-vector InVec2,
|
| 406 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 407 |
+
void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t);
|
| 408 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2,
|
| 409 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 410 |
+
void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec,
|
| 411 |
+
InVec1 x, InVec2 y, InOutMat A, Triangle t);
|
| 412 |
+
|
| 413 |
+
// Hermitian rank-2 matrix update
|
| 414 |
+
template<in-vector InVec1, in-vector InVec2,
|
| 415 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 416 |
+
void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t);
|
| 417 |
+
template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2,
|
| 418 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 419 |
+
void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec,
|
| 420 |
+
InVec1 x, InVec2 y, InOutMat A, Triangle t);
|
| 421 |
+
|
| 422 |
+
// [linalg.algs.blas3], BLAS 3 algorithms
|
| 423 |
+
|
| 424 |
+
// [linalg.algs.blas3.gemm], general matrix-matrix product
|
| 425 |
+
template<in-matrix InMat1, in-matrix InMat2, out-matrix OutMat>
|
| 426 |
+
void matrix_product(InMat1 A, InMat2 B, OutMat C);
|
| 427 |
+
template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, out-matrix OutMat>
|
| 428 |
+
void matrix_product(ExecutionPolicy&& exec,
|
| 429 |
+
InMat1 A, InMat2 B, OutMat C);
|
| 430 |
+
template<in-matrix InMat1, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 431 |
+
void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C);
|
| 432 |
+
template<class ExecutionPolicy,
|
| 433 |
+
in-matrix InMat1, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 434 |
+
void matrix_product(ExecutionPolicy&& exec,
|
| 435 |
+
InMat1 A, InMat2 B, InMat3 E, OutMat C);
|
| 436 |
+
|
| 437 |
+
// [linalg.algs.blas3.xxmm], symmetric, Hermitian, and triangular matrix-matrix product
|
| 438 |
+
|
| 439 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 440 |
+
void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 441 |
+
template<class ExecutionPolicy,
|
| 442 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 443 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 444 |
+
InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 445 |
+
|
| 446 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 447 |
+
void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 448 |
+
template<class ExecutionPolicy,
|
| 449 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 450 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 451 |
+
InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 452 |
+
|
| 453 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 454 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 455 |
+
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C);
|
| 456 |
+
template<class ExecutionPolicy,
|
| 457 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 458 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 459 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 460 |
+
InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C);
|
| 461 |
+
|
| 462 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 463 |
+
void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 464 |
+
template<class ExecutionPolicy,
|
| 465 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 466 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 467 |
+
InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 468 |
+
|
| 469 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 470 |
+
void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 471 |
+
template<class ExecutionPolicy,
|
| 472 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 473 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 474 |
+
InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 475 |
+
|
| 476 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 477 |
+
out-matrix OutMat>
|
| 478 |
+
void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C);
|
| 479 |
+
template<class ExecutionPolicy,
|
| 480 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 481 |
+
out-matrix OutMat>
|
| 482 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 483 |
+
InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C);
|
| 484 |
+
|
| 485 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 486 |
+
out-matrix OutMat>
|
| 487 |
+
void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 488 |
+
template<class ExecutionPolicy,
|
| 489 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 490 |
+
out-matrix OutMat>
|
| 491 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 492 |
+
InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 493 |
+
|
| 494 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 495 |
+
out-matrix OutMat>
|
| 496 |
+
void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 497 |
+
template<class ExecutionPolicy,
|
| 498 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 499 |
+
out-matrix OutMat>
|
| 500 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 501 |
+
InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 502 |
+
|
| 503 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 504 |
+
in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 505 |
+
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E,
|
| 506 |
+
OutMat C);
|
| 507 |
+
template<class ExecutionPolicy,
|
| 508 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 509 |
+
in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 510 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 511 |
+
InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E,
|
| 512 |
+
OutMat C);
|
| 513 |
+
|
| 514 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 515 |
+
out-matrix OutMat>
|
| 516 |
+
void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 517 |
+
template<class ExecutionPolicy,
|
| 518 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 519 |
+
out-matrix OutMat>
|
| 520 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 521 |
+
InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 522 |
+
|
| 523 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 524 |
+
out-matrix OutMat>
|
| 525 |
+
void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 526 |
+
template<class ExecutionPolicy,
|
| 527 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 528 |
+
out-matrix OutMat>
|
| 529 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 530 |
+
InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 531 |
+
|
| 532 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 533 |
+
in-matrix InMat3, out-matrix OutMat>
|
| 534 |
+
void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E,
|
| 535 |
+
OutMat C);
|
| 536 |
+
template<class ExecutionPolicy,
|
| 537 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 538 |
+
in-matrix InMat3, out-matrix OutMat>
|
| 539 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 540 |
+
InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E,
|
| 541 |
+
OutMat C);
|
| 542 |
+
|
| 543 |
+
// [linalg.algs.blas3.trmm], in-place triangular matrix-matrix product
|
| 544 |
+
|
| 545 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 546 |
+
void triangular_matrix_left_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C);
|
| 547 |
+
template<class ExecutionPolicy,
|
| 548 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 549 |
+
void triangular_matrix_left_product(ExecutionPolicy&& exec,
|
| 550 |
+
InMat A, Triangle t, DiagonalStorage d, InOutMat C);
|
| 551 |
+
|
| 552 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 553 |
+
void triangular_matrix_right_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C);
|
| 554 |
+
template<class ExecutionPolicy,
|
| 555 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 556 |
+
void triangular_matrix_right_product(ExecutionPolicy&& exec,
|
| 557 |
+
InMat A, Triangle t, DiagonalStorage d, InOutMat C);
|
| 558 |
+
|
| 559 |
+
// [linalg.algs.blas3.rankk], rank-k update of a symmetric or Hermitian matrix
|
| 560 |
+
|
| 561 |
+
// rank-k symmetric matrix update
|
| 562 |
+
template<class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 563 |
+
void symmetric_matrix_rank_k_update(Scalar alpha, InMat A, InOutMat C, Triangle t);
|
| 564 |
+
template<class ExecutionPolicy, class Scalar,
|
| 565 |
+
in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 566 |
+
void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec,
|
| 567 |
+
Scalar alpha, InMat A, InOutMat C, Triangle t);
|
| 568 |
+
|
| 569 |
+
template<in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 570 |
+
void symmetric_matrix_rank_k_update(InMat A, InOutMat C, Triangle t);
|
| 571 |
+
template<class ExecutionPolicy,
|
| 572 |
+
in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 573 |
+
void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec,
|
| 574 |
+
InMat A, InOutMat C, Triangle t);
|
| 575 |
+
|
| 576 |
+
// rank-k Hermitian matrix update
|
| 577 |
+
template<class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 578 |
+
void hermitian_matrix_rank_k_update(Scalar alpha, InMat A, InOutMat C, Triangle t);
|
| 579 |
+
template<class ExecutionPolicy,
|
| 580 |
+
class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 581 |
+
void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec,
|
| 582 |
+
Scalar alpha, InMat A, InOutMat C, Triangle t);
|
| 583 |
+
|
| 584 |
+
template<in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 585 |
+
void hermitian_matrix_rank_k_update(InMat A, InOutMat C, Triangle t);
|
| 586 |
+
template<class ExecutionPolicy,
|
| 587 |
+
in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 588 |
+
void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec,
|
| 589 |
+
InMat A, InOutMat C, Triangle t);
|
| 590 |
+
|
| 591 |
+
// [linalg.algs.blas3.rank2k], rank-2k update of a symmetric or Hermitian matrix
|
| 592 |
+
|
| 593 |
+
// rank-2k symmetric matrix update
|
| 594 |
+
template<in-matrix InMat1, in-matrix InMat2,
|
| 595 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 596 |
+
void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t);
|
| 597 |
+
template<class ExecutionPolicy,
|
| 598 |
+
in-matrix InMat1, in-matrix InMat2,
|
| 599 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 600 |
+
void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec,
|
| 601 |
+
InMat1 A, InMat2 B, InOutMat C, Triangle t);
|
| 602 |
+
|
| 603 |
+
// rank-2k Hermitian matrix update
|
| 604 |
+
template<in-matrix InMat1, in-matrix InMat2,
|
| 605 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 606 |
+
void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t);
|
| 607 |
+
template<class ExecutionPolicy,
|
| 608 |
+
in-matrix InMat1, in-matrix InMat2,
|
| 609 |
+
possibly-packed-inout-matrix InOutMat, class Triangle>
|
| 610 |
+
void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec,
|
| 611 |
+
InMat1 A, InMat2 B, InOutMat C, Triangle t);
|
| 612 |
+
|
| 613 |
+
// [linalg.algs.blas3.trsm], solve multiple triangular linear systems
|
| 614 |
+
|
| 615 |
+
// solve multiple triangular systems on the left, not-in-place
|
| 616 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 617 |
+
in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp>
|
| 618 |
+
void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d,
|
| 619 |
+
InMat2 B, OutMat X, BinaryDivideOp divide);
|
| 620 |
+
template<class ExecutionPolicy,
|
| 621 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 622 |
+
in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp>
|
| 623 |
+
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
|
| 624 |
+
InMat1 A, Triangle t, DiagonalStorage d,
|
| 625 |
+
InMat2 B, OutMat X, BinaryDivideOp divide);
|
| 626 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 627 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 628 |
+
void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d,
|
| 629 |
+
InMat2 B, OutMat X);
|
| 630 |
+
template<class ExecutionPolicy,
|
| 631 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 632 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 633 |
+
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
|
| 634 |
+
InMat1 A, Triangle t, DiagonalStorage d,
|
| 635 |
+
InMat2 B, OutMat X);
|
| 636 |
+
|
| 637 |
+
// solve multiple triangular systems on the right, not-in-place
|
| 638 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 639 |
+
in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp>
|
| 640 |
+
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
|
| 641 |
+
InMat2 B, OutMat X, BinaryDivideOp divide);
|
| 642 |
+
template<class ExecutionPolicy,
|
| 643 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 644 |
+
in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp>
|
| 645 |
+
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
|
| 646 |
+
InMat1 A, Triangle t, DiagonalStorage d,
|
| 647 |
+
InMat2 B, OutMat X, BinaryDivideOp divide);
|
| 648 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 649 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 650 |
+
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
|
| 651 |
+
InMat2 B, OutMat X);
|
| 652 |
+
template<class ExecutionPolicy,
|
| 653 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 654 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 655 |
+
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
|
| 656 |
+
InMat1 A, Triangle t, DiagonalStorage d,
|
| 657 |
+
InMat2 B, OutMat X);
|
| 658 |
+
|
| 659 |
+
// solve multiple triangular systems on the left, in-place
|
| 660 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 661 |
+
inout-matrix InOutMat, class BinaryDivideOp>
|
| 662 |
+
void triangular_matrix_matrix_left_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 663 |
+
InOutMat B, BinaryDivideOp divide);
|
| 664 |
+
template<class ExecutionPolicy,
|
| 665 |
+
in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 666 |
+
inout-matrix InOutMat, class BinaryDivideOp>
|
| 667 |
+
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
|
| 668 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 669 |
+
InOutMat B, BinaryDivideOp divide);
|
| 670 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 671 |
+
void triangular_matrix_matrix_left_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 672 |
+
InOutMat B);
|
| 673 |
+
template<class ExecutionPolicy,
|
| 674 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 675 |
+
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
|
| 676 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 677 |
+
InOutMat B);
|
| 678 |
+
|
| 679 |
+
// solve multiple triangular systems on the right, in-place
|
| 680 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 681 |
+
inout-matrix InOutMat, class BinaryDivideOp>
|
| 682 |
+
void triangular_matrix_matrix_right_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 683 |
+
InOutMat B, BinaryDivideOp divide);
|
| 684 |
+
template<class ExecutionPolicy,
|
| 685 |
+
in-matrix InMat, class Triangle, class DiagonalStorage,
|
| 686 |
+
inout-matrix InOutMat, class BinaryDivideOp>
|
| 687 |
+
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
|
| 688 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 689 |
+
InOutMat B, BinaryDivideOp divide);
|
| 690 |
+
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 691 |
+
void triangular_matrix_matrix_right_solve(InMat A, Triangle t, DiagonalStorage d,
|
| 692 |
+
InOutMat B);
|
| 693 |
+
template<class ExecutionPolicy,
|
| 694 |
+
in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat>
|
| 695 |
+
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
|
| 696 |
+
InMat A, Triangle t, DiagonalStorage d,
|
| 697 |
+
InOutMat B);
|
| 698 |
+
}
|
| 699 |
+
```
|
| 700 |
+
|