tmp/tmpcz64zlb_/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Symmetric, Hermitian, and triangular matrix-matrix product <a id="linalg.algs.blas3.xxmm">[[linalg.algs.blas3.xxmm]]</a>
|
| 2 |
+
|
| 3 |
+
[*Note 1*: These functions correspond to the BLAS functions `xSYMM`,
|
| 4 |
+
`xHEMM`, and `xTRMM`. — *end note*]
|
| 5 |
+
|
| 6 |
+
The following elements apply to all functions in
|
| 7 |
+
[[linalg.algs.blas3.xxmm]] in addition to function-specific elements.
|
| 8 |
+
|
| 9 |
+
*Mandates:*
|
| 10 |
+
|
| 11 |
+
- `possibly-multipliable<decltype(A), decltype(B), decltype(C)>()` is
|
| 12 |
+
`true`, and
|
| 13 |
+
- `possibly-addable<decltype(E), decltype(E), decltype(C)>()` is `true`
|
| 14 |
+
for those overloads that take an `E` parameter.
|
| 15 |
+
|
| 16 |
+
*Preconditions:*
|
| 17 |
+
|
| 18 |
+
- `multipliable(A, B, C)` is `true`, and
|
| 19 |
+
- `addable(E, E, C)` is `true` for those overloads that take an `E`
|
| 20 |
+
parameter.
|
| 21 |
+
|
| 22 |
+
*Complexity:* 𝑂(`A.extent(0)` × `A.extent(1)` × `B.extent(1)`).
|
| 23 |
+
|
| 24 |
+
``` cpp
|
| 25 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 26 |
+
void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 27 |
+
template<class ExecutionPolicy,
|
| 28 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 29 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 30 |
+
|
| 31 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 32 |
+
void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 33 |
+
template<class ExecutionPolicy,
|
| 34 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat>
|
| 35 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C);
|
| 36 |
+
|
| 37 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 38 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 39 |
+
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C);
|
| 40 |
+
template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 41 |
+
in-matrix InMat2, out-matrix OutMat>
|
| 42 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 43 |
+
InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C);
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
These functions perform a matrix-matrix multiply, taking into account
|
| 47 |
+
the `Triangle` and `DiagonalStorage` (if applicable) parameters that
|
| 48 |
+
apply to the symmetric, Hermitian, or triangular (respectively) matrix
|
| 49 |
+
`A` [[linalg.general]].
|
| 50 |
+
|
| 51 |
+
*Mandates:*
|
| 52 |
+
|
| 53 |
+
- If `InMat1` has `layout_blas_packed` layout, then the layout’s
|
| 54 |
+
`Triangle` template argument has the same type as the function’s
|
| 55 |
+
`Triangle` template argument; and
|
| 56 |
+
- *`compatible-static-extents`*`<InMat1, InMat1>(0, 1)` is `true`.
|
| 57 |
+
|
| 58 |
+
*Preconditions:* `A.extent(0) == A.extent(1)` is `true`.
|
| 59 |
+
|
| 60 |
+
*Effects:* Computes C = A B.
|
| 61 |
+
|
| 62 |
+
``` cpp
|
| 63 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 64 |
+
void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 65 |
+
template<class ExecutionPolicy,
|
| 66 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 67 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 68 |
+
InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 69 |
+
|
| 70 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 71 |
+
void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 72 |
+
template<class ExecutionPolicy,
|
| 73 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat>
|
| 74 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 75 |
+
InMat1 A, InMat2 B, Triangle t, OutMat C);
|
| 76 |
+
|
| 77 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 78 |
+
out-matrix OutMat>
|
| 79 |
+
void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C);
|
| 80 |
+
template<class ExecutionPolicy,
|
| 81 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 82 |
+
out-matrix OutMat>
|
| 83 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 84 |
+
InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C);
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
These functions perform a matrix-matrix multiply, taking into account
|
| 88 |
+
the `Triangle` and `DiagonalStorage` (if applicable) parameters that
|
| 89 |
+
apply to the symmetric, Hermitian, or triangular (respectively) matrix
|
| 90 |
+
`B` [[linalg.general]].
|
| 91 |
+
|
| 92 |
+
*Mandates:*
|
| 93 |
+
|
| 94 |
+
- If `InMat2` has `layout_blas_packed` layout, then the layout’s
|
| 95 |
+
`Triangle` template argument has the same type as the function’s
|
| 96 |
+
`Triangle` template argument; and
|
| 97 |
+
- *`compatible-static-extents`*`<InMat2, InMat2>(0, 1)` is `true`.
|
| 98 |
+
|
| 99 |
+
*Preconditions:* `B.extent(0) == B.extent(1)` is `true`.
|
| 100 |
+
|
| 101 |
+
*Effects:* Computes C = A B.
|
| 102 |
+
|
| 103 |
+
``` cpp
|
| 104 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 105 |
+
out-matrix OutMat>
|
| 106 |
+
void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 107 |
+
template<class ExecutionPolicy,
|
| 108 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 109 |
+
out-matrix OutMat>
|
| 110 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 111 |
+
InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 112 |
+
|
| 113 |
+
template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 114 |
+
out-matrix OutMat>
|
| 115 |
+
void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 116 |
+
template<class ExecutionPolicy,
|
| 117 |
+
in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3,
|
| 118 |
+
out-matrix OutMat>
|
| 119 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 120 |
+
InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C);
|
| 121 |
+
|
| 122 |
+
template<in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 123 |
+
in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 124 |
+
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E,
|
| 125 |
+
OutMat C);
|
| 126 |
+
template<class ExecutionPolicy,
|
| 127 |
+
in-matrix InMat1, class Triangle, class DiagonalStorage,
|
| 128 |
+
in-matrix InMat2, in-matrix InMat3, out-matrix OutMat>
|
| 129 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 130 |
+
InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E,
|
| 131 |
+
OutMat C);
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
These functions perform a potentially overwriting matrix-matrix
|
| 135 |
+
multiply-add, taking into account the `Triangle` and `DiagonalStorage`
|
| 136 |
+
(if applicable) parameters that apply to the symmetric, Hermitian, or
|
| 137 |
+
triangular (respectively) matrix `A` [[linalg.general]].
|
| 138 |
+
|
| 139 |
+
*Mandates:*
|
| 140 |
+
|
| 141 |
+
- If `InMat1` has `layout_blas_packed` layout, then the layout’s
|
| 142 |
+
`Triangle` template argument has the same type as the function’s
|
| 143 |
+
`Triangle` template argument; and
|
| 144 |
+
- *`compatible-static-extents`*`<InMat1, InMat1>(0, 1)` is `true`.
|
| 145 |
+
|
| 146 |
+
*Preconditions:* `A.extent(0) == A.extent(1)` is `true`.
|
| 147 |
+
|
| 148 |
+
*Effects:* Computes C = E + A B.
|
| 149 |
+
|
| 150 |
+
*Remarks:* `C` may alias `E`.
|
| 151 |
+
|
| 152 |
+
``` cpp
|
| 153 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 154 |
+
out-matrix OutMat>
|
| 155 |
+
void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 156 |
+
template<class ExecutionPolicy,
|
| 157 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 158 |
+
out-matrix OutMat>
|
| 159 |
+
void symmetric_matrix_product(ExecutionPolicy&& exec,
|
| 160 |
+
InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 161 |
+
|
| 162 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 163 |
+
out-matrix OutMat>
|
| 164 |
+
void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 165 |
+
template<class ExecutionPolicy,
|
| 166 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3,
|
| 167 |
+
out-matrix OutMat>
|
| 168 |
+
void hermitian_matrix_product(ExecutionPolicy&& exec,
|
| 169 |
+
InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C);
|
| 170 |
+
|
| 171 |
+
template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 172 |
+
in-matrix InMat3, out-matrix OutMat>
|
| 173 |
+
void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E,
|
| 174 |
+
OutMat C);
|
| 175 |
+
template<class ExecutionPolicy,
|
| 176 |
+
in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage,
|
| 177 |
+
in-matrix InMat3, out-matrix OutMat>
|
| 178 |
+
void triangular_matrix_product(ExecutionPolicy&& exec,
|
| 179 |
+
InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E,
|
| 180 |
+
OutMat C);
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
These functions perform a potentially overwriting matrix-matrix
|
| 184 |
+
multiply-add, taking into account the `Triangle` and `DiagonalStorage`
|
| 185 |
+
(if applicable) parameters that apply to the symmetric, Hermitian, or
|
| 186 |
+
triangular (respectively) matrix `B` [[linalg.general]].
|
| 187 |
+
|
| 188 |
+
*Mandates:*
|
| 189 |
+
|
| 190 |
+
- If `InMat2` has `layout_blas_packed` layout, then the layout’s
|
| 191 |
+
`Triangle` template argument has the same type as the function’s
|
| 192 |
+
`Triangle` template argument; and
|
| 193 |
+
- *`compatible-static-extents`*`<InMat2, InMat2>(0, 1)` is `true`.
|
| 194 |
+
|
| 195 |
+
*Preconditions:* `B.extent(0) == B.extent(1)` is `true`.
|
| 196 |
+
|
| 197 |
+
*Effects:* Computes C = E + A B.
|
| 198 |
+
|
| 199 |
+
*Remarks:* `C` may alias `E`.
|
| 200 |
+
|