tmp/tmpi69ibfsx/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Conjugated in-place transformation <a id="linalg.conj">[[linalg.conj]]</a>
|
| 2 |
+
|
| 3 |
+
#### Introduction <a id="linalg.conj.intro">[[linalg.conj.intro]]</a>
|
| 4 |
+
|
| 5 |
+
The `conjugated` function takes an `mdspan` `x`, and returns a new
|
| 6 |
+
read-only `mdspan` `y` with the same domain as `x`, whose elements are
|
| 7 |
+
the complex conjugates of the corresponding elements of `x`.
|
| 8 |
+
|
| 9 |
+
#### Class template `conjugated_accessor` <a id="linalg.conj.conjugatedaccessor">[[linalg.conj.conjugatedaccessor]]</a>
|
| 10 |
+
|
| 11 |
+
The class template `conjugated_accessor` is an `mdspan` accessor policy
|
| 12 |
+
which upon access produces conjugate elements. It is part of the
|
| 13 |
+
implementation of `conjugated` [[linalg.conj.conjugated]].
|
| 14 |
+
|
| 15 |
+
``` cpp
|
| 16 |
+
namespace std::linalg {
|
| 17 |
+
template<class NestedAccessor>
|
| 18 |
+
class conjugated_accessor {
|
| 19 |
+
public:
|
| 20 |
+
using element_type =
|
| 21 |
+
const decltype(conj-if-needed(declval<NestedAccessor::element_type>()));
|
| 22 |
+
using reference = remove_const_t<element_type>;
|
| 23 |
+
using data_handle_type = NestedAccessor::data_handle_type;
|
| 24 |
+
using offset_policy = conjugated_accessor<NestedAccessor::offset_policy>;
|
| 25 |
+
|
| 26 |
+
constexpr conjugated_accessor() = default;
|
| 27 |
+
constexpr conjugated_accessor(const NestedAccessor& acc);
|
| 28 |
+
template<class OtherNestedAccessor>
|
| 29 |
+
explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>)
|
| 30 |
+
constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other);
|
| 31 |
+
|
| 32 |
+
constexpr reference access(data_handle_type p, size_t i) const;
|
| 33 |
+
|
| 34 |
+
constexpr typename offset_policy::data_handle_type
|
| 35 |
+
offset(data_handle_type p, size_t i) const;
|
| 36 |
+
|
| 37 |
+
constexpr const NestedAccessor& nested_accessor() const noexcept { return nested-accessor_; }
|
| 38 |
+
|
| 39 |
+
private:
|
| 40 |
+
NestedAccessor nested-accessor_{}; // exposition only
|
| 41 |
+
};
|
| 42 |
+
}
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
*Mandates:*
|
| 46 |
+
|
| 47 |
+
- `element_type` is valid and denotes a type,
|
| 48 |
+
- `is_copy_constructible_v<reference>` is `true`,
|
| 49 |
+
- `is_reference_v<element_type>` is `false`, and
|
| 50 |
+
- `NestedAccessor` meets the accessor policy requirements
|
| 51 |
+
[[mdspan.accessor.reqmts]].
|
| 52 |
+
|
| 53 |
+
``` cpp
|
| 54 |
+
constexpr conjugated_accessor(const NestedAccessor& acc);
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
*Effects:* Direct-non-list-initializes *nested-accessor\_* with `acc`.
|
| 58 |
+
|
| 59 |
+
``` cpp
|
| 60 |
+
template<class OtherNestedAccessor>
|
| 61 |
+
explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>)
|
| 62 |
+
constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other);
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
*Constraints:*
|
| 66 |
+
`is_constructible_v<NestedAccessor, const OtherNestedAccessor&>` is
|
| 67 |
+
`true`.
|
| 68 |
+
|
| 69 |
+
*Effects:* Direct-non-list-initializes *nested-accessor\_* with
|
| 70 |
+
`other.nested_accessor()`.
|
| 71 |
+
|
| 72 |
+
``` cpp
|
| 73 |
+
constexpr reference access(data_handle_type p, size_t i) const;
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
*Returns:*
|
| 77 |
+
*`conj-if-needed`*`(NestedAccessor::element_type(`*`nested-accessor_`*`.access(p, i)))`
|
| 78 |
+
|
| 79 |
+
``` cpp
|
| 80 |
+
constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const;
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
*Returns:* *`nested-accessor_`*`.offset(p, i)`
|
| 84 |
+
|
| 85 |
+
#### Function template `conjugated` <a id="linalg.conj.conjugated">[[linalg.conj.conjugated]]</a>
|
| 86 |
+
|
| 87 |
+
``` cpp
|
| 88 |
+
template<class ElementType, class Extents, class Layout, class Accessor>
|
| 89 |
+
constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a);
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
Let `A` be
|
| 93 |
+
|
| 94 |
+
- `remove_cvref_t<decltype(a.accessor().nested_accessor())>` if
|
| 95 |
+
`Accessor` is a specialization of `conjugated_accessor`;
|
| 96 |
+
- otherwise, `Accessor` if `remove_cvref_t<ElementType>` is an
|
| 97 |
+
arithmetic type;
|
| 98 |
+
- otherwise, `conjugated_accessor<Accessor>` if the expression `conj(E)`
|
| 99 |
+
is valid for any subexpression `E` whose type is
|
| 100 |
+
`remove_cvref_t<ElementType>` with overload resolution performed in a
|
| 101 |
+
context that includes the declaration
|
| 102 |
+
`template<class U> U conj(const U&) = delete;`;
|
| 103 |
+
- otherwise, `Accessor`.
|
| 104 |
+
|
| 105 |
+
*Returns:* Let `MD` be
|
| 106 |
+
`mdspan<typename A::element_type, Extents, Layout, A>`.
|
| 107 |
+
|
| 108 |
+
- `MD(a.data_handle(), a.mapping(), a.accessor().nested_accessor())` if
|
| 109 |
+
`Accessor` is a specialization of `conjugated_accessor`;
|
| 110 |
+
- otherwise, `a`, if `is_same_v<A, Accessor>` is `true`;
|
| 111 |
+
- otherwise,
|
| 112 |
+
`MD(a.data_handle(), a.mapping(), conjugated_accessor(a.accessor()))`.
|
| 113 |
+
|
| 114 |
+
[*Example 1*:
|
| 115 |
+
|
| 116 |
+
``` cpp
|
| 117 |
+
void test_conjugated_complex(mdspan<complex<double>, extents<int, 10>> a) {
|
| 118 |
+
auto a_conj = conjugated(a);
|
| 119 |
+
for (int i = 0; i < a.extent(0); ++i) {
|
| 120 |
+
assert(a_conj[i] == conj(a[i]);
|
| 121 |
+
}
|
| 122 |
+
auto a_conj_conj = conjugated(a_conj);
|
| 123 |
+
for (int i = 0; i < a.extent(0); ++i) {
|
| 124 |
+
assert(a_conj_conj[i] == a[i]);
|
| 125 |
+
}
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
void test_conjugated_real(mdspan<double, extents<int, 10>> a) {
|
| 129 |
+
auto a_conj = conjugated(a);
|
| 130 |
+
for (int i = 0; i < a.extent(0); ++i) {
|
| 131 |
+
assert(a_conj[i] == a[i]);
|
| 132 |
+
}
|
| 133 |
+
auto a_conj_conj = conjugated(a_conj);
|
| 134 |
+
for (int i = 0; i < a.extent(0); ++i) {
|
| 135 |
+
assert(a_conj_conj[i] == a[i]);
|
| 136 |
+
}
|
| 137 |
+
}
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
— *end example*]
|
| 141 |
+
|