- tmp/tmpyef0bgen/{from.md → to.md} +419 -67
tmp/tmpyef0bgen/{from.md → to.md}
RENAMED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
## Random number generation <a id="rand">[[rand]]</a>
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
numbers.
|
| 5 |
|
| 6 |
In addition to a few utilities, four categories of entities are
|
| 7 |
described: *uniform random bit generators*, *random number engines*,
|
| 8 |
*random number engine adaptors*, and *random number distributions*.
|
|
@@ -14,39 +16,39 @@ to templates producing such types when instantiated.
|
|
| 14 |
binding of any uniform random bit generator object `e` as the argument
|
| 15 |
to any random number distribution object `d`, thus producing a
|
| 16 |
zero-argument function object such as given by
|
| 17 |
`bind(d,e)`. — *end note*]
|
| 18 |
|
| 19 |
-
Each of the entities specified
|
| 20 |
-
|
| 21 |
-
`
|
| 22 |
-
|
| 23 |
|
| 24 |
- as *boolean* or equivalently as *boolean-valued*, if `T` is `bool`;
|
| 25 |
- otherwise as *integral* or equivalently as *integer-valued*, if
|
| 26 |
`numeric_limits<T>::is_integer` is `true`;
|
| 27 |
- otherwise as *floating-point* or equivalently as *real-valued*.
|
| 28 |
|
| 29 |
If integer-valued, an entity may optionally be further characterized as
|
| 30 |
*signed* or *unsigned*, according to `numeric_limits<T>::is_signed`.
|
| 31 |
|
| 32 |
-
Unless otherwise specified, all descriptions of calculations in
|
| 33 |
-
|
| 34 |
|
| 35 |
-
Throughout
|
| 36 |
-
|
| 37 |
|
| 38 |
- the operator \rightshift denotes a bitwise right shift with
|
| 39 |
zero-valued bits appearing in the high bits of the result, and
|
| 40 |
- the operator denotes a bitwise left shift with zero-valued bits
|
| 41 |
appearing in the low bits of the result, and whose result is always
|
| 42 |
taken modulo 2ʷ.
|
| 43 |
|
| 44 |
### Header `<random>` synopsis <a id="rand.synopsis">[[rand.synopsis]]</a>
|
| 45 |
|
| 46 |
``` cpp
|
| 47 |
-
#include <initializer_list>
|
| 48 |
|
| 49 |
namespace std {
|
| 50 |
// [rand.req.urng], uniform random bit generator requirements
|
| 51 |
template<class G>
|
| 52 |
concept uniform_random_bit_generator = see below;
|
|
@@ -235,17 +237,18 @@ shown in [[rand.req.seedseq]] are valid and have the indicated
|
|
| 235 |
semantics, and if `S` also meets all other requirements of this
|
| 236 |
subclause [[rand.req.seedseq]]. In that Table and throughout this
|
| 237 |
subclause:
|
| 238 |
|
| 239 |
- `T` is the type named by `S`’s associated `result_type`;
|
| 240 |
-
- `q` is a value of `S` and `r` is a
|
|
|
|
| 241 |
- `ib` and `ie` are input iterators with an unsigned integer
|
| 242 |
`value_type` of at least 32 bits;
|
| 243 |
- `rb` and `re` are mutable random access iterators with an unsigned
|
| 244 |
integer `value_type` of at least 32 bits;
|
| 245 |
- `ob` is an output iterator; and
|
| 246 |
-
- `il` is a value of `initializer_list<T>`.
|
| 247 |
|
| 248 |
#### Uniform random bit generator requirements <a id="rand.req.urng">[[rand.req.urng]]</a>
|
| 249 |
|
| 250 |
A *uniform random bit generator* `g` of type `G` is a function object
|
| 251 |
returning unsigned integer values such that each value in the range of
|
|
@@ -306,22 +309,22 @@ and have the indicated semantics, and if `E` also meets all other
|
|
| 306 |
requirements of this subclause [[rand.req.eng]]. In that Table and
|
| 307 |
throughout this subclause:
|
| 308 |
|
| 309 |
- `T` is the type named by `E`’s associated `result_type`;
|
| 310 |
- `e` is a value of `E`, `v` is an lvalue of `E`, `x` and `y` are
|
| 311 |
-
(possibly
|
| 312 |
- `s` is a value of `T`;
|
| 313 |
- `q` is an lvalue meeting the requirements of a seed sequence
|
| 314 |
[[rand.req.seedseq]];
|
| 315 |
- `z` is a value of type `unsigned long long`;
|
| 316 |
- `os` is an lvalue of the type of some class template specialization
|
| 317 |
`basic_ostream<charT,` `traits>`; and
|
| 318 |
- `is` is an lvalue of the type of some class template specialization
|
| 319 |
`basic_istream<charT,` `traits>`;
|
| 320 |
|
| 321 |
where `charT` and `traits` are constrained according to [[strings]] and
|
| 322 |
-
[[input.output]].
|
| 323 |
|
| 324 |
`E` shall meet the *Cpp17CopyConstructible* (
|
| 325 |
[[cpp17.copyconstructible]]) and *Cpp17CopyAssignable* (
|
| 326 |
[[cpp17.copyassignable]]) requirements. These operations shall each be
|
| 327 |
of complexity no worse than 𝑂(\text{size of state}).
|
|
@@ -417,17 +420,17 @@ indicated semantics, and if `D` and its associated types also meet all
|
|
| 417 |
other requirements of this subclause [[rand.req.dist]]. In that Table
|
| 418 |
and throughout this subclause,
|
| 419 |
|
| 420 |
- `T` is the type named by `D`’s associated `result_type`;
|
| 421 |
- `P` is the type named by `D`’s associated `param_type`;
|
| 422 |
-
- `d` is a value of `D`, and `x` and `y` are (possibly
|
| 423 |
-
|
| 424 |
- `glb` and `lub` are values of `T` respectively corresponding to the
|
| 425 |
greatest lower bound and the least upper bound on the values
|
| 426 |
potentially returned by `d`’s `operator()`, as determined by the
|
| 427 |
current values of `d`’s parameters;
|
| 428 |
-
- `p` is a (possibly
|
| 429 |
- `g`, `g1`, and `g2` are lvalues of a type meeting the requirements of
|
| 430 |
a uniform random bit generator [[rand.req.urng]];
|
| 431 |
- `os` is an lvalue of the type of some class template specialization
|
| 432 |
`basic_ostream<charT,` `traits>`; and
|
| 433 |
- `is` is an lvalue of the type of some class template specialization
|
|
@@ -440,11 +443,11 @@ where `charT` and `traits` are constrained according to [[strings]] and
|
|
| 440 |
[[cpp17.copyconstructible]]) and *Cpp17CopyAssignable* (
|
| 441 |
[[cpp17.copyassignable]]) requirements.
|
| 442 |
|
| 443 |
The sequence of numbers produced by repeated invocations of `d(g)` shall
|
| 444 |
be independent of any invocation of `os << d` or of any `const` member
|
| 445 |
-
function of `D` between any of the invocations `d(g)`.
|
| 446 |
|
| 447 |
If a textual representation is written using `os << x` and that
|
| 448 |
representation is restored into the same or a different object `y` of
|
| 449 |
the same type using `is >> y`, repeated invocations of `y(g)` shall
|
| 450 |
produce the same sequence of numbers as would repeated invocations of
|
|
@@ -474,40 +477,39 @@ the identical name, type, and semantics.
|
|
| 474 |
using distribution_type = D;
|
| 475 |
```
|
| 476 |
|
| 477 |
### Random number engine class templates <a id="rand.eng">[[rand.eng]]</a>
|
| 478 |
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
[[rand.
|
|
|
|
| 482 |
|
| 483 |
Except where specified otherwise, the complexity of each function
|
| 484 |
-
specified in
|
| 485 |
|
| 486 |
-
Except where specified otherwise, no function described in
|
| 487 |
-
|
| 488 |
|
| 489 |
-
Every function described in
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
|
| 494 |
-
Descriptions are provided in
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
operators are not shown in the synopses.
|
| 500 |
|
| 501 |
-
Each template specified in
|
| 502 |
-
|
| 503 |
parameter(s), to hold. A program instantiating any of these templates is
|
| 504 |
ill-formed if any such required relationship fails to hold.
|
| 505 |
|
| 506 |
For every random number engine and for every random number engine
|
| 507 |
-
adaptor `X` defined in
|
| 508 |
-
[[rand.adapt]]:
|
| 509 |
|
| 510 |
- if the constructor
|
| 511 |
``` cpp
|
| 512 |
template<class Sseq> explicit X(Sseq& q);
|
| 513 |
```
|
|
@@ -535,10 +537,11 @@ object `x` is of size 1 and consists of a single integer. The transition
|
|
| 535 |
algorithm is a modular linear function of the form
|
| 536 |
TA(xᵢ) = (a ⋅ xᵢ + c) mod m; the generation algorithm is
|
| 537 |
GA(xᵢ) = xᵢ₊₁.
|
| 538 |
|
| 539 |
``` cpp
|
|
|
|
| 540 |
template<class UIntType, UIntType a, UIntType c, UIntType m>
|
| 541 |
class linear_congruential_engine {
|
| 542 |
public:
|
| 543 |
// types
|
| 544 |
using result_type = UIntType;
|
|
@@ -556,14 +559,27 @@ template<class UIntType, UIntType a, UIntType c, UIntType m>
|
|
| 556 |
explicit linear_congruential_engine(result_type s);
|
| 557 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 558 |
void seed(result_type s = default_seed);
|
| 559 |
template<class Sseq> void seed(Sseq& q);
|
| 560 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
// generating functions
|
| 562 |
result_type operator()();
|
| 563 |
void discard(unsigned long long z);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
};
|
|
|
|
| 565 |
```
|
| 566 |
|
| 567 |
If the template parameter `m` is 0, the modulus m used throughout this
|
| 568 |
subclause [[rand.eng.lcong]] is `numeric_limits<result_type>::max()`
|
| 569 |
plus 1.
|
|
@@ -594,15 +610,16 @@ $S = \left(\sum_{j = 0}^{k - 1} a_{j + 3} \cdot 2^{32j} \right) \bmod m$.
|
|
| 594 |
If c mod m is 0 and S is 0, sets the engine’s state to 1, else sets
|
| 595 |
the engine’s state to S.
|
| 596 |
|
| 597 |
#### Class template `mersenne_twister_engine` <a id="rand.eng.mers">[[rand.eng.mers]]</a>
|
| 598 |
|
| 599 |
-
A `mersenne_twister_engine` random number engine[^
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
|
|
|
| 604 |
|
| 605 |
The transition algorithm employs a twisted generalized feedback shift
|
| 606 |
register defined by shift values n and m, a twist value r, and a
|
| 607 |
conditional xor-mask a. To improve the uniformity of the result, the
|
| 608 |
bits of the raw shift register are additionally *tempered* (i.e.,
|
|
@@ -626,10 +643,11 @@ z₁, z₂, z₃, z₄ as follows, then delivers z₄ as its result:
|
|
| 626 |
- Let $z_2 = z_1 \xor \bigl( (z_1 \leftshift{w} s) \bitand b \bigr)$.
|
| 627 |
- Let $z_3 = z_2 \xor \bigl( (z_2 \leftshift{w} t) \bitand c \bigr)$.
|
| 628 |
- Let $z_4 = z_3 \xor ( z_3 \rightshift \ell )$.
|
| 629 |
|
| 630 |
``` cpp
|
|
|
|
| 631 |
template<class UIntType, size_t w, size_t n, size_t m, size_t r,
|
| 632 |
UIntType a, size_t u, UIntType d, size_t s,
|
| 633 |
UIntType b, size_t t,
|
| 634 |
UIntType c, size_t l, UIntType f>
|
| 635 |
class mersenne_twister_engine {
|
|
@@ -660,14 +678,26 @@ template<class UIntType, size_t w, size_t n, size_t m, size_t r,
|
|
| 660 |
explicit mersenne_twister_engine(result_type value);
|
| 661 |
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
|
| 662 |
void seed(result_type value = default_seed);
|
| 663 |
template<class Sseq> void seed(Sseq& q);
|
| 664 |
|
|
|
|
|
|
|
|
|
|
| 665 |
// generating functions
|
| 666 |
result_type operator()();
|
| 667 |
void discard(unsigned long long z);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
};
|
|
|
|
| 669 |
```
|
| 670 |
|
| 671 |
The following relations shall hold: `0 < m`, `m <= n`, `2u < w`,
|
| 672 |
`r <= w`, `u <= w`, `s <= w`, `t <= w`, `l <= w`,
|
| 673 |
`w <= numeric_limits<UIntType>::digits`, `a <= (1u<<w) - 1u`,
|
|
@@ -725,10 +755,11 @@ and a = b - (b - 1) / m. — *end note*]
|
|
| 725 |
|
| 726 |
The generation algorithm is given by GA(xᵢ) = y, where y is the value
|
| 727 |
produced as a result of advancing the engine’s state as described above.
|
| 728 |
|
| 729 |
``` cpp
|
|
|
|
| 730 |
template<class UIntType, size_t w, size_t s, size_t r>
|
| 731 |
class subtract_with_carry_engine {
|
| 732 |
public:
|
| 733 |
// types
|
| 734 |
using result_type = UIntType;
|
|
@@ -746,14 +777,27 @@ template<class UIntType, size_t w, size_t s, size_t r>
|
|
| 746 |
explicit subtract_with_carry_engine(result_type value);
|
| 747 |
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
|
| 748 |
void seed(result_type value = default_seed);
|
| 749 |
template<class Sseq> void seed(Sseq& q);
|
| 750 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
// generating functions
|
| 752 |
result_type operator()();
|
| 753 |
void discard(unsigned long long z);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
};
|
|
|
|
| 755 |
```
|
| 756 |
|
| 757 |
The following relations shall hold: `0u < s`, `s < r`, `0 < w`, and
|
| 758 |
`w <= numeric_limits<UIntType>::digits`.
|
| 759 |
|
|
@@ -774,11 +818,11 @@ To set the values Xₖ, first construct `e`, a
|
|
| 774 |
linear_congruential_engine<result_type,
|
| 775 |
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
|
| 776 |
```
|
| 777 |
|
| 778 |
Then, to set each Xₖ, obtain new values z₀, …, zₙ₋₁ from n = ⌈ w/32 ⌉
|
| 779 |
-
successive invocations of `e`
|
| 780 |
$\left( \sum_{j=0}^{n-1} z_j \cdot 2^{32j}\right) \bmod m$.
|
| 781 |
|
| 782 |
*Complexity:* Exactly n ⋅ `r` invocations of `e`.
|
| 783 |
|
| 784 |
``` cpp
|
|
@@ -838,10 +882,11 @@ state eⱼ to eⱼ₊₁.
|
|
| 838 |
|
| 839 |
The generation algorithm yields the value returned by the last
|
| 840 |
invocation of `e()` while advancing `e`’s state as described above.
|
| 841 |
|
| 842 |
``` cpp
|
|
|
|
| 843 |
template<class Engine, size_t p, size_t r>
|
| 844 |
class discard_block_engine {
|
| 845 |
public:
|
| 846 |
// types
|
| 847 |
using result_type = typename Engine::result_type;
|
|
@@ -860,21 +905,33 @@ template<class Engine, size_t p, size_t r>
|
|
| 860 |
template<class Sseq> explicit discard_block_engine(Sseq& q);
|
| 861 |
void seed();
|
| 862 |
void seed(result_type s);
|
| 863 |
template<class Sseq> void seed(Sseq& q);
|
| 864 |
|
|
|
|
|
|
|
|
|
|
| 865 |
// generating functions
|
| 866 |
result_type operator()();
|
| 867 |
void discard(unsigned long long z);
|
| 868 |
|
| 869 |
// property functions
|
| 870 |
-
const Engine& base() const noexcept { return e; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 871 |
|
| 872 |
private:
|
| 873 |
Engine e; // exposition only
|
| 874 |
-
|
| 875 |
};
|
|
|
|
| 876 |
```
|
| 877 |
|
| 878 |
The following relations shall hold: `0 < r` and `r <= p`.
|
| 879 |
|
| 880 |
The textual representation consists of the textual representation of `e`
|
|
@@ -944,16 +1001,27 @@ template<class Engine, size_t w, class UIntType>
|
|
| 944 |
template<class Sseq> explicit independent_bits_engine(Sseq& q);
|
| 945 |
void seed();
|
| 946 |
void seed(result_type s);
|
| 947 |
template<class Sseq> void seed(Sseq& q);
|
| 948 |
|
|
|
|
|
|
|
|
|
|
| 949 |
// generating functions
|
| 950 |
result_type operator()();
|
| 951 |
void discard(unsigned long long z);
|
| 952 |
|
| 953 |
// property functions
|
| 954 |
-
const Engine& base() const noexcept { return e; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 955 |
|
| 956 |
private:
|
| 957 |
Engine e; // exposition only
|
| 958 |
};
|
| 959 |
```
|
|
@@ -984,10 +1052,11 @@ transition is performed as follows:
|
|
| 984 |
|
| 985 |
The generation algorithm yields the last value of `Y` produced while
|
| 986 |
advancing `e`’s state as described above.
|
| 987 |
|
| 988 |
``` cpp
|
|
|
|
| 989 |
template<class Engine, size_t k>
|
| 990 |
class shuffle_order_engine {
|
| 991 |
public:
|
| 992 |
// types
|
| 993 |
using result_type = typename Engine::result_type;
|
|
@@ -1005,22 +1074,34 @@ template<class Engine, size_t k>
|
|
| 1005 |
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
|
| 1006 |
void seed();
|
| 1007 |
void seed(result_type s);
|
| 1008 |
template<class Sseq> void seed(Sseq& q);
|
| 1009 |
|
|
|
|
|
|
|
|
|
|
| 1010 |
// generating functions
|
| 1011 |
result_type operator()();
|
| 1012 |
void discard(unsigned long long z);
|
| 1013 |
|
| 1014 |
// property functions
|
| 1015 |
-
const Engine& base() const noexcept { return e; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1016 |
|
| 1017 |
private:
|
| 1018 |
Engine e; // exposition only
|
| 1019 |
result_type V[k]; // exposition only
|
| 1020 |
result_type Y; // exposition only
|
| 1021 |
};
|
|
|
|
| 1022 |
```
|
| 1023 |
|
| 1024 |
The following relation shall hold: `0 < k`.
|
| 1025 |
|
| 1026 |
The textual representation consists of the textual representation of
|
|
@@ -1119,14 +1200,14 @@ using default_random_engine = implementation-defined;
|
|
| 1119 |
```
|
| 1120 |
|
| 1121 |
*Remarks:* The choice of engine type named by this `typedef` is
|
| 1122 |
*implementation-defined*.
|
| 1123 |
|
| 1124 |
-
[*Note 1*: The implementation
|
| 1125 |
performance, size, quality, or any combination of such factors, so as to
|
| 1126 |
provide at least acceptable engine behavior for relatively casual,
|
| 1127 |
-
inexpert, and/or lightweight use. Because different implementations
|
| 1128 |
select different underlying engine types, code that uses this `typedef`
|
| 1129 |
need not generate identical sequences across
|
| 1130 |
implementations. — *end note*]
|
| 1131 |
|
| 1132 |
### Class `random_device` <a id="rand.device">[[rand.device]]</a>
|
|
@@ -1136,10 +1217,11 @@ random numbers.
|
|
| 1136 |
|
| 1137 |
If implementation limitations prevent generating nondeterministic random
|
| 1138 |
numbers, the implementation may employ a random number engine.
|
| 1139 |
|
| 1140 |
``` cpp
|
|
|
|
| 1141 |
class random_device {
|
| 1142 |
public:
|
| 1143 |
// types
|
| 1144 |
using result_type = unsigned int;
|
| 1145 |
|
|
@@ -1159,53 +1241,57 @@ public:
|
|
| 1159 |
|
| 1160 |
// no copy functions
|
| 1161 |
random_device(const random_device&) = delete;
|
| 1162 |
void operator=(const random_device&) = delete;
|
| 1163 |
};
|
|
|
|
| 1164 |
```
|
| 1165 |
|
| 1166 |
``` cpp
|
| 1167 |
explicit random_device(const string& token);
|
| 1168 |
```
|
| 1169 |
|
|
|
|
|
|
|
|
|
|
| 1170 |
*Remarks:* The semantics of the `token` parameter and the token value
|
| 1171 |
-
used by the default constructor are *implementation-defined*.
|
| 1172 |
-
|
| 1173 |
-
*Throws:* A value of an *implementation-defined* type derived from
|
| 1174 |
-
`exception` if the `random_device` could not be initialized.
|
| 1175 |
|
| 1176 |
``` cpp
|
| 1177 |
double entropy() const noexcept;
|
| 1178 |
```
|
| 1179 |
|
| 1180 |
*Returns:* If the implementation employs a random number engine, returns
|
| 1181 |
-
0.0. Otherwise, returns an entropy estimate[^
|
| 1182 |
-
|
|
|
|
|
|
|
| 1183 |
|
| 1184 |
``` cpp
|
| 1185 |
result_type operator()();
|
| 1186 |
```
|
| 1187 |
|
| 1188 |
*Returns:* A nondeterministic random value, uniformly distributed
|
| 1189 |
between `min()` and `max()` (inclusive). It is *implementation-defined*
|
| 1190 |
how these values are generated.
|
| 1191 |
|
| 1192 |
*Throws:* A value of an *implementation-defined* type derived from
|
| 1193 |
-
`exception` if a random number
|
| 1194 |
|
| 1195 |
### Utilities <a id="rand.util">[[rand.util]]</a>
|
| 1196 |
|
| 1197 |
#### Class `seed_seq` <a id="rand.util.seedseq">[[rand.util.seedseq]]</a>
|
| 1198 |
|
| 1199 |
``` cpp
|
|
|
|
| 1200 |
class seed_seq {
|
| 1201 |
public:
|
| 1202 |
// types
|
| 1203 |
using result_type = uint_least32_t;
|
| 1204 |
|
| 1205 |
// constructors
|
| 1206 |
-
|
| 1207 |
template<class T>
|
| 1208 |
seed_seq(initializer_list<T> il);
|
| 1209 |
template<class InputIterator>
|
| 1210 |
seed_seq(InputIterator begin, InputIterator end);
|
| 1211 |
|
|
@@ -1223,26 +1309,25 @@ public:
|
|
| 1223 |
void operator=(const seed_seq&) = delete;
|
| 1224 |
|
| 1225 |
private:
|
| 1226 |
vector<result_type> v; // exposition only
|
| 1227 |
};
|
|
|
|
| 1228 |
```
|
| 1229 |
|
| 1230 |
``` cpp
|
| 1231 |
-
seed_seq();
|
| 1232 |
```
|
| 1233 |
|
| 1234 |
*Ensures:* `v.empty()` is `true`.
|
| 1235 |
|
| 1236 |
-
*Throws:* Nothing.
|
| 1237 |
-
|
| 1238 |
``` cpp
|
| 1239 |
template<class T>
|
| 1240 |
seed_seq(initializer_list<T> il);
|
| 1241 |
```
|
| 1242 |
|
| 1243 |
-
*
|
| 1244 |
|
| 1245 |
*Effects:* Same as `seed_seq(il.begin(), il.end())`.
|
| 1246 |
|
| 1247 |
``` cpp
|
| 1248 |
template<class InputIterator>
|
|
@@ -1358,14 +1443,10 @@ copy(v.begin(), v.end(), dest);
|
|
| 1358 |
``` cpp
|
| 1359 |
template<class RealType, size_t bits, class URBG>
|
| 1360 |
RealType generate_canonical(URBG& g);
|
| 1361 |
```
|
| 1362 |
|
| 1363 |
-
*Complexity:* Exactly k = max(1, ⌈ b / log₂ R ⌉) invocations of `g`,
|
| 1364 |
-
where b[^5] is the lesser of `numeric_limits<RealType>::digits` and
|
| 1365 |
-
`bits`, and R is the value of `g.max()` - `g.min()` + 1.
|
| 1366 |
-
|
| 1367 |
*Effects:* Invokes `g()` k times to obtain values g₀, …, gₖ₋₁,
|
| 1368 |
respectively. Calculates a quantity
|
| 1369 |
$$S = \sum_{i=0}^{k-1} (g_i - \texttt{g.min()})
|
| 1370 |
\cdot R^i$$ using arithmetic of type `RealType`.
|
| 1371 |
|
|
@@ -1373,10 +1454,16 @@ $$S = \sum_{i=0}^{k-1} (g_i - \texttt{g.min()})
|
|
| 1373 |
|
| 1374 |
[*Note 1*: 0 ≤ S / Rᵏ < 1. — *end note*]
|
| 1375 |
|
| 1376 |
*Throws:* What and when `g` throws.
|
| 1377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1378 |
[*Note 2*: If the values gᵢ produced by `g` are uniformly distributed,
|
| 1379 |
the instantiation’s results are distributed as uniformly as possible.
|
| 1380 |
Obtaining a value in this way can be a useful step in the process of
|
| 1381 |
transforming a value generated by a uniform random bit generator into a
|
| 1382 |
value that can be delivered by a random number
|
|
@@ -1411,10 +1498,11 @@ outside its stated domain.
|
|
| 1411 |
A `uniform_int_distribution` random number distribution produces random
|
| 1412 |
integers i, a ≤ i ≤ b, distributed according to the constant discrete
|
| 1413 |
probability function $$P(i\,|\,a,b) = 1 / (b - a + 1) \text{ .}$$
|
| 1414 |
|
| 1415 |
``` cpp
|
|
|
|
| 1416 |
template<class IntType = int>
|
| 1417 |
class uniform_int_distribution {
|
| 1418 |
public:
|
| 1419 |
// types
|
| 1420 |
using result_type = IntType;
|
|
@@ -1424,10 +1512,13 @@ template<class IntType = int>
|
|
| 1424 |
uniform_int_distribution() : uniform_int_distribution(0) {}
|
| 1425 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 1426 |
explicit uniform_int_distribution(const param_type& parm);
|
| 1427 |
void reset();
|
| 1428 |
|
|
|
|
|
|
|
|
|
|
| 1429 |
// generating functions
|
| 1430 |
template<class URBG>
|
| 1431 |
result_type operator()(URBG& g);
|
| 1432 |
template<class URBG>
|
| 1433 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1437,11 +1528,20 @@ template<class IntType = int>
|
|
| 1437 |
result_type b() const;
|
| 1438 |
param_type param() const;
|
| 1439 |
void param(const param_type& parm);
|
| 1440 |
result_type min() const;
|
| 1441 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1442 |
};
|
|
|
|
| 1443 |
```
|
| 1444 |
|
| 1445 |
``` cpp
|
| 1446 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 1447 |
```
|
|
@@ -1473,10 +1573,11 @@ density function $$p(x\,|\,a,b) = 1 / (b - a) \text{ .}$$
|
|
| 1473 |
|
| 1474 |
[*Note 1*: This implies that p(x | a,b) is undefined when
|
| 1475 |
`a == b`. — *end note*]
|
| 1476 |
|
| 1477 |
``` cpp
|
|
|
|
| 1478 |
template<class RealType = double>
|
| 1479 |
class uniform_real_distribution {
|
| 1480 |
public:
|
| 1481 |
// types
|
| 1482 |
using result_type = RealType;
|
|
@@ -1486,10 +1587,14 @@ template<class RealType = double>
|
|
| 1486 |
uniform_real_distribution() : uniform_real_distribution(0.0) {}
|
| 1487 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 1488 |
explicit uniform_real_distribution(const param_type& parm);
|
| 1489 |
void reset();
|
| 1490 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1491 |
// generating functions
|
| 1492 |
template<class URBG>
|
| 1493 |
result_type operator()(URBG& g);
|
| 1494 |
template<class URBG>
|
| 1495 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1499,11 +1604,20 @@ template<class RealType = double>
|
|
| 1499 |
result_type b() const;
|
| 1500 |
param_type param() const;
|
| 1501 |
void param(const param_type& parm);
|
| 1502 |
result_type min() const;
|
| 1503 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1504 |
};
|
|
|
|
| 1505 |
```
|
| 1506 |
|
| 1507 |
``` cpp
|
| 1508 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 1509 |
```
|
|
@@ -1538,10 +1652,11 @@ $$P(b\,|\,p) = \left\{ \begin{array}{ll}
|
|
| 1538 |
p & \text{ if $b = \tcode{true}$, or} \\
|
| 1539 |
1 - p & \text{ if $b = \tcode{false}$.}
|
| 1540 |
\end{array}\right.$$
|
| 1541 |
|
| 1542 |
``` cpp
|
|
|
|
| 1543 |
class bernoulli_distribution {
|
| 1544 |
public:
|
| 1545 |
// types
|
| 1546 |
using result_type = bool;
|
| 1547 |
using param_type = unspecified;
|
|
@@ -1550,10 +1665,13 @@ public:
|
|
| 1550 |
bernoulli_distribution() : bernoulli_distribution(0.5) {}
|
| 1551 |
explicit bernoulli_distribution(double p);
|
| 1552 |
explicit bernoulli_distribution(const param_type& parm);
|
| 1553 |
void reset();
|
| 1554 |
|
|
|
|
|
|
|
|
|
|
| 1555 |
// generating functions
|
| 1556 |
template<class URBG>
|
| 1557 |
result_type operator()(URBG& g);
|
| 1558 |
template<class URBG>
|
| 1559 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1562,11 +1680,20 @@ public:
|
|
| 1562 |
double p() const;
|
| 1563 |
param_type param() const;
|
| 1564 |
void param(const param_type& parm);
|
| 1565 |
result_type min() const;
|
| 1566 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1567 |
};
|
|
|
|
| 1568 |
```
|
| 1569 |
|
| 1570 |
``` cpp
|
| 1571 |
explicit bernoulli_distribution(double p);
|
| 1572 |
```
|
|
@@ -1587,10 +1714,11 @@ constructed.
|
|
| 1587 |
A `binomial_distribution` random number distribution produces integer
|
| 1588 |
values i ≥ 0 distributed according to the discrete probability function
|
| 1589 |
$$P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .}$$
|
| 1590 |
|
| 1591 |
``` cpp
|
|
|
|
| 1592 |
template<class IntType = int>
|
| 1593 |
class binomial_distribution {
|
| 1594 |
public:
|
| 1595 |
// types
|
| 1596 |
using result_type = IntType;
|
|
@@ -1600,10 +1728,13 @@ template<class IntType = int>
|
|
| 1600 |
binomial_distribution() : binomial_distribution(1) {}
|
| 1601 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 1602 |
explicit binomial_distribution(const param_type& parm);
|
| 1603 |
void reset();
|
| 1604 |
|
|
|
|
|
|
|
|
|
|
| 1605 |
// generating functions
|
| 1606 |
template<class URBG>
|
| 1607 |
result_type operator()(URBG& g);
|
| 1608 |
template<class URBG>
|
| 1609 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1613,11 +1744,20 @@ template<class IntType = int>
|
|
| 1613 |
double p() const;
|
| 1614 |
param_type param() const;
|
| 1615 |
void param(const param_type& parm);
|
| 1616 |
result_type min() const;
|
| 1617 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1618 |
};
|
|
|
|
| 1619 |
```
|
| 1620 |
|
| 1621 |
``` cpp
|
| 1622 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 1623 |
```
|
|
@@ -1646,10 +1786,11 @@ constructed.
|
|
| 1646 |
A `geometric_distribution` random number distribution produces integer
|
| 1647 |
values i ≥ 0 distributed according to the discrete probability function
|
| 1648 |
$$P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .}$$
|
| 1649 |
|
| 1650 |
``` cpp
|
|
|
|
| 1651 |
template<class IntType = int>
|
| 1652 |
class geometric_distribution {
|
| 1653 |
public:
|
| 1654 |
// types
|
| 1655 |
using result_type = IntType;
|
|
@@ -1659,10 +1800,13 @@ template<class IntType = int>
|
|
| 1659 |
geometric_distribution() : geometric_distribution(0.5) {}
|
| 1660 |
explicit geometric_distribution(double p);
|
| 1661 |
explicit geometric_distribution(const param_type& parm);
|
| 1662 |
void reset();
|
| 1663 |
|
|
|
|
|
|
|
|
|
|
| 1664 |
// generating functions
|
| 1665 |
template<class URBG>
|
| 1666 |
result_type operator()(URBG& g);
|
| 1667 |
template<class URBG>
|
| 1668 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1671,11 +1815,20 @@ template<class IntType = int>
|
|
| 1671 |
double p() const;
|
| 1672 |
param_type param() const;
|
| 1673 |
void param(const param_type& parm);
|
| 1674 |
result_type min() const;
|
| 1675 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1676 |
};
|
|
|
|
| 1677 |
```
|
| 1678 |
|
| 1679 |
``` cpp
|
| 1680 |
explicit geometric_distribution(double p);
|
| 1681 |
```
|
|
@@ -1700,10 +1853,11 @@ $$P(i\,|\,k,p) = \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i \text{ .}$$
|
|
| 1700 |
|
| 1701 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 1702 |
`p == 1`. — *end note*]
|
| 1703 |
|
| 1704 |
``` cpp
|
|
|
|
| 1705 |
template<class IntType = int>
|
| 1706 |
class negative_binomial_distribution {
|
| 1707 |
public:
|
| 1708 |
// types
|
| 1709 |
using result_type = IntType;
|
|
@@ -1713,10 +1867,14 @@ template<class IntType = int>
|
|
| 1713 |
negative_binomial_distribution() : negative_binomial_distribution(1) {}
|
| 1714 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 1715 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 1716 |
void reset();
|
| 1717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1718 |
// generating functions
|
| 1719 |
template<class URBG>
|
| 1720 |
result_type operator()(URBG& g);
|
| 1721 |
template<class URBG>
|
| 1722 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1726,11 +1884,20 @@ template<class IntType = int>
|
|
| 1726 |
double p() const;
|
| 1727 |
param_type param() const;
|
| 1728 |
void param(const param_type& parm);
|
| 1729 |
result_type min() const;
|
| 1730 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1731 |
};
|
|
|
|
| 1732 |
```
|
| 1733 |
|
| 1734 |
``` cpp
|
| 1735 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 1736 |
```
|
|
@@ -1776,10 +1943,13 @@ template<class IntType = int>
|
|
| 1776 |
poisson_distribution() : poisson_distribution(1.0) {}
|
| 1777 |
explicit poisson_distribution(double mean);
|
| 1778 |
explicit poisson_distribution(const param_type& parm);
|
| 1779 |
void reset();
|
| 1780 |
|
|
|
|
|
|
|
|
|
|
| 1781 |
// generating functions
|
| 1782 |
template<class URBG>
|
| 1783 |
result_type operator()(URBG& g);
|
| 1784 |
template<class URBG>
|
| 1785 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1788,10 +1958,18 @@ template<class IntType = int>
|
|
| 1788 |
double mean() const;
|
| 1789 |
param_type param() const;
|
| 1790 |
void param(const param_type& parm);
|
| 1791 |
result_type min() const;
|
| 1792 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1793 |
};
|
| 1794 |
```
|
| 1795 |
|
| 1796 |
``` cpp
|
| 1797 |
explicit poisson_distribution(double mean);
|
|
@@ -1813,10 +1991,11 @@ constructed.
|
|
| 1813 |
An `exponential_distribution` random number distribution produces random
|
| 1814 |
numbers x > 0 distributed according to the probability density function
|
| 1815 |
$$p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .}$$
|
| 1816 |
|
| 1817 |
``` cpp
|
|
|
|
| 1818 |
template<class RealType = double>
|
| 1819 |
class exponential_distribution {
|
| 1820 |
public:
|
| 1821 |
// types
|
| 1822 |
using result_type = RealType;
|
|
@@ -1826,10 +2005,13 @@ template<class RealType = double>
|
|
| 1826 |
exponential_distribution() : exponential_distribution(1.0) {}
|
| 1827 |
explicit exponential_distribution(RealType lambda);
|
| 1828 |
explicit exponential_distribution(const param_type& parm);
|
| 1829 |
void reset();
|
| 1830 |
|
|
|
|
|
|
|
|
|
|
| 1831 |
// generating functions
|
| 1832 |
template<class URBG>
|
| 1833 |
result_type operator()(URBG& g);
|
| 1834 |
template<class URBG>
|
| 1835 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1838,11 +2020,20 @@ template<class RealType = double>
|
|
| 1838 |
RealType lambda() const;
|
| 1839 |
param_type param() const;
|
| 1840 |
void param(const param_type& parm);
|
| 1841 |
result_type min() const;
|
| 1842 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1843 |
};
|
|
|
|
| 1844 |
```
|
| 1845 |
|
| 1846 |
``` cpp
|
| 1847 |
explicit exponential_distribution(RealType lambda);
|
| 1848 |
```
|
|
@@ -1865,10 +2056,11 @@ numbers x > 0 distributed according to the probability density function
|
|
| 1865 |
$$p(x\,|\,\alpha,\beta) =
|
| 1866 |
\frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \, \cdot \, x^{\, \alpha-1}
|
| 1867 |
\text{ .}$$
|
| 1868 |
|
| 1869 |
``` cpp
|
|
|
|
| 1870 |
template<class RealType = double>
|
| 1871 |
class gamma_distribution {
|
| 1872 |
public:
|
| 1873 |
// types
|
| 1874 |
using result_type = RealType;
|
|
@@ -1878,10 +2070,13 @@ template<class RealType = double>
|
|
| 1878 |
gamma_distribution() : gamma_distribution(1.0) {}
|
| 1879 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 1880 |
explicit gamma_distribution(const param_type& parm);
|
| 1881 |
void reset();
|
| 1882 |
|
|
|
|
|
|
|
|
|
|
| 1883 |
// generating functions
|
| 1884 |
template<class URBG>
|
| 1885 |
result_type operator()(URBG& g);
|
| 1886 |
template<class URBG>
|
| 1887 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1891,11 +2086,20 @@ template<class RealType = double>
|
|
| 1891 |
RealType beta() const;
|
| 1892 |
param_type param() const;
|
| 1893 |
void param(const param_type& parm);
|
| 1894 |
result_type min() const;
|
| 1895 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1896 |
};
|
|
|
|
| 1897 |
```
|
| 1898 |
|
| 1899 |
``` cpp
|
| 1900 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 1901 |
```
|
|
@@ -1927,10 +2131,11 @@ $$p(x\,|\,a,b) = \frac{a}{b}
|
|
| 1927 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 1928 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 1929 |
\text{ .}$$
|
| 1930 |
|
| 1931 |
``` cpp
|
|
|
|
| 1932 |
template<class RealType = double>
|
| 1933 |
class weibull_distribution {
|
| 1934 |
public:
|
| 1935 |
// types
|
| 1936 |
using result_type = RealType;
|
|
@@ -1940,10 +2145,13 @@ template<class RealType = double>
|
|
| 1940 |
weibull_distribution() : weibull_distribution(1.0) {}
|
| 1941 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 1942 |
explicit weibull_distribution(const param_type& parm);
|
| 1943 |
void reset();
|
| 1944 |
|
|
|
|
|
|
|
|
|
|
| 1945 |
// generating functions
|
| 1946 |
template<class URBG>
|
| 1947 |
result_type operator()(URBG& g);
|
| 1948 |
template<class URBG>
|
| 1949 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -1953,11 +2161,20 @@ template<class RealType = double>
|
|
| 1953 |
RealType b() const;
|
| 1954 |
param_type param() const;
|
| 1955 |
void param(const param_type& parm);
|
| 1956 |
result_type min() const;
|
| 1957 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1958 |
};
|
|
|
|
| 1959 |
```
|
| 1960 |
|
| 1961 |
``` cpp
|
| 1962 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 1963 |
```
|
|
@@ -1983,15 +2200,18 @@ constructed.
|
|
| 1983 |
|
| 1984 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 1985 |
|
| 1986 |
An `extreme_value_distribution` random number distribution produces
|
| 1987 |
random numbers x distributed according to the probability density
|
| 1988 |
-
function[^
|
|
|
|
|
|
|
| 1989 |
\cdot \exp\left(\frac{a-x}{b} - \exp\left(\frac{a-x}{b}\right)\right)
|
| 1990 |
\text{ .}$$
|
| 1991 |
|
| 1992 |
``` cpp
|
|
|
|
| 1993 |
template<class RealType = double>
|
| 1994 |
class extreme_value_distribution {
|
| 1995 |
public:
|
| 1996 |
// types
|
| 1997 |
using result_type = RealType;
|
|
@@ -2001,10 +2221,14 @@ template<class RealType = double>
|
|
| 2001 |
extreme_value_distribution() : extreme_value_distribution(0.0) {}
|
| 2002 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 2003 |
explicit extreme_value_distribution(const param_type& parm);
|
| 2004 |
void reset();
|
| 2005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2006 |
// generating functions
|
| 2007 |
template<class URBG>
|
| 2008 |
result_type operator()(URBG& g);
|
| 2009 |
template<class URBG>
|
| 2010 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2014,11 +2238,20 @@ template<class RealType = double>
|
|
| 2014 |
RealType b() const;
|
| 2015 |
param_type param() const;
|
| 2016 |
void param(const param_type& parm);
|
| 2017 |
result_type min() const;
|
| 2018 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2019 |
};
|
|
|
|
| 2020 |
```
|
| 2021 |
|
| 2022 |
``` cpp
|
| 2023 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 2024 |
```
|
|
@@ -2058,10 +2291,11 @@ numbers x distributed according to the probability density function $$%
|
|
| 2058 |
}
|
| 2059 |
\text{ .}$$ The distribution parameters μ and σ are also known as this
|
| 2060 |
distribution’s *mean* and *standard deviation*.
|
| 2061 |
|
| 2062 |
``` cpp
|
|
|
|
| 2063 |
template<class RealType = double>
|
| 2064 |
class normal_distribution {
|
| 2065 |
public:
|
| 2066 |
// types
|
| 2067 |
using result_type = RealType;
|
|
@@ -2071,10 +2305,13 @@ template<class RealType = double>
|
|
| 2071 |
normal_distribution() : normal_distribution(0.0) {}
|
| 2072 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 2073 |
explicit normal_distribution(const param_type& parm);
|
| 2074 |
void reset();
|
| 2075 |
|
|
|
|
|
|
|
|
|
|
| 2076 |
// generating functions
|
| 2077 |
template<class URBG>
|
| 2078 |
result_type operator()(URBG& g);
|
| 2079 |
template<class URBG>
|
| 2080 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2084,11 +2321,20 @@ template<class RealType = double>
|
|
| 2084 |
RealType stddev() const;
|
| 2085 |
param_type param() const;
|
| 2086 |
void param(const param_type& parm);
|
| 2087 |
result_type min() const;
|
| 2088 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2089 |
};
|
|
|
|
| 2090 |
```
|
| 2091 |
|
| 2092 |
``` cpp
|
| 2093 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 2094 |
```
|
|
@@ -2119,10 +2365,11 @@ numbers x > 0 distributed according to the probability density function
|
|
| 2119 |
$$p(x\,|\,m,s) = \frac{1}{s x \sqrt{2 \pi}}
|
| 2120 |
\cdot \exp{\left(-\frac{(\ln{x} - m)^2}{2 s^2}\right)}
|
| 2121 |
\text{ .}$$
|
| 2122 |
|
| 2123 |
``` cpp
|
|
|
|
| 2124 |
template<class RealType = double>
|
| 2125 |
class lognormal_distribution {
|
| 2126 |
public:
|
| 2127 |
// types
|
| 2128 |
using result_type = RealType;
|
|
@@ -2132,10 +2379,13 @@ template<class RealType = double>
|
|
| 2132 |
lognormal_distribution() : lognormal_distribution(0.0) {}
|
| 2133 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 2134 |
explicit lognormal_distribution(const param_type& parm);
|
| 2135 |
void reset();
|
| 2136 |
|
|
|
|
|
|
|
|
|
|
| 2137 |
// generating functions
|
| 2138 |
template<class URBG>
|
| 2139 |
result_type operator()(URBG& g);
|
| 2140 |
template<class URBG>
|
| 2141 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2145,11 +2395,20 @@ template<class RealType = double>
|
|
| 2145 |
RealType s() const;
|
| 2146 |
param_type param() const;
|
| 2147 |
void param(const param_type& parm);
|
| 2148 |
result_type min() const;
|
| 2149 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2150 |
};
|
|
|
|
| 2151 |
```
|
| 2152 |
|
| 2153 |
``` cpp
|
| 2154 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 2155 |
```
|
|
@@ -2178,10 +2437,11 @@ constructed.
|
|
| 2178 |
A `chi_squared_distribution` random number distribution produces random
|
| 2179 |
numbers x > 0 distributed according to the probability density function
|
| 2180 |
$$p(x\,|\,n) = \frac{x^{(n/2)-1} \cdot e^{-x/2}}{\Gamma(n/2) \cdot 2^{n/2}} \text{ .}$$
|
| 2181 |
|
| 2182 |
``` cpp
|
|
|
|
| 2183 |
template<class RealType = double>
|
| 2184 |
class chi_squared_distribution {
|
| 2185 |
public:
|
| 2186 |
// types
|
| 2187 |
using result_type = RealType;
|
|
@@ -2191,10 +2451,13 @@ template<class RealType = double>
|
|
| 2191 |
chi_squared_distribution() : chi_squared_distribution(1.0) {}
|
| 2192 |
explicit chi_squared_distribution(RealType n);
|
| 2193 |
explicit chi_squared_distribution(const param_type& parm);
|
| 2194 |
void reset();
|
| 2195 |
|
|
|
|
|
|
|
|
|
|
| 2196 |
// generating functions
|
| 2197 |
template<class URBG>
|
| 2198 |
result_type operator()(URBG& g);
|
| 2199 |
template<class URBG>
|
| 2200 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2203,11 +2466,20 @@ template<class RealType = double>
|
|
| 2203 |
RealType n() const;
|
| 2204 |
param_type param() const;
|
| 2205 |
void param(const param_type& parm);
|
| 2206 |
result_type min() const;
|
| 2207 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2208 |
};
|
|
|
|
| 2209 |
```
|
| 2210 |
|
| 2211 |
``` cpp
|
| 2212 |
explicit chi_squared_distribution(RealType n);
|
| 2213 |
```
|
|
@@ -2228,10 +2500,11 @@ constructed.
|
|
| 2228 |
A `cauchy_distribution` random number distribution produces random
|
| 2229 |
numbers x distributed according to the probability density function
|
| 2230 |
$$p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .}$$
|
| 2231 |
|
| 2232 |
``` cpp
|
|
|
|
| 2233 |
template<class RealType = double>
|
| 2234 |
class cauchy_distribution {
|
| 2235 |
public:
|
| 2236 |
// types
|
| 2237 |
using result_type = RealType;
|
|
@@ -2241,10 +2514,13 @@ template<class RealType = double>
|
|
| 2241 |
cauchy_distribution() : cauchy_distribution(0.0) {}
|
| 2242 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 2243 |
explicit cauchy_distribution(const param_type& parm);
|
| 2244 |
void reset();
|
| 2245 |
|
|
|
|
|
|
|
|
|
|
| 2246 |
// generating functions
|
| 2247 |
template<class URBG>
|
| 2248 |
result_type operator()(URBG& g);
|
| 2249 |
template<class URBG>
|
| 2250 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2254,11 +2530,20 @@ template<class RealType = double>
|
|
| 2254 |
RealType b() const;
|
| 2255 |
param_type param() const;
|
| 2256 |
void param(const param_type& parm);
|
| 2257 |
result_type min() const;
|
| 2258 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2259 |
};
|
|
|
|
| 2260 |
```
|
| 2261 |
|
| 2262 |
``` cpp
|
| 2263 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 2264 |
```
|
|
@@ -2291,10 +2576,11 @@ $$p(x\,|\,m,n) = \frac{\Gamma\big((m+n)/2\big)}{\Gamma(m/2) \; \Gamma(n/2)}
|
|
| 2291 |
\cdot x^{(m/2)-1}
|
| 2292 |
\cdot \left(1 + \frac{m x}{n}\right)^{-(m + n)/2}
|
| 2293 |
\text{ .}$$
|
| 2294 |
|
| 2295 |
``` cpp
|
|
|
|
| 2296 |
template<class RealType = double>
|
| 2297 |
class fisher_f_distribution {
|
| 2298 |
public:
|
| 2299 |
// types
|
| 2300 |
using result_type = RealType;
|
|
@@ -2304,10 +2590,13 @@ template<class RealType = double>
|
|
| 2304 |
fisher_f_distribution() : fisher_f_distribution(1.0) {}
|
| 2305 |
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
|
| 2306 |
explicit fisher_f_distribution(const param_type& parm);
|
| 2307 |
void reset();
|
| 2308 |
|
|
|
|
|
|
|
|
|
|
| 2309 |
// generating functions
|
| 2310 |
template<class URBG>
|
| 2311 |
result_type operator()(URBG& g);
|
| 2312 |
template<class URBG>
|
| 2313 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2317,11 +2606,20 @@ template<class RealType = double>
|
|
| 2317 |
RealType n() const;
|
| 2318 |
param_type param() const;
|
| 2319 |
void param(const param_type& parm);
|
| 2320 |
result_type min() const;
|
| 2321 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2322 |
};
|
|
|
|
| 2323 |
```
|
| 2324 |
|
| 2325 |
``` cpp
|
| 2326 |
explicit fisher_f_distribution(RealType m, RealType n = 1);
|
| 2327 |
```
|
|
@@ -2353,10 +2651,11 @@ $$p(x\,|\,n) = \frac{1}{\sqrt{n \pi}}
|
|
| 2353 |
\cdot \frac{\Gamma\big((n+1)/2\big)}{\Gamma(n/2)}
|
| 2354 |
\cdot \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2}
|
| 2355 |
\text{ .}$$
|
| 2356 |
|
| 2357 |
``` cpp
|
|
|
|
| 2358 |
template<class RealType = double>
|
| 2359 |
class student_t_distribution {
|
| 2360 |
public:
|
| 2361 |
// types
|
| 2362 |
using result_type = RealType;
|
|
@@ -2366,10 +2665,13 @@ template<class RealType = double>
|
|
| 2366 |
student_t_distribution() : student_t_distribution(1.0) {}
|
| 2367 |
explicit student_t_distribution(RealType n);
|
| 2368 |
explicit student_t_distribution(const param_type& parm);
|
| 2369 |
void reset();
|
| 2370 |
|
|
|
|
|
|
|
|
|
|
| 2371 |
// generating functions
|
| 2372 |
template<class URBG>
|
| 2373 |
result_type operator()(URBG& g);
|
| 2374 |
template<class URBG>
|
| 2375 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2378,11 +2680,20 @@ template<class RealType = double>
|
|
| 2378 |
RealType n() const;
|
| 2379 |
param_type param() const;
|
| 2380 |
void param(const param_type& parm);
|
| 2381 |
result_type min() const;
|
| 2382 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2383 |
};
|
|
|
|
| 2384 |
```
|
| 2385 |
|
| 2386 |
``` cpp
|
| 2387 |
explicit student_t_distribution(RealType n);
|
| 2388 |
```
|
|
@@ -2411,10 +2722,11 @@ as: pₖ = {wₖ / S} for k = 0, …, n - 1, in which the values wₖ, commonly
|
|
| 2411 |
known as the *weights* , shall be non-negative, non-NaN, and
|
| 2412 |
non-infinity. Moreover, the following relation shall hold:
|
| 2413 |
$0 < S = w_0 + \dotsb + w_{n - 1}$.
|
| 2414 |
|
| 2415 |
``` cpp
|
|
|
|
| 2416 |
template<class IntType = int>
|
| 2417 |
class discrete_distribution {
|
| 2418 |
public:
|
| 2419 |
// types
|
| 2420 |
using result_type = IntType;
|
|
@@ -2428,10 +2740,13 @@ template<class IntType = int>
|
|
| 2428 |
template<class UnaryOperation>
|
| 2429 |
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
|
| 2430 |
explicit discrete_distribution(const param_type& parm);
|
| 2431 |
void reset();
|
| 2432 |
|
|
|
|
|
|
|
|
|
|
| 2433 |
// generating functions
|
| 2434 |
template<class URBG>
|
| 2435 |
result_type operator()(URBG& g);
|
| 2436 |
template<class URBG>
|
| 2437 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2440,11 +2755,20 @@ template<class IntType = int>
|
|
| 2440 |
vector<double> probabilities() const;
|
| 2441 |
param_type param() const;
|
| 2442 |
void param(const param_type& parm);
|
| 2443 |
result_type min() const;
|
| 2444 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2445 |
};
|
|
|
|
| 2446 |
```
|
| 2447 |
|
| 2448 |
``` cpp
|
| 2449 |
discrete_distribution();
|
| 2450 |
```
|
|
@@ -2520,10 +2844,11 @@ $$\rho_k = \frac{w_k}{S \cdot (b_{k+1}-b_k)} \text{ for } k = 0, \dotsc, n - 1 \
|
|
| 2520 |
in which the values wₖ, commonly known as the *weights* , shall be
|
| 2521 |
non-negative, non-NaN, and non-infinity. Moreover, the following
|
| 2522 |
relation shall hold: 0 < S = w₀ + … + wₙ₋₁.
|
| 2523 |
|
| 2524 |
``` cpp
|
|
|
|
| 2525 |
template<class RealType = double>
|
| 2526 |
class piecewise_constant_distribution {
|
| 2527 |
public:
|
| 2528 |
// types
|
| 2529 |
using result_type = RealType;
|
|
@@ -2540,10 +2865,14 @@ template<class RealType = double>
|
|
| 2540 |
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,
|
| 2541 |
UnaryOperation fw);
|
| 2542 |
explicit piecewise_constant_distribution(const param_type& parm);
|
| 2543 |
void reset();
|
| 2544 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2545 |
// generating functions
|
| 2546 |
template<class URBG>
|
| 2547 |
result_type operator()(URBG& g);
|
| 2548 |
template<class URBG>
|
| 2549 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2553,11 +2882,20 @@ template<class RealType = double>
|
|
| 2553 |
vector<result_type> densities() const;
|
| 2554 |
param_type param() const;
|
| 2555 |
void param(const param_type& parm);
|
| 2556 |
result_type min() const;
|
| 2557 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2558 |
};
|
|
|
|
| 2559 |
```
|
| 2560 |
|
| 2561 |
``` cpp
|
| 2562 |
piecewise_constant_distribution();
|
| 2563 |
```
|
|
@@ -2656,10 +2994,11 @@ in which the values wₖ, commonly known as the *weights at boundaries* ,
|
|
| 2656 |
shall be non-negative, non-NaN, and non-infinity. Moreover, the
|
| 2657 |
following relation shall hold:
|
| 2658 |
$$0 < S = \frac{1}{2} \cdot \sum_{k=0}^{n-1} (w_k + w_{k+1}) \cdot (b_{k+1} - b_k) \text{ .}$$
|
| 2659 |
|
| 2660 |
``` cpp
|
|
|
|
| 2661 |
template<class RealType = double>
|
| 2662 |
class piecewise_linear_distribution {
|
| 2663 |
public:
|
| 2664 |
// types
|
| 2665 |
using result_type = RealType;
|
|
@@ -2675,10 +3014,14 @@ template<class RealType = double>
|
|
| 2675 |
template<class UnaryOperation>
|
| 2676 |
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
|
| 2677 |
explicit piecewise_linear_distribution(const param_type& parm);
|
| 2678 |
void reset();
|
| 2679 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2680 |
// generating functions
|
| 2681 |
template<class URBG>
|
| 2682 |
result_type operator()(URBG& g);
|
| 2683 |
template<class URBG>
|
| 2684 |
result_type operator()(URBG& g, const param_type& parm);
|
|
@@ -2688,11 +3031,20 @@ template<class RealType = double>
|
|
| 2688 |
vector<result_type> densities() const;
|
| 2689 |
param_type param() const;
|
| 2690 |
void param(const param_type& parm);
|
| 2691 |
result_type min() const;
|
| 2692 |
result_type max() const;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2693 |
};
|
|
|
|
| 2694 |
```
|
| 2695 |
|
| 2696 |
``` cpp
|
| 2697 |
piecewise_linear_distribution();
|
| 2698 |
```
|
|
|
|
| 1 |
## Random number generation <a id="rand">[[rand]]</a>
|
| 2 |
|
| 3 |
+
### General <a id="rand.general">[[rand.general]]</a>
|
| 4 |
+
|
| 5 |
+
Subclause [[rand]] defines a facility for generating (pseudo-)random
|
| 6 |
numbers.
|
| 7 |
|
| 8 |
In addition to a few utilities, four categories of entities are
|
| 9 |
described: *uniform random bit generators*, *random number engines*,
|
| 10 |
*random number engine adaptors*, and *random number distributions*.
|
|
|
|
| 16 |
binding of any uniform random bit generator object `e` as the argument
|
| 17 |
to any random number distribution object `d`, thus producing a
|
| 18 |
zero-argument function object such as given by
|
| 19 |
`bind(d,e)`. — *end note*]
|
| 20 |
|
| 21 |
+
Each of the entities specified in [[rand]] has an associated arithmetic
|
| 22 |
+
type [[basic.fundamental]] identified as `result_type`. With `T` as the
|
| 23 |
+
`result_type` thus associated with such an entity, that entity is
|
| 24 |
+
characterized:
|
| 25 |
|
| 26 |
- as *boolean* or equivalently as *boolean-valued*, if `T` is `bool`;
|
| 27 |
- otherwise as *integral* or equivalently as *integer-valued*, if
|
| 28 |
`numeric_limits<T>::is_integer` is `true`;
|
| 29 |
- otherwise as *floating-point* or equivalently as *real-valued*.
|
| 30 |
|
| 31 |
If integer-valued, an entity may optionally be further characterized as
|
| 32 |
*signed* or *unsigned*, according to `numeric_limits<T>::is_signed`.
|
| 33 |
|
| 34 |
+
Unless otherwise specified, all descriptions of calculations in [[rand]]
|
| 35 |
+
use mathematical real numbers.
|
| 36 |
|
| 37 |
+
Throughout [[rand]], the operators , , and \xor denote the respective
|
| 38 |
+
conventional bitwise operations. Further:
|
| 39 |
|
| 40 |
- the operator \rightshift denotes a bitwise right shift with
|
| 41 |
zero-valued bits appearing in the high bits of the result, and
|
| 42 |
- the operator denotes a bitwise left shift with zero-valued bits
|
| 43 |
appearing in the low bits of the result, and whose result is always
|
| 44 |
taken modulo 2ʷ.
|
| 45 |
|
| 46 |
### Header `<random>` synopsis <a id="rand.synopsis">[[rand.synopsis]]</a>
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
+
#include <initializer_list> // see [initializer.list.syn]
|
| 50 |
|
| 51 |
namespace std {
|
| 52 |
// [rand.req.urng], uniform random bit generator requirements
|
| 53 |
template<class G>
|
| 54 |
concept uniform_random_bit_generator = see below;
|
|
|
|
| 237 |
semantics, and if `S` also meets all other requirements of this
|
| 238 |
subclause [[rand.req.seedseq]]. In that Table and throughout this
|
| 239 |
subclause:
|
| 240 |
|
| 241 |
- `T` is the type named by `S`’s associated `result_type`;
|
| 242 |
+
- `q` is a value of type `S` and `r` is a value of type `S` or
|
| 243 |
+
`const S`;
|
| 244 |
- `ib` and `ie` are input iterators with an unsigned integer
|
| 245 |
`value_type` of at least 32 bits;
|
| 246 |
- `rb` and `re` are mutable random access iterators with an unsigned
|
| 247 |
integer `value_type` of at least 32 bits;
|
| 248 |
- `ob` is an output iterator; and
|
| 249 |
+
- `il` is a value of type `initializer_list<T>`.
|
| 250 |
|
| 251 |
#### Uniform random bit generator requirements <a id="rand.req.urng">[[rand.req.urng]]</a>
|
| 252 |
|
| 253 |
A *uniform random bit generator* `g` of type `G` is a function object
|
| 254 |
returning unsigned integer values such that each value in the range of
|
|
|
|
| 309 |
requirements of this subclause [[rand.req.eng]]. In that Table and
|
| 310 |
throughout this subclause:
|
| 311 |
|
| 312 |
- `T` is the type named by `E`’s associated `result_type`;
|
| 313 |
- `e` is a value of `E`, `v` is an lvalue of `E`, `x` and `y` are
|
| 314 |
+
(possibly const) values of `E`;
|
| 315 |
- `s` is a value of `T`;
|
| 316 |
- `q` is an lvalue meeting the requirements of a seed sequence
|
| 317 |
[[rand.req.seedseq]];
|
| 318 |
- `z` is a value of type `unsigned long long`;
|
| 319 |
- `os` is an lvalue of the type of some class template specialization
|
| 320 |
`basic_ostream<charT,` `traits>`; and
|
| 321 |
- `is` is an lvalue of the type of some class template specialization
|
| 322 |
`basic_istream<charT,` `traits>`;
|
| 323 |
|
| 324 |
where `charT` and `traits` are constrained according to [[strings]] and
|
| 325 |
+
[[input.output]].[^2]
|
| 326 |
|
| 327 |
`E` shall meet the *Cpp17CopyConstructible* (
|
| 328 |
[[cpp17.copyconstructible]]) and *Cpp17CopyAssignable* (
|
| 329 |
[[cpp17.copyassignable]]) requirements. These operations shall each be
|
| 330 |
of complexity no worse than 𝑂(\text{size of state}).
|
|
|
|
| 420 |
other requirements of this subclause [[rand.req.dist]]. In that Table
|
| 421 |
and throughout this subclause,
|
| 422 |
|
| 423 |
- `T` is the type named by `D`’s associated `result_type`;
|
| 424 |
- `P` is the type named by `D`’s associated `param_type`;
|
| 425 |
+
- `d` is a value of `D`, and `x` and `y` are (possibly const) values of
|
| 426 |
+
`D`;
|
| 427 |
- `glb` and `lub` are values of `T` respectively corresponding to the
|
| 428 |
greatest lower bound and the least upper bound on the values
|
| 429 |
potentially returned by `d`’s `operator()`, as determined by the
|
| 430 |
current values of `d`’s parameters;
|
| 431 |
+
- `p` is a (possibly const) value of `P`;
|
| 432 |
- `g`, `g1`, and `g2` are lvalues of a type meeting the requirements of
|
| 433 |
a uniform random bit generator [[rand.req.urng]];
|
| 434 |
- `os` is an lvalue of the type of some class template specialization
|
| 435 |
`basic_ostream<charT,` `traits>`; and
|
| 436 |
- `is` is an lvalue of the type of some class template specialization
|
|
|
|
| 443 |
[[cpp17.copyconstructible]]) and *Cpp17CopyAssignable* (
|
| 444 |
[[cpp17.copyassignable]]) requirements.
|
| 445 |
|
| 446 |
The sequence of numbers produced by repeated invocations of `d(g)` shall
|
| 447 |
be independent of any invocation of `os << d` or of any `const` member
|
| 448 |
+
function of `D` between any of the invocations of `d(g)`.
|
| 449 |
|
| 450 |
If a textual representation is written using `os << x` and that
|
| 451 |
representation is restored into the same or a different object `y` of
|
| 452 |
the same type using `is >> y`, repeated invocations of `y(g)` shall
|
| 453 |
produce the same sequence of numbers as would repeated invocations of
|
|
|
|
| 477 |
using distribution_type = D;
|
| 478 |
```
|
| 479 |
|
| 480 |
### Random number engine class templates <a id="rand.eng">[[rand.eng]]</a>
|
| 481 |
|
| 482 |
+
#### General <a id="rand.eng.general">[[rand.eng.general]]</a>
|
| 483 |
+
|
| 484 |
+
Each type instantiated from a class template specified in [[rand.eng]]
|
| 485 |
+
meets the requirements of a random number engine [[rand.req.eng]] type.
|
| 486 |
|
| 487 |
Except where specified otherwise, the complexity of each function
|
| 488 |
+
specified in [[rand.eng]] is constant.
|
| 489 |
|
| 490 |
+
Except where specified otherwise, no function described in [[rand.eng]]
|
| 491 |
+
throws an exception.
|
| 492 |
|
| 493 |
+
Every function described in [[rand.eng]] that has a function parameter
|
| 494 |
+
`q` of type `Sseq&` for a template type parameter named `Sseq` that is
|
| 495 |
+
different from type `seed_seq` throws what and when the invocation of
|
| 496 |
+
`q.generate` throws.
|
| 497 |
|
| 498 |
+
Descriptions are provided in [[rand.eng]] only for engine operations
|
| 499 |
+
that are not described in [[rand.req.eng]] or for operations where there
|
| 500 |
+
is additional semantic information. In particular, declarations for copy
|
| 501 |
+
constructors, for copy assignment operators, for streaming operators,
|
| 502 |
+
and for equality and inequality operators are not shown in the synopses.
|
|
|
|
| 503 |
|
| 504 |
+
Each template specified in [[rand.eng]] requires one or more
|
| 505 |
+
relationships, involving the value(s) of its non-type template
|
| 506 |
parameter(s), to hold. A program instantiating any of these templates is
|
| 507 |
ill-formed if any such required relationship fails to hold.
|
| 508 |
|
| 509 |
For every random number engine and for every random number engine
|
| 510 |
+
adaptor `X` defined in [[rand.eng]] and in [[rand.adapt]]:
|
|
|
|
| 511 |
|
| 512 |
- if the constructor
|
| 513 |
``` cpp
|
| 514 |
template<class Sseq> explicit X(Sseq& q);
|
| 515 |
```
|
|
|
|
| 537 |
algorithm is a modular linear function of the form
|
| 538 |
TA(xᵢ) = (a ⋅ xᵢ + c) mod m; the generation algorithm is
|
| 539 |
GA(xᵢ) = xᵢ₊₁.
|
| 540 |
|
| 541 |
``` cpp
|
| 542 |
+
namespace std {
|
| 543 |
template<class UIntType, UIntType a, UIntType c, UIntType m>
|
| 544 |
class linear_congruential_engine {
|
| 545 |
public:
|
| 546 |
// types
|
| 547 |
using result_type = UIntType;
|
|
|
|
| 559 |
explicit linear_congruential_engine(result_type s);
|
| 560 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 561 |
void seed(result_type s = default_seed);
|
| 562 |
template<class Sseq> void seed(Sseq& q);
|
| 563 |
|
| 564 |
+
// equality operators
|
| 565 |
+
friend bool operator==(const linear_congruential_engine& x,
|
| 566 |
+
const linear_congruential_engine& y);
|
| 567 |
+
|
| 568 |
// generating functions
|
| 569 |
result_type operator()();
|
| 570 |
void discard(unsigned long long z);
|
| 571 |
+
|
| 572 |
+
// inserters and extractors
|
| 573 |
+
template<class charT, class traits>
|
| 574 |
+
friend basic_ostream<charT, traits>&
|
| 575 |
+
operator<<(basic_ostream<charT, traits>& os, const linear_congruential_engine& x);
|
| 576 |
+
template<class charT, class traits>
|
| 577 |
+
friend basic_istream<charT, traits>&
|
| 578 |
+
operator>>(basic_istream<charT, traits>& is, linear_congruential_engine& x);
|
| 579 |
};
|
| 580 |
+
}
|
| 581 |
```
|
| 582 |
|
| 583 |
If the template parameter `m` is 0, the modulus m used throughout this
|
| 584 |
subclause [[rand.eng.lcong]] is `numeric_limits<result_type>::max()`
|
| 585 |
plus 1.
|
|
|
|
| 610 |
If c mod m is 0 and S is 0, sets the engine’s state to 1, else sets
|
| 611 |
the engine’s state to S.
|
| 612 |
|
| 613 |
#### Class template `mersenne_twister_engine` <a id="rand.eng.mers">[[rand.eng.mers]]</a>
|
| 614 |
|
| 615 |
+
A `mersenne_twister_engine` random number engine[^3]
|
| 616 |
+
|
| 617 |
+
produces unsigned integer random numbers in the closed interval
|
| 618 |
+
[0,2ʷ-1]. The state xᵢ of a `mersenne_twister_engine` object `x` is of
|
| 619 |
+
size n and consists of a sequence X of n values of the type delivered by
|
| 620 |
+
`x`; all subscripts applied to X are to be taken modulo n.
|
| 621 |
|
| 622 |
The transition algorithm employs a twisted generalized feedback shift
|
| 623 |
register defined by shift values n and m, a twist value r, and a
|
| 624 |
conditional xor-mask a. To improve the uniformity of the result, the
|
| 625 |
bits of the raw shift register are additionally *tempered* (i.e.,
|
|
|
|
| 643 |
- Let $z_2 = z_1 \xor \bigl( (z_1 \leftshift{w} s) \bitand b \bigr)$.
|
| 644 |
- Let $z_3 = z_2 \xor \bigl( (z_2 \leftshift{w} t) \bitand c \bigr)$.
|
| 645 |
- Let $z_4 = z_3 \xor ( z_3 \rightshift \ell )$.
|
| 646 |
|
| 647 |
``` cpp
|
| 648 |
+
namespace std {
|
| 649 |
template<class UIntType, size_t w, size_t n, size_t m, size_t r,
|
| 650 |
UIntType a, size_t u, UIntType d, size_t s,
|
| 651 |
UIntType b, size_t t,
|
| 652 |
UIntType c, size_t l, UIntType f>
|
| 653 |
class mersenne_twister_engine {
|
|
|
|
| 678 |
explicit mersenne_twister_engine(result_type value);
|
| 679 |
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
|
| 680 |
void seed(result_type value = default_seed);
|
| 681 |
template<class Sseq> void seed(Sseq& q);
|
| 682 |
|
| 683 |
+
// equality operators
|
| 684 |
+
friend bool operator==(const mersenne_twister_engine& x, const mersenne_twister_engine& y);
|
| 685 |
+
|
| 686 |
// generating functions
|
| 687 |
result_type operator()();
|
| 688 |
void discard(unsigned long long z);
|
| 689 |
+
|
| 690 |
+
// inserters and extractors
|
| 691 |
+
template<class charT, class traits>
|
| 692 |
+
friend basic_ostream<charT, traits>&
|
| 693 |
+
operator<<(basic_ostream<charT, traits>& os, const mersenne_twister_engine& x);
|
| 694 |
+
template<class charT, class traits>
|
| 695 |
+
friend basic_istream<charT, traits>&
|
| 696 |
+
operator>>(basic_istream<charT, traits>& is, mersenne_twister_engine& x);
|
| 697 |
};
|
| 698 |
+
}
|
| 699 |
```
|
| 700 |
|
| 701 |
The following relations shall hold: `0 < m`, `m <= n`, `2u < w`,
|
| 702 |
`r <= w`, `u <= w`, `s <= w`, `t <= w`, `l <= w`,
|
| 703 |
`w <= numeric_limits<UIntType>::digits`, `a <= (1u<<w) - 1u`,
|
|
|
|
| 755 |
|
| 756 |
The generation algorithm is given by GA(xᵢ) = y, where y is the value
|
| 757 |
produced as a result of advancing the engine’s state as described above.
|
| 758 |
|
| 759 |
``` cpp
|
| 760 |
+
namespace std {
|
| 761 |
template<class UIntType, size_t w, size_t s, size_t r>
|
| 762 |
class subtract_with_carry_engine {
|
| 763 |
public:
|
| 764 |
// types
|
| 765 |
using result_type = UIntType;
|
|
|
|
| 777 |
explicit subtract_with_carry_engine(result_type value);
|
| 778 |
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
|
| 779 |
void seed(result_type value = default_seed);
|
| 780 |
template<class Sseq> void seed(Sseq& q);
|
| 781 |
|
| 782 |
+
// equality operators
|
| 783 |
+
friend bool operator==(const subtract_with_carry_engine& x,
|
| 784 |
+
const subtract_with_carry_engine& y);
|
| 785 |
+
|
| 786 |
// generating functions
|
| 787 |
result_type operator()();
|
| 788 |
void discard(unsigned long long z);
|
| 789 |
+
|
| 790 |
+
// inserters and extractors
|
| 791 |
+
template<class charT, class traits>
|
| 792 |
+
friend basic_ostream<charT, traits>&
|
| 793 |
+
operator<<(basic_ostream<charT, traits>& os, const subtract_with_carry_engine& x);
|
| 794 |
+
template<class charT, class traits>
|
| 795 |
+
friend basic_istream<charT, traits>&
|
| 796 |
+
operator>>(basic_istream<charT, traits>& is, subtract_with_carry_engine& x);
|
| 797 |
};
|
| 798 |
+
}
|
| 799 |
```
|
| 800 |
|
| 801 |
The following relations shall hold: `0u < s`, `s < r`, `0 < w`, and
|
| 802 |
`w <= numeric_limits<UIntType>::digits`.
|
| 803 |
|
|
|
|
| 818 |
linear_congruential_engine<result_type,
|
| 819 |
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
|
| 820 |
```
|
| 821 |
|
| 822 |
Then, to set each Xₖ, obtain new values z₀, …, zₙ₋₁ from n = ⌈ w/32 ⌉
|
| 823 |
+
successive invocations of `e`. Set Xₖ to
|
| 824 |
$\left( \sum_{j=0}^{n-1} z_j \cdot 2^{32j}\right) \bmod m$.
|
| 825 |
|
| 826 |
*Complexity:* Exactly n ⋅ `r` invocations of `e`.
|
| 827 |
|
| 828 |
``` cpp
|
|
|
|
| 882 |
|
| 883 |
The generation algorithm yields the value returned by the last
|
| 884 |
invocation of `e()` while advancing `e`’s state as described above.
|
| 885 |
|
| 886 |
``` cpp
|
| 887 |
+
namespace std {
|
| 888 |
template<class Engine, size_t p, size_t r>
|
| 889 |
class discard_block_engine {
|
| 890 |
public:
|
| 891 |
// types
|
| 892 |
using result_type = typename Engine::result_type;
|
|
|
|
| 905 |
template<class Sseq> explicit discard_block_engine(Sseq& q);
|
| 906 |
void seed();
|
| 907 |
void seed(result_type s);
|
| 908 |
template<class Sseq> void seed(Sseq& q);
|
| 909 |
|
| 910 |
+
// equality operators
|
| 911 |
+
friend bool operator==(const discard_block_engine& x, const discard_block_engine& y);
|
| 912 |
+
|
| 913 |
// generating functions
|
| 914 |
result_type operator()();
|
| 915 |
void discard(unsigned long long z);
|
| 916 |
|
| 917 |
// property functions
|
| 918 |
+
const Engine& base() const noexcept { return e; }
|
| 919 |
+
|
| 920 |
+
// inserters and extractors
|
| 921 |
+
template<class charT, class traits>
|
| 922 |
+
friend basic_ostream<charT, traits>&
|
| 923 |
+
operator<<(basic_ostream<charT, traits>& os, const discard_block_engine& x);
|
| 924 |
+
template<class charT, class traits>
|
| 925 |
+
friend basic_istream<charT, traits>&
|
| 926 |
+
operator>>(basic_istream<charT, traits>& is, discard_block_engine& x);
|
| 927 |
|
| 928 |
private:
|
| 929 |
Engine e; // exposition only
|
| 930 |
+
size_t n; // exposition only
|
| 931 |
};
|
| 932 |
+
}
|
| 933 |
```
|
| 934 |
|
| 935 |
The following relations shall hold: `0 < r` and `r <= p`.
|
| 936 |
|
| 937 |
The textual representation consists of the textual representation of `e`
|
|
|
|
| 1001 |
template<class Sseq> explicit independent_bits_engine(Sseq& q);
|
| 1002 |
void seed();
|
| 1003 |
void seed(result_type s);
|
| 1004 |
template<class Sseq> void seed(Sseq& q);
|
| 1005 |
|
| 1006 |
+
// equality operators
|
| 1007 |
+
friend bool operator==(const independent_bits_engine& x, const independent_bits_engine& y);
|
| 1008 |
+
|
| 1009 |
// generating functions
|
| 1010 |
result_type operator()();
|
| 1011 |
void discard(unsigned long long z);
|
| 1012 |
|
| 1013 |
// property functions
|
| 1014 |
+
const Engine& base() const noexcept { return e; }
|
| 1015 |
+
|
| 1016 |
+
// inserters and extractors
|
| 1017 |
+
template<class charT, class traits>
|
| 1018 |
+
friend basic_ostream<charT, traits>&
|
| 1019 |
+
operator<<(basic_ostream<charT, traits>& os, const independent_bits_engine& x);
|
| 1020 |
+
template<class charT, class traits>
|
| 1021 |
+
friend basic_istream<charT, traits>&
|
| 1022 |
+
operator>>(basic_istream<charT, traits>& is, independent_bits_engine& x);
|
| 1023 |
|
| 1024 |
private:
|
| 1025 |
Engine e; // exposition only
|
| 1026 |
};
|
| 1027 |
```
|
|
|
|
| 1052 |
|
| 1053 |
The generation algorithm yields the last value of `Y` produced while
|
| 1054 |
advancing `e`’s state as described above.
|
| 1055 |
|
| 1056 |
``` cpp
|
| 1057 |
+
namespace std {
|
| 1058 |
template<class Engine, size_t k>
|
| 1059 |
class shuffle_order_engine {
|
| 1060 |
public:
|
| 1061 |
// types
|
| 1062 |
using result_type = typename Engine::result_type;
|
|
|
|
| 1074 |
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
|
| 1075 |
void seed();
|
| 1076 |
void seed(result_type s);
|
| 1077 |
template<class Sseq> void seed(Sseq& q);
|
| 1078 |
|
| 1079 |
+
// equality operators
|
| 1080 |
+
friend bool operator==(const shuffle_order_engine& x, const shuffle_order_engine& y);
|
| 1081 |
+
|
| 1082 |
// generating functions
|
| 1083 |
result_type operator()();
|
| 1084 |
void discard(unsigned long long z);
|
| 1085 |
|
| 1086 |
// property functions
|
| 1087 |
+
const Engine& base() const noexcept { return e; }
|
| 1088 |
+
|
| 1089 |
+
// inserters and extractors
|
| 1090 |
+
template<class charT, class traits>
|
| 1091 |
+
friend basic_ostream<charT, traits>&
|
| 1092 |
+
operator<<(basic_ostream<charT, traits>& os, const shuffle_order_engine& x);
|
| 1093 |
+
template<class charT, class traits>
|
| 1094 |
+
friend basic_istream<charT, traits>&
|
| 1095 |
+
operator>>(basic_istream<charT, traits>& is, shuffle_order_engine& x);
|
| 1096 |
|
| 1097 |
private:
|
| 1098 |
Engine e; // exposition only
|
| 1099 |
result_type V[k]; // exposition only
|
| 1100 |
result_type Y; // exposition only
|
| 1101 |
};
|
| 1102 |
+
}
|
| 1103 |
```
|
| 1104 |
|
| 1105 |
The following relation shall hold: `0 < k`.
|
| 1106 |
|
| 1107 |
The textual representation consists of the textual representation of
|
|
|
|
| 1200 |
```
|
| 1201 |
|
| 1202 |
*Remarks:* The choice of engine type named by this `typedef` is
|
| 1203 |
*implementation-defined*.
|
| 1204 |
|
| 1205 |
+
[*Note 1*: The implementation can select this type on the basis of
|
| 1206 |
performance, size, quality, or any combination of such factors, so as to
|
| 1207 |
provide at least acceptable engine behavior for relatively casual,
|
| 1208 |
+
inexpert, and/or lightweight use. Because different implementations can
|
| 1209 |
select different underlying engine types, code that uses this `typedef`
|
| 1210 |
need not generate identical sequences across
|
| 1211 |
implementations. — *end note*]
|
| 1212 |
|
| 1213 |
### Class `random_device` <a id="rand.device">[[rand.device]]</a>
|
|
|
|
| 1217 |
|
| 1218 |
If implementation limitations prevent generating nondeterministic random
|
| 1219 |
numbers, the implementation may employ a random number engine.
|
| 1220 |
|
| 1221 |
``` cpp
|
| 1222 |
+
namespace std {
|
| 1223 |
class random_device {
|
| 1224 |
public:
|
| 1225 |
// types
|
| 1226 |
using result_type = unsigned int;
|
| 1227 |
|
|
|
|
| 1241 |
|
| 1242 |
// no copy functions
|
| 1243 |
random_device(const random_device&) = delete;
|
| 1244 |
void operator=(const random_device&) = delete;
|
| 1245 |
};
|
| 1246 |
+
}
|
| 1247 |
```
|
| 1248 |
|
| 1249 |
``` cpp
|
| 1250 |
explicit random_device(const string& token);
|
| 1251 |
```
|
| 1252 |
|
| 1253 |
+
*Throws:* A value of an *implementation-defined* type derived from
|
| 1254 |
+
`exception` if the `random_device` cannot be initialized.
|
| 1255 |
+
|
| 1256 |
*Remarks:* The semantics of the `token` parameter and the token value
|
| 1257 |
+
used by the default constructor are *implementation-defined*.[^4]
|
|
|
|
|
|
|
|
|
|
| 1258 |
|
| 1259 |
``` cpp
|
| 1260 |
double entropy() const noexcept;
|
| 1261 |
```
|
| 1262 |
|
| 1263 |
*Returns:* If the implementation employs a random number engine, returns
|
| 1264 |
+
0.0. Otherwise, returns an entropy estimate[^5]
|
| 1265 |
+
|
| 1266 |
+
for the random numbers returned by `operator()`, in the range `min()` to
|
| 1267 |
+
log₂( `max()`+1).
|
| 1268 |
|
| 1269 |
``` cpp
|
| 1270 |
result_type operator()();
|
| 1271 |
```
|
| 1272 |
|
| 1273 |
*Returns:* A nondeterministic random value, uniformly distributed
|
| 1274 |
between `min()` and `max()` (inclusive). It is *implementation-defined*
|
| 1275 |
how these values are generated.
|
| 1276 |
|
| 1277 |
*Throws:* A value of an *implementation-defined* type derived from
|
| 1278 |
+
`exception` if a random number cannot be obtained.
|
| 1279 |
|
| 1280 |
### Utilities <a id="rand.util">[[rand.util]]</a>
|
| 1281 |
|
| 1282 |
#### Class `seed_seq` <a id="rand.util.seedseq">[[rand.util.seedseq]]</a>
|
| 1283 |
|
| 1284 |
``` cpp
|
| 1285 |
+
namespace std {
|
| 1286 |
class seed_seq {
|
| 1287 |
public:
|
| 1288 |
// types
|
| 1289 |
using result_type = uint_least32_t;
|
| 1290 |
|
| 1291 |
// constructors
|
| 1292 |
+
seed_seq() noexcept;
|
| 1293 |
template<class T>
|
| 1294 |
seed_seq(initializer_list<T> il);
|
| 1295 |
template<class InputIterator>
|
| 1296 |
seed_seq(InputIterator begin, InputIterator end);
|
| 1297 |
|
|
|
|
| 1309 |
void operator=(const seed_seq&) = delete;
|
| 1310 |
|
| 1311 |
private:
|
| 1312 |
vector<result_type> v; // exposition only
|
| 1313 |
};
|
| 1314 |
+
}
|
| 1315 |
```
|
| 1316 |
|
| 1317 |
``` cpp
|
| 1318 |
+
seed_seq() noexcept;
|
| 1319 |
```
|
| 1320 |
|
| 1321 |
*Ensures:* `v.empty()` is `true`.
|
| 1322 |
|
|
|
|
|
|
|
| 1323 |
``` cpp
|
| 1324 |
template<class T>
|
| 1325 |
seed_seq(initializer_list<T> il);
|
| 1326 |
```
|
| 1327 |
|
| 1328 |
+
*Constraints:* `T` is an integer type.
|
| 1329 |
|
| 1330 |
*Effects:* Same as `seed_seq(il.begin(), il.end())`.
|
| 1331 |
|
| 1332 |
``` cpp
|
| 1333 |
template<class InputIterator>
|
|
|
|
| 1443 |
``` cpp
|
| 1444 |
template<class RealType, size_t bits, class URBG>
|
| 1445 |
RealType generate_canonical(URBG& g);
|
| 1446 |
```
|
| 1447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1448 |
*Effects:* Invokes `g()` k times to obtain values g₀, …, gₖ₋₁,
|
| 1449 |
respectively. Calculates a quantity
|
| 1450 |
$$S = \sum_{i=0}^{k-1} (g_i - \texttt{g.min()})
|
| 1451 |
\cdot R^i$$ using arithmetic of type `RealType`.
|
| 1452 |
|
|
|
|
| 1454 |
|
| 1455 |
[*Note 1*: 0 ≤ S / Rᵏ < 1. — *end note*]
|
| 1456 |
|
| 1457 |
*Throws:* What and when `g` throws.
|
| 1458 |
|
| 1459 |
+
*Complexity:* Exactly k = max(1, ⌈ b / log₂ R ⌉) invocations of `g`,
|
| 1460 |
+
where b[^6]
|
| 1461 |
+
|
| 1462 |
+
is the lesser of `numeric_limits<RealType>::digits` and `bits`, and R is
|
| 1463 |
+
the value of `g.max()` - `g.min()` + 1.
|
| 1464 |
+
|
| 1465 |
[*Note 2*: If the values gᵢ produced by `g` are uniformly distributed,
|
| 1466 |
the instantiation’s results are distributed as uniformly as possible.
|
| 1467 |
Obtaining a value in this way can be a useful step in the process of
|
| 1468 |
transforming a value generated by a uniform random bit generator into a
|
| 1469 |
value that can be delivered by a random number
|
|
|
|
| 1498 |
A `uniform_int_distribution` random number distribution produces random
|
| 1499 |
integers i, a ≤ i ≤ b, distributed according to the constant discrete
|
| 1500 |
probability function $$P(i\,|\,a,b) = 1 / (b - a + 1) \text{ .}$$
|
| 1501 |
|
| 1502 |
``` cpp
|
| 1503 |
+
namespace std {
|
| 1504 |
template<class IntType = int>
|
| 1505 |
class uniform_int_distribution {
|
| 1506 |
public:
|
| 1507 |
// types
|
| 1508 |
using result_type = IntType;
|
|
|
|
| 1512 |
uniform_int_distribution() : uniform_int_distribution(0) {}
|
| 1513 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 1514 |
explicit uniform_int_distribution(const param_type& parm);
|
| 1515 |
void reset();
|
| 1516 |
|
| 1517 |
+
// equality operators
|
| 1518 |
+
friend bool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y);
|
| 1519 |
+
|
| 1520 |
// generating functions
|
| 1521 |
template<class URBG>
|
| 1522 |
result_type operator()(URBG& g);
|
| 1523 |
template<class URBG>
|
| 1524 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1528 |
result_type b() const;
|
| 1529 |
param_type param() const;
|
| 1530 |
void param(const param_type& parm);
|
| 1531 |
result_type min() const;
|
| 1532 |
result_type max() const;
|
| 1533 |
+
|
| 1534 |
+
// inserters and extractors
|
| 1535 |
+
template<class charT, class traits>
|
| 1536 |
+
friend basic_ostream<charT, traits>&
|
| 1537 |
+
operator<<(basic_ostream<charT, traits>& os, const uniform_int_distribution& x);
|
| 1538 |
+
template<class charT, class traits>
|
| 1539 |
+
friend basic_istream<charT, traits>&
|
| 1540 |
+
operator>>(basic_istream<charT, traits>& is, uniform_int_distribution& x);
|
| 1541 |
};
|
| 1542 |
+
}
|
| 1543 |
```
|
| 1544 |
|
| 1545 |
``` cpp
|
| 1546 |
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
|
| 1547 |
```
|
|
|
|
| 1573 |
|
| 1574 |
[*Note 1*: This implies that p(x | a,b) is undefined when
|
| 1575 |
`a == b`. — *end note*]
|
| 1576 |
|
| 1577 |
``` cpp
|
| 1578 |
+
namespace std {
|
| 1579 |
template<class RealType = double>
|
| 1580 |
class uniform_real_distribution {
|
| 1581 |
public:
|
| 1582 |
// types
|
| 1583 |
using result_type = RealType;
|
|
|
|
| 1587 |
uniform_real_distribution() : uniform_real_distribution(0.0) {}
|
| 1588 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 1589 |
explicit uniform_real_distribution(const param_type& parm);
|
| 1590 |
void reset();
|
| 1591 |
|
| 1592 |
+
// equality operators
|
| 1593 |
+
friend bool operator==(const uniform_real_distribution& x,
|
| 1594 |
+
const uniform_real_distribution& y);
|
| 1595 |
+
|
| 1596 |
// generating functions
|
| 1597 |
template<class URBG>
|
| 1598 |
result_type operator()(URBG& g);
|
| 1599 |
template<class URBG>
|
| 1600 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1604 |
result_type b() const;
|
| 1605 |
param_type param() const;
|
| 1606 |
void param(const param_type& parm);
|
| 1607 |
result_type min() const;
|
| 1608 |
result_type max() const;
|
| 1609 |
+
|
| 1610 |
+
// inserters and extractors
|
| 1611 |
+
template<class charT, class traits>
|
| 1612 |
+
friend basic_ostream<charT, traits>&
|
| 1613 |
+
operator<<(basic_ostream<charT, traits>& os, const uniform_real_distribution& x);
|
| 1614 |
+
template<class charT, class traits>
|
| 1615 |
+
friend basic_istream<charT, traits>&
|
| 1616 |
+
operator>>(basic_istream<charT, traits>& is, uniform_real_distribution& x);
|
| 1617 |
};
|
| 1618 |
+
}
|
| 1619 |
```
|
| 1620 |
|
| 1621 |
``` cpp
|
| 1622 |
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
|
| 1623 |
```
|
|
|
|
| 1652 |
p & \text{ if $b = \tcode{true}$, or} \\
|
| 1653 |
1 - p & \text{ if $b = \tcode{false}$.}
|
| 1654 |
\end{array}\right.$$
|
| 1655 |
|
| 1656 |
``` cpp
|
| 1657 |
+
namespace std {
|
| 1658 |
class bernoulli_distribution {
|
| 1659 |
public:
|
| 1660 |
// types
|
| 1661 |
using result_type = bool;
|
| 1662 |
using param_type = unspecified;
|
|
|
|
| 1665 |
bernoulli_distribution() : bernoulli_distribution(0.5) {}
|
| 1666 |
explicit bernoulli_distribution(double p);
|
| 1667 |
explicit bernoulli_distribution(const param_type& parm);
|
| 1668 |
void reset();
|
| 1669 |
|
| 1670 |
+
// equality operators
|
| 1671 |
+
friend bool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y);
|
| 1672 |
+
|
| 1673 |
// generating functions
|
| 1674 |
template<class URBG>
|
| 1675 |
result_type operator()(URBG& g);
|
| 1676 |
template<class URBG>
|
| 1677 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1680 |
double p() const;
|
| 1681 |
param_type param() const;
|
| 1682 |
void param(const param_type& parm);
|
| 1683 |
result_type min() const;
|
| 1684 |
result_type max() const;
|
| 1685 |
+
|
| 1686 |
+
// inserters and extractors
|
| 1687 |
+
template<class charT, class traits>
|
| 1688 |
+
friend basic_ostream<charT, traits>&
|
| 1689 |
+
operator<<(basic_ostream<charT, traits>& os, const bernoulli_distribution& x);
|
| 1690 |
+
template<class charT, class traits>
|
| 1691 |
+
friend basic_istream<charT, traits>&
|
| 1692 |
+
operator>>(basic_istream<charT, traits>& is, bernoulli_distribution& x);
|
| 1693 |
};
|
| 1694 |
+
}
|
| 1695 |
```
|
| 1696 |
|
| 1697 |
``` cpp
|
| 1698 |
explicit bernoulli_distribution(double p);
|
| 1699 |
```
|
|
|
|
| 1714 |
A `binomial_distribution` random number distribution produces integer
|
| 1715 |
values i ≥ 0 distributed according to the discrete probability function
|
| 1716 |
$$P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .}$$
|
| 1717 |
|
| 1718 |
``` cpp
|
| 1719 |
+
namespace std {
|
| 1720 |
template<class IntType = int>
|
| 1721 |
class binomial_distribution {
|
| 1722 |
public:
|
| 1723 |
// types
|
| 1724 |
using result_type = IntType;
|
|
|
|
| 1728 |
binomial_distribution() : binomial_distribution(1) {}
|
| 1729 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 1730 |
explicit binomial_distribution(const param_type& parm);
|
| 1731 |
void reset();
|
| 1732 |
|
| 1733 |
+
// equality operators
|
| 1734 |
+
friend bool operator==(const binomial_distribution& x, const binomial_distribution& y);
|
| 1735 |
+
|
| 1736 |
// generating functions
|
| 1737 |
template<class URBG>
|
| 1738 |
result_type operator()(URBG& g);
|
| 1739 |
template<class URBG>
|
| 1740 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1744 |
double p() const;
|
| 1745 |
param_type param() const;
|
| 1746 |
void param(const param_type& parm);
|
| 1747 |
result_type min() const;
|
| 1748 |
result_type max() const;
|
| 1749 |
+
|
| 1750 |
+
// inserters and extractors
|
| 1751 |
+
template<class charT, class traits>
|
| 1752 |
+
friend basic_ostream<charT, traits>&
|
| 1753 |
+
operator<<(basic_ostream<charT, traits>& os, const binomial_distribution& x);
|
| 1754 |
+
template<class charT, class traits>
|
| 1755 |
+
friend basic_istream<charT, traits>&
|
| 1756 |
+
operator>>(basic_istream<charT, traits>& is, binomial_distribution& x);
|
| 1757 |
};
|
| 1758 |
+
}
|
| 1759 |
```
|
| 1760 |
|
| 1761 |
``` cpp
|
| 1762 |
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 1763 |
```
|
|
|
|
| 1786 |
A `geometric_distribution` random number distribution produces integer
|
| 1787 |
values i ≥ 0 distributed according to the discrete probability function
|
| 1788 |
$$P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .}$$
|
| 1789 |
|
| 1790 |
``` cpp
|
| 1791 |
+
namespace std {
|
| 1792 |
template<class IntType = int>
|
| 1793 |
class geometric_distribution {
|
| 1794 |
public:
|
| 1795 |
// types
|
| 1796 |
using result_type = IntType;
|
|
|
|
| 1800 |
geometric_distribution() : geometric_distribution(0.5) {}
|
| 1801 |
explicit geometric_distribution(double p);
|
| 1802 |
explicit geometric_distribution(const param_type& parm);
|
| 1803 |
void reset();
|
| 1804 |
|
| 1805 |
+
// equality operators
|
| 1806 |
+
friend bool operator==(const geometric_distribution& x, const geometric_distribution& y);
|
| 1807 |
+
|
| 1808 |
// generating functions
|
| 1809 |
template<class URBG>
|
| 1810 |
result_type operator()(URBG& g);
|
| 1811 |
template<class URBG>
|
| 1812 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1815 |
double p() const;
|
| 1816 |
param_type param() const;
|
| 1817 |
void param(const param_type& parm);
|
| 1818 |
result_type min() const;
|
| 1819 |
result_type max() const;
|
| 1820 |
+
|
| 1821 |
+
// inserters and extractors
|
| 1822 |
+
template<class charT, class traits>
|
| 1823 |
+
friend basic_ostream<charT, traits>&
|
| 1824 |
+
operator<<(basic_ostream<charT, traits>& os, const geometric_distribution& x);
|
| 1825 |
+
template<class charT, class traits>
|
| 1826 |
+
friend basic_istream<charT, traits>&
|
| 1827 |
+
operator>>(basic_istream<charT, traits>& is, geometric_distribution& x);
|
| 1828 |
};
|
| 1829 |
+
}
|
| 1830 |
```
|
| 1831 |
|
| 1832 |
``` cpp
|
| 1833 |
explicit geometric_distribution(double p);
|
| 1834 |
```
|
|
|
|
| 1853 |
|
| 1854 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 1855 |
`p == 1`. — *end note*]
|
| 1856 |
|
| 1857 |
``` cpp
|
| 1858 |
+
namespace std {
|
| 1859 |
template<class IntType = int>
|
| 1860 |
class negative_binomial_distribution {
|
| 1861 |
public:
|
| 1862 |
// types
|
| 1863 |
using result_type = IntType;
|
|
|
|
| 1867 |
negative_binomial_distribution() : negative_binomial_distribution(1) {}
|
| 1868 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 1869 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 1870 |
void reset();
|
| 1871 |
|
| 1872 |
+
// equality operators
|
| 1873 |
+
friend bool operator==(const negative_binomial_distribution& x,
|
| 1874 |
+
const negative_binomial_distribution& y);
|
| 1875 |
+
|
| 1876 |
// generating functions
|
| 1877 |
template<class URBG>
|
| 1878 |
result_type operator()(URBG& g);
|
| 1879 |
template<class URBG>
|
| 1880 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1884 |
double p() const;
|
| 1885 |
param_type param() const;
|
| 1886 |
void param(const param_type& parm);
|
| 1887 |
result_type min() const;
|
| 1888 |
result_type max() const;
|
| 1889 |
+
|
| 1890 |
+
// inserters and extractors
|
| 1891 |
+
template<class charT, class traits>
|
| 1892 |
+
friend basic_ostream<charT, traits>&
|
| 1893 |
+
operator<<(basic_ostream<charT, traits>& os, const negative_binomial_distribution& x);
|
| 1894 |
+
template<class charT, class traits>
|
| 1895 |
+
friend basic_istream<charT, traits>&
|
| 1896 |
+
operator>>(basic_istream<charT, traits>& is, negative_binomial_distribution& x);
|
| 1897 |
};
|
| 1898 |
+
}
|
| 1899 |
```
|
| 1900 |
|
| 1901 |
``` cpp
|
| 1902 |
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 1903 |
```
|
|
|
|
| 1943 |
poisson_distribution() : poisson_distribution(1.0) {}
|
| 1944 |
explicit poisson_distribution(double mean);
|
| 1945 |
explicit poisson_distribution(const param_type& parm);
|
| 1946 |
void reset();
|
| 1947 |
|
| 1948 |
+
// equality operators
|
| 1949 |
+
friend bool operator==(const poisson_distribution& x, const poisson_distribution& y);
|
| 1950 |
+
|
| 1951 |
// generating functions
|
| 1952 |
template<class URBG>
|
| 1953 |
result_type operator()(URBG& g);
|
| 1954 |
template<class URBG>
|
| 1955 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 1958 |
double mean() const;
|
| 1959 |
param_type param() const;
|
| 1960 |
void param(const param_type& parm);
|
| 1961 |
result_type min() const;
|
| 1962 |
result_type max() const;
|
| 1963 |
+
|
| 1964 |
+
// inserters and extractors
|
| 1965 |
+
template<class charT, class traits>
|
| 1966 |
+
friend basic_ostream<charT, traits>&
|
| 1967 |
+
operator<<(basic_ostream<charT, traits>& os, const poisson_distribution& x);
|
| 1968 |
+
template<class charT, class traits>
|
| 1969 |
+
friend basic_istream<charT, traits>&
|
| 1970 |
+
operator>>(basic_istream<charT, traits>& is, poisson_distribution& x);
|
| 1971 |
};
|
| 1972 |
```
|
| 1973 |
|
| 1974 |
``` cpp
|
| 1975 |
explicit poisson_distribution(double mean);
|
|
|
|
| 1991 |
An `exponential_distribution` random number distribution produces random
|
| 1992 |
numbers x > 0 distributed according to the probability density function
|
| 1993 |
$$p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .}$$
|
| 1994 |
|
| 1995 |
``` cpp
|
| 1996 |
+
namespace std {
|
| 1997 |
template<class RealType = double>
|
| 1998 |
class exponential_distribution {
|
| 1999 |
public:
|
| 2000 |
// types
|
| 2001 |
using result_type = RealType;
|
|
|
|
| 2005 |
exponential_distribution() : exponential_distribution(1.0) {}
|
| 2006 |
explicit exponential_distribution(RealType lambda);
|
| 2007 |
explicit exponential_distribution(const param_type& parm);
|
| 2008 |
void reset();
|
| 2009 |
|
| 2010 |
+
// equality operators
|
| 2011 |
+
friend bool operator==(const exponential_distribution& x, const exponential_distribution& y);
|
| 2012 |
+
|
| 2013 |
// generating functions
|
| 2014 |
template<class URBG>
|
| 2015 |
result_type operator()(URBG& g);
|
| 2016 |
template<class URBG>
|
| 2017 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2020 |
RealType lambda() const;
|
| 2021 |
param_type param() const;
|
| 2022 |
void param(const param_type& parm);
|
| 2023 |
result_type min() const;
|
| 2024 |
result_type max() const;
|
| 2025 |
+
|
| 2026 |
+
// inserters and extractors
|
| 2027 |
+
template<class charT, class traits>
|
| 2028 |
+
friend basic_ostream<charT, traits>&
|
| 2029 |
+
operator<<(basic_ostream<charT, traits>& os, const exponential_distribution& x);
|
| 2030 |
+
template<class charT, class traits>
|
| 2031 |
+
friend basic_istream<charT, traits>&
|
| 2032 |
+
operator>>(basic_istream<charT, traits>& is, exponential_distribution& x);
|
| 2033 |
};
|
| 2034 |
+
}
|
| 2035 |
```
|
| 2036 |
|
| 2037 |
``` cpp
|
| 2038 |
explicit exponential_distribution(RealType lambda);
|
| 2039 |
```
|
|
|
|
| 2056 |
$$p(x\,|\,\alpha,\beta) =
|
| 2057 |
\frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \, \cdot \, x^{\, \alpha-1}
|
| 2058 |
\text{ .}$$
|
| 2059 |
|
| 2060 |
``` cpp
|
| 2061 |
+
namespace std {
|
| 2062 |
template<class RealType = double>
|
| 2063 |
class gamma_distribution {
|
| 2064 |
public:
|
| 2065 |
// types
|
| 2066 |
using result_type = RealType;
|
|
|
|
| 2070 |
gamma_distribution() : gamma_distribution(1.0) {}
|
| 2071 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 2072 |
explicit gamma_distribution(const param_type& parm);
|
| 2073 |
void reset();
|
| 2074 |
|
| 2075 |
+
// equality operators
|
| 2076 |
+
friend bool operator==(const gamma_distribution& x, const gamma_distribution& y);
|
| 2077 |
+
|
| 2078 |
// generating functions
|
| 2079 |
template<class URBG>
|
| 2080 |
result_type operator()(URBG& g);
|
| 2081 |
template<class URBG>
|
| 2082 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2086 |
RealType beta() const;
|
| 2087 |
param_type param() const;
|
| 2088 |
void param(const param_type& parm);
|
| 2089 |
result_type min() const;
|
| 2090 |
result_type max() const;
|
| 2091 |
+
|
| 2092 |
+
// inserters and extractors
|
| 2093 |
+
template<class charT, class traits>
|
| 2094 |
+
friend basic_ostream<charT, traits>&
|
| 2095 |
+
operator<<(basic_ostream<charT, traits>& os, const gamma_distribution& x);
|
| 2096 |
+
template<class charT, class traits>
|
| 2097 |
+
friend basic_istream<charT, traits>&
|
| 2098 |
+
operator>>(basic_istream<charT, traits>& is, gamma_distribution& x);
|
| 2099 |
};
|
| 2100 |
+
}
|
| 2101 |
```
|
| 2102 |
|
| 2103 |
``` cpp
|
| 2104 |
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 2105 |
```
|
|
|
|
| 2131 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 2132 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 2133 |
\text{ .}$$
|
| 2134 |
|
| 2135 |
``` cpp
|
| 2136 |
+
namespace std {
|
| 2137 |
template<class RealType = double>
|
| 2138 |
class weibull_distribution {
|
| 2139 |
public:
|
| 2140 |
// types
|
| 2141 |
using result_type = RealType;
|
|
|
|
| 2145 |
weibull_distribution() : weibull_distribution(1.0) {}
|
| 2146 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 2147 |
explicit weibull_distribution(const param_type& parm);
|
| 2148 |
void reset();
|
| 2149 |
|
| 2150 |
+
// equality operators
|
| 2151 |
+
friend bool operator==(const weibull_distribution& x, const weibull_distribution& y);
|
| 2152 |
+
|
| 2153 |
// generating functions
|
| 2154 |
template<class URBG>
|
| 2155 |
result_type operator()(URBG& g);
|
| 2156 |
template<class URBG>
|
| 2157 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2161 |
RealType b() const;
|
| 2162 |
param_type param() const;
|
| 2163 |
void param(const param_type& parm);
|
| 2164 |
result_type min() const;
|
| 2165 |
result_type max() const;
|
| 2166 |
+
|
| 2167 |
+
// inserters and extractors
|
| 2168 |
+
template<class charT, class traits>
|
| 2169 |
+
friend basic_ostream<charT, traits>&
|
| 2170 |
+
operator<<(basic_ostream<charT, traits>& os, const weibull_distribution& x);
|
| 2171 |
+
template<class charT, class traits>
|
| 2172 |
+
friend basic_istream<charT, traits>&
|
| 2173 |
+
operator>>(basic_istream<charT, traits>& is, weibull_distribution& x);
|
| 2174 |
};
|
| 2175 |
+
}
|
| 2176 |
```
|
| 2177 |
|
| 2178 |
``` cpp
|
| 2179 |
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 2180 |
```
|
|
|
|
| 2200 |
|
| 2201 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 2202 |
|
| 2203 |
An `extreme_value_distribution` random number distribution produces
|
| 2204 |
random numbers x distributed according to the probability density
|
| 2205 |
+
function[^7]
|
| 2206 |
+
|
| 2207 |
+
$$p(x\,|\,a,b) = \frac{1}{b}
|
| 2208 |
\cdot \exp\left(\frac{a-x}{b} - \exp\left(\frac{a-x}{b}\right)\right)
|
| 2209 |
\text{ .}$$
|
| 2210 |
|
| 2211 |
``` cpp
|
| 2212 |
+
namespace std {
|
| 2213 |
template<class RealType = double>
|
| 2214 |
class extreme_value_distribution {
|
| 2215 |
public:
|
| 2216 |
// types
|
| 2217 |
using result_type = RealType;
|
|
|
|
| 2221 |
extreme_value_distribution() : extreme_value_distribution(0.0) {}
|
| 2222 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 2223 |
explicit extreme_value_distribution(const param_type& parm);
|
| 2224 |
void reset();
|
| 2225 |
|
| 2226 |
+
// equality operators
|
| 2227 |
+
friend bool operator==(const extreme_value_distribution& x,
|
| 2228 |
+
const extreme_value_distribution& y);
|
| 2229 |
+
|
| 2230 |
// generating functions
|
| 2231 |
template<class URBG>
|
| 2232 |
result_type operator()(URBG& g);
|
| 2233 |
template<class URBG>
|
| 2234 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2238 |
RealType b() const;
|
| 2239 |
param_type param() const;
|
| 2240 |
void param(const param_type& parm);
|
| 2241 |
result_type min() const;
|
| 2242 |
result_type max() const;
|
| 2243 |
+
|
| 2244 |
+
// inserters and extractors
|
| 2245 |
+
template<class charT, class traits>
|
| 2246 |
+
friend basic_ostream<charT, traits>&
|
| 2247 |
+
operator<<(basic_ostream<charT, traits>& os, const extreme_value_distribution& x);
|
| 2248 |
+
template<class charT, class traits>
|
| 2249 |
+
friend basic_istream<charT, traits>&
|
| 2250 |
+
operator>>(basic_istream<charT, traits>& is, extreme_value_distribution& x);
|
| 2251 |
};
|
| 2252 |
+
}
|
| 2253 |
```
|
| 2254 |
|
| 2255 |
``` cpp
|
| 2256 |
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 2257 |
```
|
|
|
|
| 2291 |
}
|
| 2292 |
\text{ .}$$ The distribution parameters μ and σ are also known as this
|
| 2293 |
distribution’s *mean* and *standard deviation*.
|
| 2294 |
|
| 2295 |
``` cpp
|
| 2296 |
+
namespace std {
|
| 2297 |
template<class RealType = double>
|
| 2298 |
class normal_distribution {
|
| 2299 |
public:
|
| 2300 |
// types
|
| 2301 |
using result_type = RealType;
|
|
|
|
| 2305 |
normal_distribution() : normal_distribution(0.0) {}
|
| 2306 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 2307 |
explicit normal_distribution(const param_type& parm);
|
| 2308 |
void reset();
|
| 2309 |
|
| 2310 |
+
// equality operators
|
| 2311 |
+
friend bool operator==(const normal_distribution& x, const normal_distribution& y);
|
| 2312 |
+
|
| 2313 |
// generating functions
|
| 2314 |
template<class URBG>
|
| 2315 |
result_type operator()(URBG& g);
|
| 2316 |
template<class URBG>
|
| 2317 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2321 |
RealType stddev() const;
|
| 2322 |
param_type param() const;
|
| 2323 |
void param(const param_type& parm);
|
| 2324 |
result_type min() const;
|
| 2325 |
result_type max() const;
|
| 2326 |
+
|
| 2327 |
+
// inserters and extractors
|
| 2328 |
+
template<class charT, class traits>
|
| 2329 |
+
friend basic_ostream<charT, traits>&
|
| 2330 |
+
operator<<(basic_ostream<charT, traits>& os, const normal_distribution& x);
|
| 2331 |
+
template<class charT, class traits>
|
| 2332 |
+
friend basic_istream<charT, traits>&
|
| 2333 |
+
operator>>(basic_istream<charT, traits>& is, normal_distribution& x);
|
| 2334 |
};
|
| 2335 |
+
}
|
| 2336 |
```
|
| 2337 |
|
| 2338 |
``` cpp
|
| 2339 |
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
|
| 2340 |
```
|
|
|
|
| 2365 |
$$p(x\,|\,m,s) = \frac{1}{s x \sqrt{2 \pi}}
|
| 2366 |
\cdot \exp{\left(-\frac{(\ln{x} - m)^2}{2 s^2}\right)}
|
| 2367 |
\text{ .}$$
|
| 2368 |
|
| 2369 |
``` cpp
|
| 2370 |
+
namespace std {
|
| 2371 |
template<class RealType = double>
|
| 2372 |
class lognormal_distribution {
|
| 2373 |
public:
|
| 2374 |
// types
|
| 2375 |
using result_type = RealType;
|
|
|
|
| 2379 |
lognormal_distribution() : lognormal_distribution(0.0) {}
|
| 2380 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 2381 |
explicit lognormal_distribution(const param_type& parm);
|
| 2382 |
void reset();
|
| 2383 |
|
| 2384 |
+
// equality operators
|
| 2385 |
+
friend bool operator==(const lognormal_distribution& x, const lognormal_distribution& y);
|
| 2386 |
+
|
| 2387 |
// generating functions
|
| 2388 |
template<class URBG>
|
| 2389 |
result_type operator()(URBG& g);
|
| 2390 |
template<class URBG>
|
| 2391 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2395 |
RealType s() const;
|
| 2396 |
param_type param() const;
|
| 2397 |
void param(const param_type& parm);
|
| 2398 |
result_type min() const;
|
| 2399 |
result_type max() const;
|
| 2400 |
+
|
| 2401 |
+
// inserters and extractors
|
| 2402 |
+
template<class charT, class traits>
|
| 2403 |
+
friend basic_ostream<charT, traits>&
|
| 2404 |
+
operator<<(basic_ostream<charT, traits>& os, const lognormal_distribution& x);
|
| 2405 |
+
template<class charT, class traits>
|
| 2406 |
+
friend basic_istream<charT, traits>&
|
| 2407 |
+
operator>>(basic_istream<charT, traits>& is, lognormal_distribution& x);
|
| 2408 |
};
|
| 2409 |
+
}
|
| 2410 |
```
|
| 2411 |
|
| 2412 |
``` cpp
|
| 2413 |
explicit lognormal_distribution(RealType m, RealType s = 1.0);
|
| 2414 |
```
|
|
|
|
| 2437 |
A `chi_squared_distribution` random number distribution produces random
|
| 2438 |
numbers x > 0 distributed according to the probability density function
|
| 2439 |
$$p(x\,|\,n) = \frac{x^{(n/2)-1} \cdot e^{-x/2}}{\Gamma(n/2) \cdot 2^{n/2}} \text{ .}$$
|
| 2440 |
|
| 2441 |
``` cpp
|
| 2442 |
+
namespace std {
|
| 2443 |
template<class RealType = double>
|
| 2444 |
class chi_squared_distribution {
|
| 2445 |
public:
|
| 2446 |
// types
|
| 2447 |
using result_type = RealType;
|
|
|
|
| 2451 |
chi_squared_distribution() : chi_squared_distribution(1.0) {}
|
| 2452 |
explicit chi_squared_distribution(RealType n);
|
| 2453 |
explicit chi_squared_distribution(const param_type& parm);
|
| 2454 |
void reset();
|
| 2455 |
|
| 2456 |
+
// equality operators
|
| 2457 |
+
friend bool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y);
|
| 2458 |
+
|
| 2459 |
// generating functions
|
| 2460 |
template<class URBG>
|
| 2461 |
result_type operator()(URBG& g);
|
| 2462 |
template<class URBG>
|
| 2463 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2466 |
RealType n() const;
|
| 2467 |
param_type param() const;
|
| 2468 |
void param(const param_type& parm);
|
| 2469 |
result_type min() const;
|
| 2470 |
result_type max() const;
|
| 2471 |
+
|
| 2472 |
+
// inserters and extractors
|
| 2473 |
+
template<class charT, class traits>
|
| 2474 |
+
friend basic_ostream<charT, traits>&
|
| 2475 |
+
operator<<(basic_ostream<charT, traits>& os, const chi_squared_distribution& x);
|
| 2476 |
+
template<class charT, class traits>
|
| 2477 |
+
friend basic_istream<charT, traits>&
|
| 2478 |
+
operator>>(basic_istream<charT, traits>& is, chi_squared_distribution& x);
|
| 2479 |
};
|
| 2480 |
+
}
|
| 2481 |
```
|
| 2482 |
|
| 2483 |
``` cpp
|
| 2484 |
explicit chi_squared_distribution(RealType n);
|
| 2485 |
```
|
|
|
|
| 2500 |
A `cauchy_distribution` random number distribution produces random
|
| 2501 |
numbers x distributed according to the probability density function
|
| 2502 |
$$p(x\,|\,a,b) = \left(\pi b \left(1 + \left(\frac{x-a}{b} \right)^2 \, \right)\right)^{-1} \text{ .}$$
|
| 2503 |
|
| 2504 |
``` cpp
|
| 2505 |
+
namespace std {
|
| 2506 |
template<class RealType = double>
|
| 2507 |
class cauchy_distribution {
|
| 2508 |
public:
|
| 2509 |
// types
|
| 2510 |
using result_type = RealType;
|
|
|
|
| 2514 |
cauchy_distribution() : cauchy_distribution(0.0) {}
|
| 2515 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 2516 |
explicit cauchy_distribution(const param_type& parm);
|
| 2517 |
void reset();
|
| 2518 |
|
| 2519 |
+
// equality operators
|
| 2520 |
+
friend bool operator==(const cauchy_distribution& x, const cauchy_distribution& y);
|
| 2521 |
+
|
| 2522 |
// generating functions
|
| 2523 |
template<class URBG>
|
| 2524 |
result_type operator()(URBG& g);
|
| 2525 |
template<class URBG>
|
| 2526 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2530 |
RealType b() const;
|
| 2531 |
param_type param() const;
|
| 2532 |
void param(const param_type& parm);
|
| 2533 |
result_type min() const;
|
| 2534 |
result_type max() const;
|
| 2535 |
+
|
| 2536 |
+
// inserters and extractors
|
| 2537 |
+
template<class charT, class traits>
|
| 2538 |
+
friend basic_ostream<charT, traits>&
|
| 2539 |
+
operator<<(basic_ostream<charT, traits>& os, const cauchy_distribution& x);
|
| 2540 |
+
template<class charT, class traits>
|
| 2541 |
+
friend basic_istream<charT, traits>&
|
| 2542 |
+
operator>>(basic_istream<charT, traits>& is, cauchy_distribution& x);
|
| 2543 |
};
|
| 2544 |
+
}
|
| 2545 |
```
|
| 2546 |
|
| 2547 |
``` cpp
|
| 2548 |
explicit cauchy_distribution(RealType a, RealType b = 1.0);
|
| 2549 |
```
|
|
|
|
| 2576 |
\cdot x^{(m/2)-1}
|
| 2577 |
\cdot \left(1 + \frac{m x}{n}\right)^{-(m + n)/2}
|
| 2578 |
\text{ .}$$
|
| 2579 |
|
| 2580 |
``` cpp
|
| 2581 |
+
namespace std {
|
| 2582 |
template<class RealType = double>
|
| 2583 |
class fisher_f_distribution {
|
| 2584 |
public:
|
| 2585 |
// types
|
| 2586 |
using result_type = RealType;
|
|
|
|
| 2590 |
fisher_f_distribution() : fisher_f_distribution(1.0) {}
|
| 2591 |
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
|
| 2592 |
explicit fisher_f_distribution(const param_type& parm);
|
| 2593 |
void reset();
|
| 2594 |
|
| 2595 |
+
// equality operators
|
| 2596 |
+
friend bool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y);
|
| 2597 |
+
|
| 2598 |
// generating functions
|
| 2599 |
template<class URBG>
|
| 2600 |
result_type operator()(URBG& g);
|
| 2601 |
template<class URBG>
|
| 2602 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2606 |
RealType n() const;
|
| 2607 |
param_type param() const;
|
| 2608 |
void param(const param_type& parm);
|
| 2609 |
result_type min() const;
|
| 2610 |
result_type max() const;
|
| 2611 |
+
|
| 2612 |
+
// inserters and extractors
|
| 2613 |
+
template<class charT, class traits>
|
| 2614 |
+
friend basic_ostream<charT, traits>&
|
| 2615 |
+
operator<<(basic_ostream<charT, traits>& os, const fisher_f_distribution& x);
|
| 2616 |
+
template<class charT, class traits>
|
| 2617 |
+
friend basic_istream<charT, traits>&
|
| 2618 |
+
operator>>(basic_istream<charT, traits>& is, fisher_f_distribution& x);
|
| 2619 |
};
|
| 2620 |
+
}
|
| 2621 |
```
|
| 2622 |
|
| 2623 |
``` cpp
|
| 2624 |
explicit fisher_f_distribution(RealType m, RealType n = 1);
|
| 2625 |
```
|
|
|
|
| 2651 |
\cdot \frac{\Gamma\big((n+1)/2\big)}{\Gamma(n/2)}
|
| 2652 |
\cdot \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2}
|
| 2653 |
\text{ .}$$
|
| 2654 |
|
| 2655 |
``` cpp
|
| 2656 |
+
namespace std {
|
| 2657 |
template<class RealType = double>
|
| 2658 |
class student_t_distribution {
|
| 2659 |
public:
|
| 2660 |
// types
|
| 2661 |
using result_type = RealType;
|
|
|
|
| 2665 |
student_t_distribution() : student_t_distribution(1.0) {}
|
| 2666 |
explicit student_t_distribution(RealType n);
|
| 2667 |
explicit student_t_distribution(const param_type& parm);
|
| 2668 |
void reset();
|
| 2669 |
|
| 2670 |
+
// equality operators
|
| 2671 |
+
friend bool operator==(const student_t_distribution& x, const student_t_distribution& y);
|
| 2672 |
+
|
| 2673 |
// generating functions
|
| 2674 |
template<class URBG>
|
| 2675 |
result_type operator()(URBG& g);
|
| 2676 |
template<class URBG>
|
| 2677 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2680 |
RealType n() const;
|
| 2681 |
param_type param() const;
|
| 2682 |
void param(const param_type& parm);
|
| 2683 |
result_type min() const;
|
| 2684 |
result_type max() const;
|
| 2685 |
+
|
| 2686 |
+
// inserters and extractors
|
| 2687 |
+
template<class charT, class traits>
|
| 2688 |
+
friend basic_ostream<charT, traits>&
|
| 2689 |
+
operator<<(basic_ostream<charT, traits>& os, const student_t_distribution& x);
|
| 2690 |
+
template<class charT, class traits>
|
| 2691 |
+
friend basic_istream<charT, traits>&
|
| 2692 |
+
operator>>(basic_istream<charT, traits>& is, student_t_distribution& x);
|
| 2693 |
};
|
| 2694 |
+
}
|
| 2695 |
```
|
| 2696 |
|
| 2697 |
``` cpp
|
| 2698 |
explicit student_t_distribution(RealType n);
|
| 2699 |
```
|
|
|
|
| 2722 |
known as the *weights* , shall be non-negative, non-NaN, and
|
| 2723 |
non-infinity. Moreover, the following relation shall hold:
|
| 2724 |
$0 < S = w_0 + \dotsb + w_{n - 1}$.
|
| 2725 |
|
| 2726 |
``` cpp
|
| 2727 |
+
namespace std {
|
| 2728 |
template<class IntType = int>
|
| 2729 |
class discrete_distribution {
|
| 2730 |
public:
|
| 2731 |
// types
|
| 2732 |
using result_type = IntType;
|
|
|
|
| 2740 |
template<class UnaryOperation>
|
| 2741 |
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
|
| 2742 |
explicit discrete_distribution(const param_type& parm);
|
| 2743 |
void reset();
|
| 2744 |
|
| 2745 |
+
// equality operators
|
| 2746 |
+
friend bool operator==(const discrete_distribution& x, const discrete_distribution& y);
|
| 2747 |
+
|
| 2748 |
// generating functions
|
| 2749 |
template<class URBG>
|
| 2750 |
result_type operator()(URBG& g);
|
| 2751 |
template<class URBG>
|
| 2752 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2755 |
vector<double> probabilities() const;
|
| 2756 |
param_type param() const;
|
| 2757 |
void param(const param_type& parm);
|
| 2758 |
result_type min() const;
|
| 2759 |
result_type max() const;
|
| 2760 |
+
|
| 2761 |
+
// inserters and extractors
|
| 2762 |
+
template<class charT, class traits>
|
| 2763 |
+
friend basic_ostream<charT, traits>&
|
| 2764 |
+
operator<<(basic_ostream<charT, traits>& os, const discrete_distribution& x);
|
| 2765 |
+
template<class charT, class traits>
|
| 2766 |
+
friend basic_istream<charT, traits>&
|
| 2767 |
+
operator>>(basic_istream<charT, traits>& is, discrete_distribution& x);
|
| 2768 |
};
|
| 2769 |
+
}
|
| 2770 |
```
|
| 2771 |
|
| 2772 |
``` cpp
|
| 2773 |
discrete_distribution();
|
| 2774 |
```
|
|
|
|
| 2844 |
in which the values wₖ, commonly known as the *weights* , shall be
|
| 2845 |
non-negative, non-NaN, and non-infinity. Moreover, the following
|
| 2846 |
relation shall hold: 0 < S = w₀ + … + wₙ₋₁.
|
| 2847 |
|
| 2848 |
``` cpp
|
| 2849 |
+
namespace std {
|
| 2850 |
template<class RealType = double>
|
| 2851 |
class piecewise_constant_distribution {
|
| 2852 |
public:
|
| 2853 |
// types
|
| 2854 |
using result_type = RealType;
|
|
|
|
| 2865 |
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,
|
| 2866 |
UnaryOperation fw);
|
| 2867 |
explicit piecewise_constant_distribution(const param_type& parm);
|
| 2868 |
void reset();
|
| 2869 |
|
| 2870 |
+
// equality operators
|
| 2871 |
+
friend bool operator==(const piecewise_constant_distribution& x,
|
| 2872 |
+
const piecewise_constant_distribution& y);
|
| 2873 |
+
|
| 2874 |
// generating functions
|
| 2875 |
template<class URBG>
|
| 2876 |
result_type operator()(URBG& g);
|
| 2877 |
template<class URBG>
|
| 2878 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 2882 |
vector<result_type> densities() const;
|
| 2883 |
param_type param() const;
|
| 2884 |
void param(const param_type& parm);
|
| 2885 |
result_type min() const;
|
| 2886 |
result_type max() const;
|
| 2887 |
+
|
| 2888 |
+
// inserters and extractors
|
| 2889 |
+
template<class charT, class traits>
|
| 2890 |
+
friend basic_ostream<charT, traits>&
|
| 2891 |
+
operator<<(basic_ostream<charT, traits>& os, const piecewise_constant_distribution& x);
|
| 2892 |
+
template<class charT, class traits>
|
| 2893 |
+
friend basic_istream<charT, traits>&
|
| 2894 |
+
operator>>(basic_istream<charT, traits>& is, piecewise_constant_distribution& x);
|
| 2895 |
};
|
| 2896 |
+
}
|
| 2897 |
```
|
| 2898 |
|
| 2899 |
``` cpp
|
| 2900 |
piecewise_constant_distribution();
|
| 2901 |
```
|
|
|
|
| 2994 |
shall be non-negative, non-NaN, and non-infinity. Moreover, the
|
| 2995 |
following relation shall hold:
|
| 2996 |
$$0 < S = \frac{1}{2} \cdot \sum_{k=0}^{n-1} (w_k + w_{k+1}) \cdot (b_{k+1} - b_k) \text{ .}$$
|
| 2997 |
|
| 2998 |
``` cpp
|
| 2999 |
+
namespace std {
|
| 3000 |
template<class RealType = double>
|
| 3001 |
class piecewise_linear_distribution {
|
| 3002 |
public:
|
| 3003 |
// types
|
| 3004 |
using result_type = RealType;
|
|
|
|
| 3014 |
template<class UnaryOperation>
|
| 3015 |
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
|
| 3016 |
explicit piecewise_linear_distribution(const param_type& parm);
|
| 3017 |
void reset();
|
| 3018 |
|
| 3019 |
+
// equality operators
|
| 3020 |
+
friend bool operator==(const piecewise_linear_distribution& x,
|
| 3021 |
+
const piecewise_linear_distribution& y);
|
| 3022 |
+
|
| 3023 |
// generating functions
|
| 3024 |
template<class URBG>
|
| 3025 |
result_type operator()(URBG& g);
|
| 3026 |
template<class URBG>
|
| 3027 |
result_type operator()(URBG& g, const param_type& parm);
|
|
|
|
| 3031 |
vector<result_type> densities() const;
|
| 3032 |
param_type param() const;
|
| 3033 |
void param(const param_type& parm);
|
| 3034 |
result_type min() const;
|
| 3035 |
result_type max() const;
|
| 3036 |
+
|
| 3037 |
+
// inserters and extractors
|
| 3038 |
+
template<class charT, class traits>
|
| 3039 |
+
friend basic_ostream<charT, traits>&
|
| 3040 |
+
operator<<(basic_ostream<charT, traits>& os, const piecewise_linear_distribution& x);
|
| 3041 |
+
template<class charT, class traits>
|
| 3042 |
+
friend basic_istream<charT, traits>&
|
| 3043 |
+
operator>>(basic_istream<charT, traits>& is, piecewise_linear_distribution& x);
|
| 3044 |
};
|
| 3045 |
+
}
|
| 3046 |
```
|
| 3047 |
|
| 3048 |
``` cpp
|
| 3049 |
piecewise_linear_distribution();
|
| 3050 |
```
|