tmp/tmpgr482vl5/{from.md → to.md}
RENAMED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
### Floating-point type properties <a id="fp.style">[[fp.style]]</a>
|
| 2 |
-
|
| 3 |
-
#### Type `float_round_style` <a id="round.style">[[round.style]]</a>
|
| 4 |
-
|
| 5 |
-
``` cpp
|
| 6 |
-
namespace std {
|
| 7 |
-
enum float_round_style {
|
| 8 |
-
round_indeterminate = -1,
|
| 9 |
-
round_toward_zero = 0,
|
| 10 |
-
round_to_nearest = 1,
|
| 11 |
-
round_toward_infinity = 2,
|
| 12 |
-
round_toward_neg_infinity = 3
|
| 13 |
-
};
|
| 14 |
-
}
|
| 15 |
-
```
|
| 16 |
-
|
| 17 |
-
The rounding mode for floating-point arithmetic is characterized by the
|
| 18 |
-
values:
|
| 19 |
-
|
| 20 |
-
- `round_indeterminate` if the rounding style is indeterminable
|
| 21 |
-
- `round_toward_zero` if the rounding style is toward zero
|
| 22 |
-
- `round_to_nearest` if the rounding style is to the nearest
|
| 23 |
-
representable value
|
| 24 |
-
- `round_toward_infinity` if the rounding style is toward infinity
|
| 25 |
-
- `round_toward_neg_infinity` if the rounding style is toward negative
|
| 26 |
-
infinity
|
| 27 |
-
|
| 28 |
-
#### Type `float_denorm_style` <a id="denorm.style">[[denorm.style]]</a>
|
| 29 |
-
|
| 30 |
-
``` cpp
|
| 31 |
-
namespace std {
|
| 32 |
-
enum float_denorm_style {
|
| 33 |
-
denorm_indeterminate = -1,
|
| 34 |
-
denorm_absent = 0,
|
| 35 |
-
denorm_present = 1
|
| 36 |
-
};
|
| 37 |
-
}
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
The presence or absence of subnormal numbers (variable number of
|
| 41 |
-
exponent bits) is characterized by the values:
|
| 42 |
-
|
| 43 |
-
- `denorm_indeterminate` if it cannot be determined whether or not the
|
| 44 |
-
type allows subnormal values
|
| 45 |
-
- `denorm_absent` if the type does not allow subnormal values
|
| 46 |
-
- `denorm_present` if the type does allow subnormal values
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|