tmp/tmpkpkrr738/{from.md → to.md}
RENAMED
|
@@ -1,85 +1,95 @@
|
|
| 1 |
### Indirect callable requirements <a id="indirectcallable">[[indirectcallable]]</a>
|
| 2 |
|
| 3 |
#### General <a id="indirectcallable.general">[[indirectcallable.general]]</a>
|
| 4 |
|
| 5 |
There are several concepts that group requirements of algorithms that
|
| 6 |
-
take callable objects
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
#### Indirect callables <a id="indirectcallable.indirectinvocable">[[indirectcallable.indirectinvocable]]</a>
|
| 9 |
|
| 10 |
The indirect callable concepts are used to constrain those algorithms
|
| 11 |
-
that accept callable objects
|
| 12 |
|
| 13 |
``` cpp
|
| 14 |
namespace std {
|
| 15 |
template<class F, class I>
|
| 16 |
concept indirectly_unary_invocable =
|
| 17 |
indirectly_readable<I> &&
|
| 18 |
copy_constructible<F> &&
|
| 19 |
-
invocable<F&,
|
| 20 |
invocable<F&, iter_reference_t<I>> &&
|
| 21 |
invocable<F&, iter_common_reference_t<I>> &&
|
| 22 |
common_reference_with<
|
| 23 |
-
invoke_result_t<F&,
|
| 24 |
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 25 |
|
| 26 |
template<class F, class I>
|
| 27 |
concept indirectly_regular_unary_invocable =
|
| 28 |
indirectly_readable<I> &&
|
| 29 |
copy_constructible<F> &&
|
| 30 |
-
regular_invocable<F&,
|
| 31 |
regular_invocable<F&, iter_reference_t<I>> &&
|
| 32 |
regular_invocable<F&, iter_common_reference_t<I>> &&
|
| 33 |
common_reference_with<
|
| 34 |
-
invoke_result_t<F&,
|
| 35 |
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 36 |
|
| 37 |
template<class F, class I>
|
| 38 |
concept indirect_unary_predicate =
|
| 39 |
indirectly_readable<I> &&
|
| 40 |
copy_constructible<F> &&
|
| 41 |
-
predicate<F&,
|
| 42 |
predicate<F&, iter_reference_t<I>> &&
|
| 43 |
predicate<F&, iter_common_reference_t<I>>;
|
| 44 |
|
| 45 |
template<class F, class I1, class I2>
|
| 46 |
concept indirect_binary_predicate =
|
| 47 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 48 |
copy_constructible<F> &&
|
| 49 |
-
predicate<F&,
|
| 50 |
-
predicate<F&,
|
| 51 |
-
predicate<F&, iter_reference_t<I1>,
|
| 52 |
predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 53 |
predicate<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 54 |
|
| 55 |
template<class F, class I1, class I2 = I1>
|
| 56 |
concept indirect_equivalence_relation =
|
| 57 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 58 |
copy_constructible<F> &&
|
| 59 |
-
equivalence_relation<F&,
|
| 60 |
-
equivalence_relation<F&,
|
| 61 |
-
equivalence_relation<F&, iter_reference_t<I1>,
|
| 62 |
equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 63 |
equivalence_relation<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 64 |
|
| 65 |
template<class F, class I1, class I2 = I1>
|
| 66 |
concept indirect_strict_weak_order =
|
| 67 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 68 |
copy_constructible<F> &&
|
| 69 |
-
strict_weak_order<F&,
|
| 70 |
-
strict_weak_order<F&,
|
| 71 |
-
strict_weak_order<F&, iter_reference_t<I1>,
|
| 72 |
strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 73 |
strict_weak_order<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 74 |
}
|
| 75 |
```
|
| 76 |
|
| 77 |
#### Class template `projected` <a id="projected">[[projected]]</a>
|
| 78 |
|
| 79 |
Class template `projected` is used to constrain algorithms that accept
|
| 80 |
-
callable objects and projections [[defns.projection]]. It combines
|
| 81 |
`indirectly_readable` type `I` and a callable object type `Proj` into a
|
| 82 |
new `indirectly_readable` type whose `reference` type is the result of
|
| 83 |
applying `Proj` to the `iter_reference_t` of `I`.
|
| 84 |
|
| 85 |
``` cpp
|
|
|
|
| 1 |
### Indirect callable requirements <a id="indirectcallable">[[indirectcallable]]</a>
|
| 2 |
|
| 3 |
#### General <a id="indirectcallable.general">[[indirectcallable.general]]</a>
|
| 4 |
|
| 5 |
There are several concepts that group requirements of algorithms that
|
| 6 |
+
take callable objects [[func.def]] as arguments.
|
| 7 |
+
|
| 8 |
+
#### Indirect callable traits <a id="indirectcallable.traits">[[indirectcallable.traits]]</a>
|
| 9 |
+
|
| 10 |
+
To implement algorithms taking projections, it is necessary to determine
|
| 11 |
+
the projected type of an iterator’s value type. For the exposition-only
|
| 12 |
+
alias template *`indirect-value-t`*, `indirect-value-t<T>` denotes
|
| 13 |
+
|
| 14 |
+
- `invoke_result_t<Proj&, indirect-value-t<I>>` if `T` names
|
| 15 |
+
`projected<I, Proj>`, and
|
| 16 |
+
- `iter_value_t<T>&` otherwise.
|
| 17 |
|
| 18 |
#### Indirect callables <a id="indirectcallable.indirectinvocable">[[indirectcallable.indirectinvocable]]</a>
|
| 19 |
|
| 20 |
The indirect callable concepts are used to constrain those algorithms
|
| 21 |
+
that accept callable objects [[func.def]] as arguments.
|
| 22 |
|
| 23 |
``` cpp
|
| 24 |
namespace std {
|
| 25 |
template<class F, class I>
|
| 26 |
concept indirectly_unary_invocable =
|
| 27 |
indirectly_readable<I> &&
|
| 28 |
copy_constructible<F> &&
|
| 29 |
+
invocable<F&, indirect-value-t<I>> &&
|
| 30 |
invocable<F&, iter_reference_t<I>> &&
|
| 31 |
invocable<F&, iter_common_reference_t<I>> &&
|
| 32 |
common_reference_with<
|
| 33 |
+
invoke_result_t<F&, indirect-value-t<I>>,
|
| 34 |
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 35 |
|
| 36 |
template<class F, class I>
|
| 37 |
concept indirectly_regular_unary_invocable =
|
| 38 |
indirectly_readable<I> &&
|
| 39 |
copy_constructible<F> &&
|
| 40 |
+
regular_invocable<F&, indirect-value-t<I>> &&
|
| 41 |
regular_invocable<F&, iter_reference_t<I>> &&
|
| 42 |
regular_invocable<F&, iter_common_reference_t<I>> &&
|
| 43 |
common_reference_with<
|
| 44 |
+
invoke_result_t<F&, indirect-value-t<I>>,
|
| 45 |
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 46 |
|
| 47 |
template<class F, class I>
|
| 48 |
concept indirect_unary_predicate =
|
| 49 |
indirectly_readable<I> &&
|
| 50 |
copy_constructible<F> &&
|
| 51 |
+
predicate<F&, indirect-value-t<I>> &&
|
| 52 |
predicate<F&, iter_reference_t<I>> &&
|
| 53 |
predicate<F&, iter_common_reference_t<I>>;
|
| 54 |
|
| 55 |
template<class F, class I1, class I2>
|
| 56 |
concept indirect_binary_predicate =
|
| 57 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 58 |
copy_constructible<F> &&
|
| 59 |
+
predicate<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
|
| 60 |
+
predicate<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
|
| 61 |
+
predicate<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
|
| 62 |
predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 63 |
predicate<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 64 |
|
| 65 |
template<class F, class I1, class I2 = I1>
|
| 66 |
concept indirect_equivalence_relation =
|
| 67 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 68 |
copy_constructible<F> &&
|
| 69 |
+
equivalence_relation<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
|
| 70 |
+
equivalence_relation<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
|
| 71 |
+
equivalence_relation<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
|
| 72 |
equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 73 |
equivalence_relation<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 74 |
|
| 75 |
template<class F, class I1, class I2 = I1>
|
| 76 |
concept indirect_strict_weak_order =
|
| 77 |
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 78 |
copy_constructible<F> &&
|
| 79 |
+
strict_weak_order<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
|
| 80 |
+
strict_weak_order<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
|
| 81 |
+
strict_weak_order<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
|
| 82 |
strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 83 |
strict_weak_order<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 84 |
}
|
| 85 |
```
|
| 86 |
|
| 87 |
#### Class template `projected` <a id="projected">[[projected]]</a>
|
| 88 |
|
| 89 |
Class template `projected` is used to constrain algorithms that accept
|
| 90 |
+
callable objects and projections [[defns.projection]]. It combines an
|
| 91 |
`indirectly_readable` type `I` and a callable object type `Proj` into a
|
| 92 |
new `indirectly_readable` type whose `reference` type is the result of
|
| 93 |
applying `Proj` to the `iter_reference_t` of `I`.
|
| 94 |
|
| 95 |
``` cpp
|