- tmp/tmpl5rmox84/{from.md → to.md} +185 -107
tmp/tmpl5rmox84/{from.md → to.md}
RENAMED
|
@@ -1,22 +1,42 @@
|
|
| 1 |
### Lambda expressions <a id="expr.prim.lambda">[[expr.prim.lambda]]</a>
|
| 2 |
|
|
|
|
|
|
|
| 3 |
``` bnf
|
| 4 |
lambda-expression:
|
| 5 |
-
lambda-introducer
|
| 6 |
-
lambda-introducer '<' template-parameter-list '>' requires-clauseₒₚₜ
|
|
|
|
| 7 |
```
|
| 8 |
|
| 9 |
``` bnf
|
| 10 |
lambda-introducer:
|
| 11 |
'[' lambda-captureₒₚₜ ']'
|
| 12 |
```
|
| 13 |
|
| 14 |
``` bnf
|
| 15 |
lambda-declarator:
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
```
|
| 19 |
|
| 20 |
A *lambda-expression* provides a concise way to create a simple function
|
| 21 |
object.
|
| 22 |
|
|
@@ -36,29 +56,46 @@ A *lambda-expression* is a prvalue whose result object is called the
|
|
| 36 |
*closure object*.
|
| 37 |
|
| 38 |
[*Note 1*: A closure object behaves like a function object
|
| 39 |
[[function.objects]]. — *end note*]
|
| 40 |
|
| 41 |
-
|
| 42 |
-
*
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
[*Note 2*:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
[[dcl.decl]]. — *end note*]
|
| 46 |
|
| 47 |
-
If a *lambda-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
*trailing-return-type*
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
|
| 53 |
[*Example 2*:
|
| 54 |
|
| 55 |
``` cpp
|
| 56 |
-
auto x1 = [](int i){ return i; };
|
| 57 |
auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list
|
| 58 |
int j;
|
| 59 |
-
auto x3 = []()->auto&& { return j; };
|
| 60 |
```
|
| 61 |
|
| 62 |
— *end example*]
|
| 63 |
|
| 64 |
A lambda is a *generic lambda* if the *lambda-expression* has any
|
|
@@ -66,12 +103,12 @@ generic parameter type placeholders [[dcl.spec.auto]], or if the lambda
|
|
| 66 |
has a *template-parameter-list*.
|
| 67 |
|
| 68 |
[*Example 3*:
|
| 69 |
|
| 70 |
``` cpp
|
| 71 |
-
int i = [](int i, auto a) { return i; }(3, 4); // OK
|
| 72 |
-
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK
|
| 73 |
```
|
| 74 |
|
| 75 |
— *end example*]
|
| 76 |
|
| 77 |
#### Closure types <a id="expr.prim.lambda.closure">[[expr.prim.lambda.closure]]</a>
|
|
@@ -110,56 +147,90 @@ and whose *template-parameter-list* consists of the specified
|
|
| 110 |
call operator template is the *requires-clause* immediately following
|
| 111 |
`<` *template-parameter-list* `>`, if any. The trailing
|
| 112 |
*requires-clause* of the function call operator or operator template is
|
| 113 |
the *requires-clause* of the *lambda-declarator*, if any.
|
| 114 |
|
| 115 |
-
[*Note 2*: The function call operator template for a generic lambda
|
| 116 |
-
|
| 117 |
|
| 118 |
[*Example 1*:
|
| 119 |
|
| 120 |
``` cpp
|
| 121 |
auto glambda = [](auto a, auto&& b) { return a < b; };
|
| 122 |
bool b = glambda(3, 3.14); // OK
|
| 123 |
|
| 124 |
auto vglambda = [](auto printer) {
|
| 125 |
-
return [=](auto&& ... ts) { // OK
|
| 126 |
printer(std::forward<decltype(ts)>(ts)...);
|
| 127 |
|
| 128 |
return [=]() {
|
| 129 |
printer(ts ...);
|
| 130 |
};
|
| 131 |
};
|
| 132 |
};
|
| 133 |
auto p = vglambda( [](auto v1, auto v2, auto v3)
|
| 134 |
{ std::cout << v1 << v2 << v3; } );
|
| 135 |
-
auto q = p(1, 'a', 3.14); // OK
|
| 136 |
-
q(); // OK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
```
|
| 138 |
|
| 139 |
— *end example*]
|
| 140 |
|
| 141 |
-
The function call operator or operator template is
|
| 142 |
-
[[class.
|
| 143 |
-
*parameter-declaration-clause* is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
neither virtual nor declared `volatile`. Any *noexcept-specifier*
|
| 145 |
specified on a *lambda-expression* applies to the corresponding function
|
| 146 |
call operator or operator template. An *attribute-specifier-seq* in a
|
| 147 |
*lambda-declarator* appertains to the type of the corresponding function
|
| 148 |
-
call operator or operator template.
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
immediate function [[dcl.constexpr]] if the corresponding
|
| 154 |
*lambda-expression*'s *parameter-declaration-clause* is followed by
|
| 155 |
`consteval`.
|
| 156 |
|
| 157 |
-
[*
|
| 158 |
-
the context in which the *lambda-expression* appears. — *end note*]
|
| 159 |
-
|
| 160 |
-
[*Example 2*:
|
| 161 |
|
| 162 |
``` cpp
|
| 163 |
auto ID = [](auto a) { return a; };
|
| 164 |
static_assert(ID(3) == 3); // OK
|
| 165 |
|
|
@@ -170,11 +241,11 @@ struct NonLiteral {
|
|
| 170 |
static_assert(ID(NonLiteral{3}).n == 3); // error
|
| 171 |
```
|
| 172 |
|
| 173 |
— *end example*]
|
| 174 |
|
| 175 |
-
[*Example
|
| 176 |
|
| 177 |
``` cpp
|
| 178 |
auto monoid = [](auto v) { return [=] { return v; }; };
|
| 179 |
auto add = [](auto m1) constexpr {
|
| 180 |
auto ret = m1();
|
|
@@ -199,18 +270,18 @@ static_assert(add(one)(one)() == two()); // error: two() is not a constan
|
|
| 199 |
static_assert(add(one)(one)() == monoid(2)()); // OK
|
| 200 |
```
|
| 201 |
|
| 202 |
— *end example*]
|
| 203 |
|
| 204 |
-
[*Note
|
| 205 |
|
| 206 |
-
The function call operator or operator template
|
| 207 |
[[temp.constr.decl]] by a *type-constraint* [[temp.param]], a
|
| 208 |
*requires-clause* [[temp.pre]], or a trailing *requires-clause*
|
| 209 |
[[dcl.decl]].
|
| 210 |
|
| 211 |
-
[*Example
|
| 212 |
|
| 213 |
``` cpp
|
| 214 |
template <typename T> concept C1 = ...;
|
| 215 |
template <std::size_t N> concept C2 = ...;
|
| 216 |
template <typename A, typename B> concept C3 = ...;
|
|
@@ -231,27 +302,29 @@ The closure type for a non-generic *lambda-expression* with no
|
|
| 231 |
*lambda-capture* whose constraints (if any) are satisfied has a
|
| 232 |
conversion function to pointer to function with C++ language linkage
|
| 233 |
[[dcl.link]] having the same parameter and return types as the closure
|
| 234 |
type’s function call operator. The conversion is to “pointer to
|
| 235 |
`noexcept` function” if the function call operator has a non-throwing
|
| 236 |
-
exception specification.
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
function
|
|
|
|
|
|
|
| 243 |
|
| 244 |
For a generic lambda with no *lambda-capture*, the closure type has a
|
| 245 |
conversion function template to pointer to function. The conversion
|
| 246 |
function template has the same invented template parameter list, and the
|
| 247 |
pointer to function has the same parameter types, as the function call
|
| 248 |
operator template. The return type of the pointer to function shall
|
| 249 |
behave as if it were a *decltype-specifier* denoting the return type of
|
| 250 |
the corresponding function call operator template specialization.
|
| 251 |
|
| 252 |
-
[*Note
|
| 253 |
|
| 254 |
If the generic lambda has no *trailing-return-type* or the
|
| 255 |
*trailing-return-type* contains a placeholder type, return type
|
| 256 |
deduction of the corresponding function call operator template
|
| 257 |
specialization has to be done. The corresponding specialization is that
|
|
@@ -283,11 +356,11 @@ struct Closure {
|
|
| 283 |
};
|
| 284 |
```
|
| 285 |
|
| 286 |
— *end note*]
|
| 287 |
|
| 288 |
-
[*Example
|
| 289 |
|
| 290 |
``` cpp
|
| 291 |
void f1(int (*)(int)) { }
|
| 292 |
void f2(char (*)(int)) { }
|
| 293 |
|
|
@@ -299,45 +372,49 @@ void h(char (*)(int)) { } // #4
|
|
| 299 |
|
| 300 |
auto glambda = [](auto a) { return a; };
|
| 301 |
f1(glambda); // OK
|
| 302 |
f2(glambda); // error: ID is not convertible
|
| 303 |
g(glambda); // error: ambiguous
|
| 304 |
-
h(glambda); // OK
|
| 305 |
int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK
|
| 306 |
```
|
| 307 |
|
| 308 |
— *end example*]
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
function call operator template specialization
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
-
[*Note
|
| 320 |
generic lambda’s body. The instantiated generic lambda’s return type and
|
| 321 |
parameter types are required to match the return type and parameter
|
| 322 |
types of the pointer to function. — *end note*]
|
| 323 |
|
| 324 |
-
[*Example
|
| 325 |
|
| 326 |
``` cpp
|
| 327 |
auto GL = [](auto a) { std::cout << a; return a; };
|
| 328 |
-
int (*GL_int)(int) = GL; // OK
|
| 329 |
-
GL_int(3); // OK
|
| 330 |
```
|
| 331 |
|
| 332 |
— *end example*]
|
| 333 |
|
| 334 |
The conversion function or conversion function template is public,
|
| 335 |
constexpr, non-virtual, non-explicit, const, and has a non-throwing
|
| 336 |
exception specification [[except.spec]].
|
| 337 |
|
| 338 |
-
[*Example
|
| 339 |
|
| 340 |
``` cpp
|
| 341 |
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
|
| 342 |
auto C = [](auto a) { return a; };
|
| 343 |
|
|
@@ -349,18 +426,14 @@ static_assert(Fwd(NC,3) == 3); // error
|
|
| 349 |
```
|
| 350 |
|
| 351 |
— *end example*]
|
| 352 |
|
| 353 |
The *lambda-expression*’s *compound-statement* yields the
|
| 354 |
-
*function-body* [[dcl.fct.def]] of the function call operator, but
|
| 355 |
-
|
| 356 |
-
of `this` [[class.this]] and transforming *id-expression*s referring to
|
| 357 |
-
non-static class members into class member access expressions using
|
| 358 |
-
`(*this)` ([[class.mfct.non-static]]), the *compound-statement* is
|
| 359 |
-
considered in the context of the *lambda-expression*.
|
| 360 |
|
| 361 |
-
[*Example
|
| 362 |
|
| 363 |
``` cpp
|
| 364 |
struct S1 {
|
| 365 |
int x, y;
|
| 366 |
int operator()(int);
|
|
@@ -385,12 +458,12 @@ defaulted default constructor otherwise. It has a defaulted copy
|
|
| 385 |
constructor and a defaulted move constructor [[class.copy.ctor]]. It has
|
| 386 |
a deleted copy assignment operator if the *lambda-expression* has a
|
| 387 |
*lambda-capture* and defaulted copy and move assignment operators
|
| 388 |
otherwise [[class.copy.assign]].
|
| 389 |
|
| 390 |
-
[*Note
|
| 391 |
-
usual,
|
| 392 |
|
| 393 |
The closure type associated with a *lambda-expression* has an
|
| 394 |
implicitly-declared destructor [[class.dtor]].
|
| 395 |
|
| 396 |
A member of a closure type shall not be explicitly instantiated
|
|
@@ -436,13 +509,12 @@ simple-capture:
|
|
| 436 |
init-capture:
|
| 437 |
'...'ₒₚₜ identifier initializer
|
| 438 |
'&' '...'ₒₚₜ identifier initializer
|
| 439 |
```
|
| 440 |
|
| 441 |
-
The body of a *lambda-expression* may refer to
|
| 442 |
-
|
| 443 |
-
scopes by capturing those entities, as described below.
|
| 444 |
|
| 445 |
If a *lambda-capture* includes a *capture-default* that is `&`, no
|
| 446 |
identifier in a *simple-capture* of that *lambda-capture* shall be
|
| 447 |
preceded by `&`. If a *lambda-capture* includes a *capture-default* that
|
| 448 |
is `=`, each *simple-capture* of that *lambda-capture* shall be of the
|
|
@@ -475,35 +547,37 @@ A *lambda-expression* shall not have a *capture-default* or
|
|
| 475 |
*simple-capture* in its *lambda-introducer* unless its innermost
|
| 476 |
enclosing scope is a block scope [[basic.scope.block]] or it appears
|
| 477 |
within a default member initializer and its innermost enclosing scope is
|
| 478 |
the corresponding class scope [[basic.scope.class]].
|
| 479 |
|
| 480 |
-
The *identifier* in a *simple-capture*
|
| 481 |
-
|
| 482 |
-
lookup shall find a local entity. The *simple-capture*s `this` and
|
| 483 |
`* this` denote the local entity `*this`. An entity that is designated
|
| 484 |
by a *simple-capture* is said to be *explicitly captured*.
|
| 485 |
|
| 486 |
-
If an *identifier* in a *
|
| 487 |
-
|
| 488 |
-
|
|
|
|
| 489 |
|
| 490 |
[*Example 2*:
|
| 491 |
|
| 492 |
``` cpp
|
| 493 |
void f() {
|
| 494 |
int x = 0;
|
| 495 |
-
auto g = [x](int x) { return 0; }; // error: parameter and
|
|
|
|
|
|
|
| 496 |
}
|
| 497 |
```
|
| 498 |
|
| 499 |
— *end example*]
|
| 500 |
|
| 501 |
-
An *init-capture*
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
*
|
| 505 |
|
| 506 |
- if the capture is by copy (see below), the non-static data member
|
| 507 |
declared for the capture and the variable are treated as two different
|
| 508 |
ways of referring to the same object, which has the lifetime of the
|
| 509 |
non-static data member, and no additional copy and destruction is
|
|
@@ -522,11 +596,14 @@ int x = 4;
|
|
| 522 |
auto y = [&r = x, x = x+1]()->int {
|
| 523 |
r += 2;
|
| 524 |
return x+2;
|
| 525 |
}(); // Updates ::x to 6, and initializes y to 7.
|
| 526 |
|
| 527 |
-
auto z = [a = 42](int a) { return 1; }; // error: parameter and local variable have the same name
|
|
|
|
|
|
|
|
|
|
| 528 |
```
|
| 529 |
|
| 530 |
— *end example*]
|
| 531 |
|
| 532 |
For the purposes of lambda capture, an expression potentially references
|
|
@@ -540,13 +617,13 @@ local entities as follows:
|
|
| 540 |
*id-expression*. — *end note*]
|
| 541 |
- A `this` expression potentially references `*this`.
|
| 542 |
- A *lambda-expression* potentially references the local entities named
|
| 543 |
by its *simple-capture*s.
|
| 544 |
|
| 545 |
-
If an expression potentially references a local entity within a
|
| 546 |
-
|
| 547 |
-
|
| 548 |
expressions [[expr.typeid]] were ignored, the entity is said to be
|
| 549 |
*implicitly captured* by each intervening *lambda-expression* with an
|
| 550 |
associated *capture-default* that does not explicitly capture it. The
|
| 551 |
implicit capture of `*this` is deprecated when the *capture-default* is
|
| 552 |
`=`; see [[depr.capture.this]].
|
|
@@ -557,38 +634,38 @@ implicit capture of `*this` is deprecated when the *capture-default* is
|
|
| 557 |
void f(int, const int (&)[2] = {}); // #1
|
| 558 |
void f(const int&, const int (&)[1]); // #2
|
| 559 |
void test() {
|
| 560 |
const int x = 17;
|
| 561 |
auto g = [](auto a) {
|
| 562 |
-
f(x); // OK
|
| 563 |
};
|
| 564 |
|
| 565 |
auto g1 = [=](auto a) {
|
| 566 |
-
f(x); // OK
|
| 567 |
};
|
| 568 |
|
| 569 |
auto g2 = [=](auto a) {
|
| 570 |
int selector[sizeof(a) == 1 ? 1 : 2]{};
|
| 571 |
-
f(x, selector); // OK
|
| 572 |
};
|
| 573 |
|
| 574 |
auto g3 = [=](auto a) {
|
| 575 |
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand
|
| 576 |
};
|
| 577 |
}
|
| 578 |
```
|
| 579 |
|
| 580 |
-
Within `g1`, an implementation
|
| 581 |
it is not odr-used.
|
| 582 |
|
| 583 |
— *end example*]
|
| 584 |
|
| 585 |
[*Note 4*:
|
| 586 |
|
| 587 |
The set of captured entities is determined syntactically, and entities
|
| 588 |
-
|
| 589 |
-
|
| 590 |
|
| 591 |
[*Example 5*:
|
| 592 |
|
| 593 |
``` cpp
|
| 594 |
template<bool B>
|
|
@@ -604,12 +681,12 @@ void f(int n) {
|
|
| 604 |
— *end example*]
|
| 605 |
|
| 606 |
— *end note*]
|
| 607 |
|
| 608 |
An entity is *captured* if it is captured explicitly or implicitly. An
|
| 609 |
-
entity captured by a *lambda-expression* is odr-used [[
|
| 610 |
-
|
| 611 |
|
| 612 |
[*Note 5*: As a consequence, if a *lambda-expression* explicitly
|
| 613 |
captures an entity that is not odr-usable, the program is ill-formed
|
| 614 |
[[basic.def.odr]]. — *end note*]
|
| 615 |
|
|
@@ -619,26 +696,26 @@ captures an entity that is not odr-usable, the program is ill-formed
|
|
| 619 |
void f1(int i) {
|
| 620 |
int const N = 20;
|
| 621 |
auto m1 = [=]{
|
| 622 |
int const M = 30;
|
| 623 |
auto m2 = [i]{
|
| 624 |
-
int x[N][M]; // OK
|
| 625 |
-
x[0][0] = i; // OK
|
| 626 |
};
|
| 627 |
};
|
| 628 |
struct s1 {
|
| 629 |
int f;
|
| 630 |
void work(int n) {
|
| 631 |
int m = n*n;
|
| 632 |
int j = 40;
|
| 633 |
auto m3 = [this,m] {
|
| 634 |
auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
|
| 635 |
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
|
| 636 |
-
x += m; // OK
|
| 637 |
x += i; // error: i is odr-used but not odr-usable
|
| 638 |
// due to intervening function and class scopes
|
| 639 |
-
x += f; // OK
|
| 640 |
};
|
| 641 |
};
|
| 642 |
}
|
| 643 |
};
|
| 644 |
}
|
|
@@ -701,11 +778,11 @@ the entity is a reference to an object, an lvalue reference to the
|
|
| 701 |
referenced function type if the entity is a reference to a function, or
|
| 702 |
the type of the corresponding captured entity otherwise. A member of an
|
| 703 |
anonymous union shall not be captured by copy.
|
| 704 |
|
| 705 |
Every *id-expression* within the *compound-statement* of a
|
| 706 |
-
*lambda-expression* that is an odr-use [[
|
| 707 |
captured by copy is transformed into an access to the corresponding
|
| 708 |
unnamed data member of the closure type.
|
| 709 |
|
| 710 |
[*Note 7*: An *id-expression* that is not an odr-use refers to the
|
| 711 |
original entity, never to a member of the closure type. However, such an
|
|
@@ -721,12 +798,12 @@ the closure type.
|
|
| 721 |
``` cpp
|
| 722 |
void f(const int*);
|
| 723 |
void g() {
|
| 724 |
const int N = 10;
|
| 725 |
[=] {
|
| 726 |
-
int arr[N]; // OK
|
| 727 |
-
f(&N); // OK
|
| 728 |
// the corresponding member of the closure type
|
| 729 |
};
|
| 730 |
}
|
| 731 |
```
|
| 732 |
|
|
@@ -774,13 +851,15 @@ auto h(int &r) {
|
|
| 774 |
|
| 775 |
If a *lambda-expression* `m2` captures an entity and that entity is
|
| 776 |
captured by an immediately enclosing *lambda-expression* `m1`, then
|
| 777 |
`m2`’s capture is transformed as follows:
|
| 778 |
|
| 779 |
-
-
|
| 780 |
-
non-static data member of `m1`’s closure type;
|
| 781 |
-
|
|
|
|
|
|
|
| 782 |
entity captured by `m1`.
|
| 783 |
|
| 784 |
[*Example 11*:
|
| 785 |
|
| 786 |
The nested *lambda-expression*s and invocations below will output
|
|
@@ -821,12 +900,11 @@ captured by reference, invoking the function call operator of the
|
|
| 821 |
corresponding *lambda-expression* after the lifetime of the entity has
|
| 822 |
ended is likely to result in undefined behavior. — *end note*]
|
| 823 |
|
| 824 |
A *simple-capture* containing an ellipsis is a pack expansion
|
| 825 |
[[temp.variadic]]. An *init-capture* containing an ellipsis is a pack
|
| 826 |
-
expansion that
|
| 827 |
-
declarative region is the *lambda-expression*’s *compound-statement*.
|
| 828 |
|
| 829 |
[*Example 12*:
|
| 830 |
|
| 831 |
``` cpp
|
| 832 |
template<class... Args>
|
|
|
|
| 1 |
### Lambda expressions <a id="expr.prim.lambda">[[expr.prim.lambda]]</a>
|
| 2 |
|
| 3 |
+
#### General <a id="expr.prim.lambda.general">[[expr.prim.lambda.general]]</a>
|
| 4 |
+
|
| 5 |
``` bnf
|
| 6 |
lambda-expression:
|
| 7 |
+
lambda-introducer attribute-specifier-seqₒₚₜ lambda-declarator compound-statement
|
| 8 |
+
lambda-introducer '<' template-parameter-list '>' requires-clauseₒₚₜ attribute-specifier-seqₒₚₜ
|
| 9 |
+
lambda-declarator compound-statement
|
| 10 |
```
|
| 11 |
|
| 12 |
``` bnf
|
| 13 |
lambda-introducer:
|
| 14 |
'[' lambda-captureₒₚₜ ']'
|
| 15 |
```
|
| 16 |
|
| 17 |
``` bnf
|
| 18 |
lambda-declarator:
|
| 19 |
+
lambda-specifier-seq noexcept-specifierₒₚₜ attribute-specifier-seqₒₚₜ trailing-return-typeₒₚₜ
|
| 20 |
+
noexcept-specifier attribute-specifier-seqₒₚₜ trailing-return-typeₒₚₜ
|
| 21 |
+
trailing-return-typeₒₚₜ
|
| 22 |
+
'(' parameter-declaration-clause ')' lambda-specifier-seqₒₚₜ noexcept-specifierₒₚₜ attribute-specifier-seqₒₚₜ
|
| 23 |
+
trailing-return-typeₒₚₜ requires-clauseₒₚₜ
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
``` bnf
|
| 27 |
+
lambda-specifier:
|
| 28 |
+
consteval
|
| 29 |
+
constexpr
|
| 30 |
+
mutable
|
| 31 |
+
static
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
``` bnf
|
| 35 |
+
lambda-specifier-seq:
|
| 36 |
+
lambda-specifier
|
| 37 |
+
lambda-specifier lambda-specifier-seq
|
| 38 |
```
|
| 39 |
|
| 40 |
A *lambda-expression* provides a concise way to create a simple function
|
| 41 |
object.
|
| 42 |
|
|
|
|
| 56 |
*closure object*.
|
| 57 |
|
| 58 |
[*Note 1*: A closure object behaves like a function object
|
| 59 |
[[function.objects]]. — *end note*]
|
| 60 |
|
| 61 |
+
An ambiguity can arise because a *requires-clause* can end in an
|
| 62 |
+
*attribute-specifier-seq*, which collides with the
|
| 63 |
+
*attribute-specifier-seq* in *lambda-expression*. In such cases, any
|
| 64 |
+
attributes are treated as *attribute-specifier-seq* in
|
| 65 |
+
*lambda-expression*.
|
| 66 |
|
| 67 |
+
[*Note 2*: Such ambiguous cases cannot have valid semantics because the
|
| 68 |
+
constraint expression would not have type `bool`. — *end note*]
|
| 69 |
+
|
| 70 |
+
A *lambda-specifier-seq* shall contain at most one of each
|
| 71 |
+
*lambda-specifier* and shall not contain both `constexpr` and
|
| 72 |
+
`consteval`. If the *lambda-declarator* contains an explicit object
|
| 73 |
+
parameter [[dcl.fct]], then no *lambda-specifier* in the
|
| 74 |
+
*lambda-specifier-seq* shall be `mutable` or `static`. The
|
| 75 |
+
*lambda-specifier-seq* shall not contain both `mutable` and `static`. If
|
| 76 |
+
the *lambda-specifier-seq* contains `static`, there shall be no
|
| 77 |
+
*lambda-capture*.
|
| 78 |
+
|
| 79 |
+
[*Note 3*: The trailing *requires-clause* is described in
|
| 80 |
[[dcl.decl]]. — *end note*]
|
| 81 |
|
| 82 |
+
If a *lambda-declarator* does not include a
|
| 83 |
+
*parameter-declaration-clause*, it is as if `()` were inserted at the
|
| 84 |
+
start of the *lambda-declarator*. If the *lambda-declarator* does not
|
| 85 |
+
include a *trailing-return-type*, it is considered to be `-> auto`.
|
| 86 |
+
|
| 87 |
+
[*Note 4*: In that case, the return type is deduced from `return`
|
| 88 |
+
statements as described in [[dcl.spec.auto]]. — *end note*]
|
| 89 |
|
| 90 |
[*Example 2*:
|
| 91 |
|
| 92 |
``` cpp
|
| 93 |
+
auto x1 = [](int i) { return i; }; // OK, return type is int
|
| 94 |
auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list
|
| 95 |
int j;
|
| 96 |
+
auto x3 = [&]()->auto&& { return j; }; // OK, return type is int&
|
| 97 |
```
|
| 98 |
|
| 99 |
— *end example*]
|
| 100 |
|
| 101 |
A lambda is a *generic lambda* if the *lambda-expression* has any
|
|
|
|
| 103 |
has a *template-parameter-list*.
|
| 104 |
|
| 105 |
[*Example 3*:
|
| 106 |
|
| 107 |
``` cpp
|
| 108 |
+
int i = [](int i, auto a) { return i; }(3, 4); // OK, a generic lambda
|
| 109 |
+
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK, a generic lambda
|
| 110 |
```
|
| 111 |
|
| 112 |
— *end example*]
|
| 113 |
|
| 114 |
#### Closure types <a id="expr.prim.lambda.closure">[[expr.prim.lambda.closure]]</a>
|
|
|
|
| 147 |
call operator template is the *requires-clause* immediately following
|
| 148 |
`<` *template-parameter-list* `>`, if any. The trailing
|
| 149 |
*requires-clause* of the function call operator or operator template is
|
| 150 |
the *requires-clause* of the *lambda-declarator*, if any.
|
| 151 |
|
| 152 |
+
[*Note 2*: The function call operator template for a generic lambda can
|
| 153 |
+
be an abbreviated function template [[dcl.fct]]. — *end note*]
|
| 154 |
|
| 155 |
[*Example 1*:
|
| 156 |
|
| 157 |
``` cpp
|
| 158 |
auto glambda = [](auto a, auto&& b) { return a < b; };
|
| 159 |
bool b = glambda(3, 3.14); // OK
|
| 160 |
|
| 161 |
auto vglambda = [](auto printer) {
|
| 162 |
+
return [=](auto&& ... ts) { // OK, ts is a function parameter pack
|
| 163 |
printer(std::forward<decltype(ts)>(ts)...);
|
| 164 |
|
| 165 |
return [=]() {
|
| 166 |
printer(ts ...);
|
| 167 |
};
|
| 168 |
};
|
| 169 |
};
|
| 170 |
auto p = vglambda( [](auto v1, auto v2, auto v3)
|
| 171 |
{ std::cout << v1 << v2 << v3; } );
|
| 172 |
+
auto q = p(1, 'a', 3.14); // OK, outputs 1a3.14
|
| 173 |
+
q(); // OK, outputs 1a3.14
|
| 174 |
+
|
| 175 |
+
auto fact = [](this auto self, int n) -> int { // OK, explicit object parameter
|
| 176 |
+
return (n <= 1) ? 1 : n * self(n-1);
|
| 177 |
+
};
|
| 178 |
+
std::cout << fact(5); // OK, outputs 120
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
— *end example*]
|
| 182 |
+
|
| 183 |
+
Given a lambda with a *lambda-capture*, the type of the explicit object
|
| 184 |
+
parameter, if any, of the lambda’s function call operator (possibly
|
| 185 |
+
instantiated from a function call operator template) shall be either:
|
| 186 |
+
|
| 187 |
+
- the closure type,
|
| 188 |
+
- a class type derived from the closure type, or
|
| 189 |
+
- a reference to a possibly cv-qualified such type.
|
| 190 |
+
|
| 191 |
+
[*Example 2*:
|
| 192 |
+
|
| 193 |
+
``` cpp
|
| 194 |
+
struct C {
|
| 195 |
+
template <typename T>
|
| 196 |
+
C(T);
|
| 197 |
+
};
|
| 198 |
+
|
| 199 |
+
void func(int i) {
|
| 200 |
+
int x = [=](this auto&&) { return i; }(); // OK
|
| 201 |
+
int y = [=](this C) { return i; }(); // error
|
| 202 |
+
int z = [](this C) { return 42; }(); // OK
|
| 203 |
+
}
|
| 204 |
```
|
| 205 |
|
| 206 |
— *end example*]
|
| 207 |
|
| 208 |
+
The function call operator or operator template is a static member
|
| 209 |
+
function or static member function template [[class.static.mfct]] if the
|
| 210 |
+
*lambda-expression*’s *parameter-declaration-clause* is followed by
|
| 211 |
+
`static`. Otherwise, it is a non-static member function or member
|
| 212 |
+
function template [[class.mfct.non.static]] that is declared `const`
|
| 213 |
+
[[class.mfct.non.static]] if and only if the *lambda-expression*’s
|
| 214 |
+
*parameter-declaration-clause* is not followed by `mutable` and the
|
| 215 |
+
*lambda-declarator* does not contain an explicit object parameter. It is
|
| 216 |
neither virtual nor declared `volatile`. Any *noexcept-specifier*
|
| 217 |
specified on a *lambda-expression* applies to the corresponding function
|
| 218 |
call operator or operator template. An *attribute-specifier-seq* in a
|
| 219 |
*lambda-declarator* appertains to the type of the corresponding function
|
| 220 |
+
call operator or operator template. An *attribute-specifier-seq* in a
|
| 221 |
+
*lambda-expression* preceding a *lambda-declarator* appertains to the
|
| 222 |
+
corresponding function call operator or operator template. The function
|
| 223 |
+
call operator or any given operator template specialization is a
|
| 224 |
+
constexpr function if either the corresponding *lambda-expression*'s
|
| 225 |
+
*parameter-declaration-clause* is followed by `constexpr` or
|
| 226 |
+
`consteval`, or it is constexpr-suitable [[dcl.constexpr]]. It is an
|
| 227 |
immediate function [[dcl.constexpr]] if the corresponding
|
| 228 |
*lambda-expression*'s *parameter-declaration-clause* is followed by
|
| 229 |
`consteval`.
|
| 230 |
|
| 231 |
+
[*Example 3*:
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
``` cpp
|
| 234 |
auto ID = [](auto a) { return a; };
|
| 235 |
static_assert(ID(3) == 3); // OK
|
| 236 |
|
|
|
|
| 241 |
static_assert(ID(NonLiteral{3}).n == 3); // error
|
| 242 |
```
|
| 243 |
|
| 244 |
— *end example*]
|
| 245 |
|
| 246 |
+
[*Example 4*:
|
| 247 |
|
| 248 |
``` cpp
|
| 249 |
auto monoid = [](auto v) { return [=] { return v; }; };
|
| 250 |
auto add = [](auto m1) constexpr {
|
| 251 |
auto ret = m1();
|
|
|
|
| 270 |
static_assert(add(one)(one)() == monoid(2)()); // OK
|
| 271 |
```
|
| 272 |
|
| 273 |
— *end example*]
|
| 274 |
|
| 275 |
+
[*Note 3*:
|
| 276 |
|
| 277 |
+
The function call operator or operator template can be constrained
|
| 278 |
[[temp.constr.decl]] by a *type-constraint* [[temp.param]], a
|
| 279 |
*requires-clause* [[temp.pre]], or a trailing *requires-clause*
|
| 280 |
[[dcl.decl]].
|
| 281 |
|
| 282 |
+
[*Example 5*:
|
| 283 |
|
| 284 |
``` cpp
|
| 285 |
template <typename T> concept C1 = ...;
|
| 286 |
template <std::size_t N> concept C2 = ...;
|
| 287 |
template <typename A, typename B> concept C3 = ...;
|
|
|
|
| 302 |
*lambda-capture* whose constraints (if any) are satisfied has a
|
| 303 |
conversion function to pointer to function with C++ language linkage
|
| 304 |
[[dcl.link]] having the same parameter and return types as the closure
|
| 305 |
type’s function call operator. The conversion is to “pointer to
|
| 306 |
`noexcept` function” if the function call operator has a non-throwing
|
| 307 |
+
exception specification. If the function call operator is a static
|
| 308 |
+
member function, then the value returned by this conversion function is
|
| 309 |
+
the address of the function call operator. Otherwise, the value returned
|
| 310 |
+
by this conversion function is the address of a function `F` that, when
|
| 311 |
+
invoked, has the same effect as invoking the closure type’s function
|
| 312 |
+
call operator on a default-constructed instance of the closure type. `F`
|
| 313 |
+
is a constexpr function if the function call operator is a constexpr
|
| 314 |
+
function and is an immediate function if the function call operator is
|
| 315 |
+
an immediate function.
|
| 316 |
|
| 317 |
For a generic lambda with no *lambda-capture*, the closure type has a
|
| 318 |
conversion function template to pointer to function. The conversion
|
| 319 |
function template has the same invented template parameter list, and the
|
| 320 |
pointer to function has the same parameter types, as the function call
|
| 321 |
operator template. The return type of the pointer to function shall
|
| 322 |
behave as if it were a *decltype-specifier* denoting the return type of
|
| 323 |
the corresponding function call operator template specialization.
|
| 324 |
|
| 325 |
+
[*Note 4*:
|
| 326 |
|
| 327 |
If the generic lambda has no *trailing-return-type* or the
|
| 328 |
*trailing-return-type* contains a placeholder type, return type
|
| 329 |
deduction of the corresponding function call operator template
|
| 330 |
specialization has to be done. The corresponding specialization is that
|
|
|
|
| 356 |
};
|
| 357 |
```
|
| 358 |
|
| 359 |
— *end note*]
|
| 360 |
|
| 361 |
+
[*Example 6*:
|
| 362 |
|
| 363 |
``` cpp
|
| 364 |
void f1(int (*)(int)) { }
|
| 365 |
void f2(char (*)(int)) { }
|
| 366 |
|
|
|
|
| 372 |
|
| 373 |
auto glambda = [](auto a) { return a; };
|
| 374 |
f1(glambda); // OK
|
| 375 |
f2(glambda); // error: ID is not convertible
|
| 376 |
g(glambda); // error: ambiguous
|
| 377 |
+
h(glambda); // OK, calls #3 since it is convertible from ID
|
| 378 |
int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK
|
| 379 |
```
|
| 380 |
|
| 381 |
— *end example*]
|
| 382 |
|
| 383 |
+
If the function call operator template is a static member function
|
| 384 |
+
template, then the value returned by any given specialization of this
|
| 385 |
+
conversion function template is the address of the corresponding
|
| 386 |
+
function call operator template specialization. Otherwise, the value
|
| 387 |
+
returned by any given specialization of this conversion function
|
| 388 |
+
template is the address of a function `F` that, when invoked, has the
|
| 389 |
+
same effect as invoking the generic lambda’s corresponding function call
|
| 390 |
+
operator template specialization on a default-constructed instance of
|
| 391 |
+
the closure type. `F` is a constexpr function if the corresponding
|
| 392 |
+
specialization is a constexpr function and `F` is an immediate function
|
| 393 |
+
if the function call operator template specialization is an immediate
|
| 394 |
+
function.
|
| 395 |
|
| 396 |
+
[*Note 5*: This will result in the implicit instantiation of the
|
| 397 |
generic lambda’s body. The instantiated generic lambda’s return type and
|
| 398 |
parameter types are required to match the return type and parameter
|
| 399 |
types of the pointer to function. — *end note*]
|
| 400 |
|
| 401 |
+
[*Example 7*:
|
| 402 |
|
| 403 |
``` cpp
|
| 404 |
auto GL = [](auto a) { std::cout << a; return a; };
|
| 405 |
+
int (*GL_int)(int) = GL; // OK, through conversion function template
|
| 406 |
+
GL_int(3); // OK, same as GL(3)
|
| 407 |
```
|
| 408 |
|
| 409 |
— *end example*]
|
| 410 |
|
| 411 |
The conversion function or conversion function template is public,
|
| 412 |
constexpr, non-virtual, non-explicit, const, and has a non-throwing
|
| 413 |
exception specification [[except.spec]].
|
| 414 |
|
| 415 |
+
[*Example 8*:
|
| 416 |
|
| 417 |
``` cpp
|
| 418 |
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
|
| 419 |
auto C = [](auto a) { return a; };
|
| 420 |
|
|
|
|
| 426 |
```
|
| 427 |
|
| 428 |
— *end example*]
|
| 429 |
|
| 430 |
The *lambda-expression*’s *compound-statement* yields the
|
| 431 |
+
*function-body* [[dcl.fct.def]] of the function call operator, but it is
|
| 432 |
+
not within the scope of the closure type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
+
[*Example 9*:
|
| 435 |
|
| 436 |
``` cpp
|
| 437 |
struct S1 {
|
| 438 |
int x, y;
|
| 439 |
int operator()(int);
|
|
|
|
| 458 |
constructor and a defaulted move constructor [[class.copy.ctor]]. It has
|
| 459 |
a deleted copy assignment operator if the *lambda-expression* has a
|
| 460 |
*lambda-capture* and defaulted copy and move assignment operators
|
| 461 |
otherwise [[class.copy.assign]].
|
| 462 |
|
| 463 |
+
[*Note 6*: These special member functions are implicitly defined as
|
| 464 |
+
usual, which can result in them being defined as deleted. — *end note*]
|
| 465 |
|
| 466 |
The closure type associated with a *lambda-expression* has an
|
| 467 |
implicitly-declared destructor [[class.dtor]].
|
| 468 |
|
| 469 |
A member of a closure type shall not be explicitly instantiated
|
|
|
|
| 509 |
init-capture:
|
| 510 |
'...'ₒₚₜ identifier initializer
|
| 511 |
'&' '...'ₒₚₜ identifier initializer
|
| 512 |
```
|
| 513 |
|
| 514 |
+
The body of a *lambda-expression* may refer to local entities of
|
| 515 |
+
enclosing block scopes by capturing those entities, as described below.
|
|
|
|
| 516 |
|
| 517 |
If a *lambda-capture* includes a *capture-default* that is `&`, no
|
| 518 |
identifier in a *simple-capture* of that *lambda-capture* shall be
|
| 519 |
preceded by `&`. If a *lambda-capture* includes a *capture-default* that
|
| 520 |
is `=`, each *simple-capture* of that *lambda-capture* shall be of the
|
|
|
|
| 547 |
*simple-capture* in its *lambda-introducer* unless its innermost
|
| 548 |
enclosing scope is a block scope [[basic.scope.block]] or it appears
|
| 549 |
within a default member initializer and its innermost enclosing scope is
|
| 550 |
the corresponding class scope [[basic.scope.class]].
|
| 551 |
|
| 552 |
+
The *identifier* in a *simple-capture* shall denote a local entity
|
| 553 |
+
[[basic.lookup.unqual]], [[basic.pre]]. The *simple-capture*s `this` and
|
|
|
|
| 554 |
`* this` denote the local entity `*this`. An entity that is designated
|
| 555 |
by a *simple-capture* is said to be *explicitly captured*.
|
| 556 |
|
| 557 |
+
If an *identifier* in a *capture* appears as the *declarator-id* of a
|
| 558 |
+
parameter of the *lambda-declarator*’s *parameter-declaration-clause* or
|
| 559 |
+
as the name of a template parameter of the *lambda-expression*’s
|
| 560 |
+
*template-parameter-list*, the program is ill-formed.
|
| 561 |
|
| 562 |
[*Example 2*:
|
| 563 |
|
| 564 |
``` cpp
|
| 565 |
void f() {
|
| 566 |
int x = 0;
|
| 567 |
+
auto g = [x](int x) { return 0; }; // error: parameter and capture have the same name
|
| 568 |
+
auto h = [y = 0]<typename y>(y) { return 0; }; // error: template parameter and capture
|
| 569 |
+
// have the same name
|
| 570 |
}
|
| 571 |
```
|
| 572 |
|
| 573 |
— *end example*]
|
| 574 |
|
| 575 |
+
An *init-capture* inhabits the lambda scope [[basic.scope.lambda]] of
|
| 576 |
+
the *lambda-expression*. An *init-capture* without ellipsis behaves as
|
| 577 |
+
if it declares and explicitly captures a variable of the form “`auto`
|
| 578 |
+
*init-capture* `;`”, except that:
|
| 579 |
|
| 580 |
- if the capture is by copy (see below), the non-static data member
|
| 581 |
declared for the capture and the variable are treated as two different
|
| 582 |
ways of referring to the same object, which has the lifetime of the
|
| 583 |
non-static data member, and no additional copy and destruction is
|
|
|
|
| 596 |
auto y = [&r = x, x = x+1]()->int {
|
| 597 |
r += 2;
|
| 598 |
return x+2;
|
| 599 |
}(); // Updates ::x to 6, and initializes y to 7.
|
| 600 |
|
| 601 |
+
auto z = [a = 42](int a) { return 1; }; // error: parameter and conceptual local variable have the same name
|
| 602 |
+
auto counter = [i=0]() mutable -> decltype(i) { // OK, returns int
|
| 603 |
+
return i++;
|
| 604 |
+
};
|
| 605 |
```
|
| 606 |
|
| 607 |
— *end example*]
|
| 608 |
|
| 609 |
For the purposes of lambda capture, an expression potentially references
|
|
|
|
| 617 |
*id-expression*. — *end note*]
|
| 618 |
- A `this` expression potentially references `*this`.
|
| 619 |
- A *lambda-expression* potentially references the local entities named
|
| 620 |
by its *simple-capture*s.
|
| 621 |
|
| 622 |
+
If an expression potentially references a local entity within a scope in
|
| 623 |
+
which it is odr-usable [[basic.def.odr]], and the expression would be
|
| 624 |
+
potentially evaluated if the effect of any enclosing `typeid`
|
| 625 |
expressions [[expr.typeid]] were ignored, the entity is said to be
|
| 626 |
*implicitly captured* by each intervening *lambda-expression* with an
|
| 627 |
associated *capture-default* that does not explicitly capture it. The
|
| 628 |
implicit capture of `*this` is deprecated when the *capture-default* is
|
| 629 |
`=`; see [[depr.capture.this]].
|
|
|
|
| 634 |
void f(int, const int (&)[2] = {}); // #1
|
| 635 |
void f(const int&, const int (&)[1]); // #2
|
| 636 |
void test() {
|
| 637 |
const int x = 17;
|
| 638 |
auto g = [](auto a) {
|
| 639 |
+
f(x); // OK, calls #1, does not capture x
|
| 640 |
};
|
| 641 |
|
| 642 |
auto g1 = [=](auto a) {
|
| 643 |
+
f(x); // OK, calls #1, captures x
|
| 644 |
};
|
| 645 |
|
| 646 |
auto g2 = [=](auto a) {
|
| 647 |
int selector[sizeof(a) == 1 ? 1 : 2]{};
|
| 648 |
+
f(x, selector); // OK, captures x, can call #1 or #2
|
| 649 |
};
|
| 650 |
|
| 651 |
auto g3 = [=](auto a) {
|
| 652 |
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand
|
| 653 |
};
|
| 654 |
}
|
| 655 |
```
|
| 656 |
|
| 657 |
+
Within `g1`, an implementation can optimize away the capture of `x` as
|
| 658 |
it is not odr-used.
|
| 659 |
|
| 660 |
— *end example*]
|
| 661 |
|
| 662 |
[*Note 4*:
|
| 663 |
|
| 664 |
The set of captured entities is determined syntactically, and entities
|
| 665 |
+
are implicitly captured even if the expression denoting a local entity
|
| 666 |
+
is within a discarded statement [[stmt.if]].
|
| 667 |
|
| 668 |
[*Example 5*:
|
| 669 |
|
| 670 |
``` cpp
|
| 671 |
template<bool B>
|
|
|
|
| 681 |
— *end example*]
|
| 682 |
|
| 683 |
— *end note*]
|
| 684 |
|
| 685 |
An entity is *captured* if it is captured explicitly or implicitly. An
|
| 686 |
+
entity captured by a *lambda-expression* is odr-used [[term.odr.use]] by
|
| 687 |
+
the *lambda-expression*.
|
| 688 |
|
| 689 |
[*Note 5*: As a consequence, if a *lambda-expression* explicitly
|
| 690 |
captures an entity that is not odr-usable, the program is ill-formed
|
| 691 |
[[basic.def.odr]]. — *end note*]
|
| 692 |
|
|
|
|
| 696 |
void f1(int i) {
|
| 697 |
int const N = 20;
|
| 698 |
auto m1 = [=]{
|
| 699 |
int const M = 30;
|
| 700 |
auto m2 = [i]{
|
| 701 |
+
int x[N][M]; // OK, N and M are not odr-used
|
| 702 |
+
x[0][0] = i; // OK, i is explicitly captured by m2 and implicitly captured by m1
|
| 703 |
};
|
| 704 |
};
|
| 705 |
struct s1 {
|
| 706 |
int f;
|
| 707 |
void work(int n) {
|
| 708 |
int m = n*n;
|
| 709 |
int j = 40;
|
| 710 |
auto m3 = [this,m] {
|
| 711 |
auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
|
| 712 |
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
|
| 713 |
+
x += m; // OK, m implicitly captured by m4 and explicitly captured by m3
|
| 714 |
x += i; // error: i is odr-used but not odr-usable
|
| 715 |
// due to intervening function and class scopes
|
| 716 |
+
x += f; // OK, this captured implicitly by m4 and explicitly by m3
|
| 717 |
};
|
| 718 |
};
|
| 719 |
}
|
| 720 |
};
|
| 721 |
}
|
|
|
|
| 778 |
referenced function type if the entity is a reference to a function, or
|
| 779 |
the type of the corresponding captured entity otherwise. A member of an
|
| 780 |
anonymous union shall not be captured by copy.
|
| 781 |
|
| 782 |
Every *id-expression* within the *compound-statement* of a
|
| 783 |
+
*lambda-expression* that is an odr-use [[term.odr.use]] of an entity
|
| 784 |
captured by copy is transformed into an access to the corresponding
|
| 785 |
unnamed data member of the closure type.
|
| 786 |
|
| 787 |
[*Note 7*: An *id-expression* that is not an odr-use refers to the
|
| 788 |
original entity, never to a member of the closure type. However, such an
|
|
|
|
| 798 |
``` cpp
|
| 799 |
void f(const int*);
|
| 800 |
void g() {
|
| 801 |
const int N = 10;
|
| 802 |
[=] {
|
| 803 |
+
int arr[N]; // OK, not an odr-use, refers to automatic variable
|
| 804 |
+
f(&N); // OK, causes N to be captured; &N points to
|
| 805 |
// the corresponding member of the closure type
|
| 806 |
};
|
| 807 |
}
|
| 808 |
```
|
| 809 |
|
|
|
|
| 851 |
|
| 852 |
If a *lambda-expression* `m2` captures an entity and that entity is
|
| 853 |
captured by an immediately enclosing *lambda-expression* `m1`, then
|
| 854 |
`m2`’s capture is transformed as follows:
|
| 855 |
|
| 856 |
+
- If `m1` captures the entity by copy, `m2` captures the corresponding
|
| 857 |
+
non-static data member of `m1`’s closure type; if `m1` is not
|
| 858 |
+
`mutable`, the non-static data member is considered to be
|
| 859 |
+
const-qualified.
|
| 860 |
+
- If `m1` captures the entity by reference, `m2` captures the same
|
| 861 |
entity captured by `m1`.
|
| 862 |
|
| 863 |
[*Example 11*:
|
| 864 |
|
| 865 |
The nested *lambda-expression*s and invocations below will output
|
|
|
|
| 900 |
corresponding *lambda-expression* after the lifetime of the entity has
|
| 901 |
ended is likely to result in undefined behavior. — *end note*]
|
| 902 |
|
| 903 |
A *simple-capture* containing an ellipsis is a pack expansion
|
| 904 |
[[temp.variadic]]. An *init-capture* containing an ellipsis is a pack
|
| 905 |
+
expansion that declares an *init-capture* pack [[temp.variadic]].
|
|
|
|
| 906 |
|
| 907 |
[*Example 12*:
|
| 908 |
|
| 909 |
``` cpp
|
| 910 |
template<class... Args>
|