tmp/tmp7l6llzaq/{from.md → to.md}
RENAMED
|
@@ -5,10 +5,11 @@
|
|
| 5 |
The header `<compare>` specifies types, objects, and functions for use
|
| 6 |
primarily in connection with the three-way comparison operator
|
| 7 |
[[expr.spaceship]].
|
| 8 |
|
| 9 |
``` cpp
|
|
|
|
| 10 |
namespace std {
|
| 11 |
// [cmp.categories], comparison category types
|
| 12 |
class partial_ordering;
|
| 13 |
class weak_ordering;
|
| 14 |
class strong_ordering;
|
|
@@ -65,13 +66,11 @@ collectively termed the *comparison category types*. Each is specified
|
|
| 65 |
in terms of an exposition-only data member named `value` whose value
|
| 66 |
typically corresponds to that of an enumerator from one of the following
|
| 67 |
exposition-only enumerations:
|
| 68 |
|
| 69 |
``` cpp
|
| 70 |
-
enum class
|
| 71 |
-
nonequal = 1, nonequivalent = nonequal }; // exposition only
|
| 72 |
-
enum class ord { less = -1, greater = 1 }; // exposition only
|
| 73 |
enum class ncmp { unordered = -127 }; // exposition only
|
| 74 |
```
|
| 75 |
|
| 76 |
[*Note 1*: The type `strong_ordering` corresponds to the term total
|
| 77 |
ordering in mathematics. — *end note*]
|
|
@@ -98,24 +97,22 @@ where `f` denotes a function that reads only comparison-salient state
|
|
| 98 |
that is accessible via the argument’s public const members.
|
| 99 |
|
| 100 |
#### Class `partial_ordering` <a id="cmp.partialord">[[cmp.partialord]]</a>
|
| 101 |
|
| 102 |
The `partial_ordering` type is typically used as the result type of a
|
| 103 |
-
three-way comparison operator [[expr.spaceship]]
|
| 104 |
-
the six two-way comparison operators
|
| 105 |
-
|
| 106 |
-
incomparable.
|
| 107 |
|
| 108 |
``` cpp
|
| 109 |
namespace std {
|
| 110 |
class partial_ordering {
|
| 111 |
int value; // exposition only
|
| 112 |
bool is_ordered; // exposition only
|
| 113 |
|
| 114 |
// exposition-only constructors
|
| 115 |
-
constexpr explicit
|
| 116 |
-
partial_ordering(eq v) noexcept : value(int(v)), is_ordered(true) {} // exposition only
|
| 117 |
constexpr explicit
|
| 118 |
partial_ordering(ord v) noexcept : value(int(v)), is_ordered(true) {} // exposition only
|
| 119 |
constexpr explicit
|
| 120 |
partial_ordering(ncmp v) noexcept : value(int(v)), is_ordered(false) {} // exposition only
|
| 121 |
|
|
@@ -141,11 +138,11 @@ namespace std {
|
|
| 141 |
friend constexpr partial_ordering operator<=>(unspecified, partial_ordering v) noexcept;
|
| 142 |
};
|
| 143 |
|
| 144 |
// valid values' definitions
|
| 145 |
inline constexpr partial_ordering partial_ordering::less(ord::less);
|
| 146 |
-
inline constexpr partial_ordering partial_ordering::equivalent(
|
| 147 |
inline constexpr partial_ordering partial_ordering::greater(ord::greater);
|
| 148 |
inline constexpr partial_ordering partial_ordering::unordered(ncmp::unordered);
|
| 149 |
}
|
| 150 |
```
|
| 151 |
|
|
@@ -182,21 +179,20 @@ constexpr partial_ordering operator<=>(unspecified, partial_ordering v) noexcept
|
|
| 182 |
`v < 0 ? partial_ordering::greater : v > 0 ? partial_ordering::less : v`.
|
| 183 |
|
| 184 |
#### Class `weak_ordering` <a id="cmp.weakord">[[cmp.weakord]]</a>
|
| 185 |
|
| 186 |
The `weak_ordering` type is typically used as the result type of a
|
| 187 |
-
three-way comparison operator [[expr.spaceship]]
|
| 188 |
-
the six two-way comparison operators
|
| 189 |
-
|
| 190 |
|
| 191 |
``` cpp
|
| 192 |
namespace std {
|
| 193 |
class weak_ordering {
|
| 194 |
int value; // exposition only
|
| 195 |
|
| 196 |
// exposition-only constructors
|
| 197 |
-
constexpr explicit weak_ordering(eq v) noexcept : value(int(v)) {} // exposition only
|
| 198 |
constexpr explicit weak_ordering(ord v) noexcept : value(int(v)) {} // exposition only
|
| 199 |
|
| 200 |
public:
|
| 201 |
// valid values
|
| 202 |
static const weak_ordering less;
|
|
@@ -221,11 +217,11 @@ namespace std {
|
|
| 221 |
friend constexpr weak_ordering operator<=>(unspecified, weak_ordering v) noexcept;
|
| 222 |
};
|
| 223 |
|
| 224 |
// valid values' definitions
|
| 225 |
inline constexpr weak_ordering weak_ordering::less(ord::less);
|
| 226 |
-
inline constexpr weak_ordering weak_ordering::equivalent(
|
| 227 |
inline constexpr weak_ordering weak_ordering::greater(ord::greater);
|
| 228 |
}
|
| 229 |
```
|
| 230 |
|
| 231 |
``` cpp
|
|
@@ -273,21 +269,20 @@ constexpr weak_ordering operator<=>(unspecified, weak_ordering v) noexcept;
|
|
| 273 |
`v < 0 ? weak_ordering::greater : v > 0 ? weak_ordering::less : v`.
|
| 274 |
|
| 275 |
#### Class `strong_ordering` <a id="cmp.strongord">[[cmp.strongord]]</a>
|
| 276 |
|
| 277 |
The `strong_ordering` type is typically used as the result type of a
|
| 278 |
-
three-way comparison operator [[expr.spaceship]]
|
| 279 |
-
the six two-way comparison operators
|
| 280 |
-
|
| 281 |
|
| 282 |
``` cpp
|
| 283 |
namespace std {
|
| 284 |
class strong_ordering {
|
| 285 |
int value; // exposition only
|
| 286 |
|
| 287 |
// exposition-only constructors
|
| 288 |
-
constexpr explicit strong_ordering(eq v) noexcept : value(int(v)) {} // exposition only
|
| 289 |
constexpr explicit strong_ordering(ord v) noexcept : value(int(v)) {} // exposition only
|
| 290 |
|
| 291 |
public:
|
| 292 |
// valid values
|
| 293 |
static const strong_ordering less;
|
|
@@ -314,12 +309,12 @@ namespace std {
|
|
| 314 |
friend constexpr strong_ordering operator<=>(unspecified, strong_ordering v) noexcept;
|
| 315 |
};
|
| 316 |
|
| 317 |
// valid values' definitions
|
| 318 |
inline constexpr strong_ordering strong_ordering::less(ord::less);
|
| 319 |
-
inline constexpr strong_ordering strong_ordering::equal(
|
| 320 |
-
inline constexpr strong_ordering strong_ordering::equivalent(
|
| 321 |
inline constexpr strong_ordering strong_ordering::greater(ord::greater);
|
| 322 |
}
|
| 323 |
```
|
| 324 |
|
| 325 |
``` cpp
|
|
@@ -401,11 +396,11 @@ pack, or `void` if any element of `Ts` is not a comparison category
|
|
| 401 |
type.
|
| 402 |
|
| 403 |
[*Note 1*: This is `std::strong_ordering` if the expansion is
|
| 404 |
empty. — *end note*]
|
| 405 |
|
| 406 |
-
### Concept
|
| 407 |
|
| 408 |
``` cpp
|
| 409 |
template<class T, class Cat>
|
| 410 |
concept compares-as = // exposition only
|
| 411 |
same_as<common_comparison_category_t<T, Cat>, Cat>;
|
|
@@ -461,32 +456,37 @@ and `Cat` model `three_way_comparable<T, Cat>` only if:
|
|
| 461 |
``` cpp
|
| 462 |
template<class T, class U, class Cat = partial_ordering>
|
| 463 |
concept three_way_comparable_with =
|
| 464 |
three_way_comparable<T, Cat> &&
|
| 465 |
three_way_comparable<U, Cat> &&
|
| 466 |
-
|
| 467 |
three_way_comparable<
|
| 468 |
common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&
|
| 469 |
weakly-equality-comparable-with<T, U> &&
|
| 470 |
partially-ordered-with<T, U> &&
|
| 471 |
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {
|
| 472 |
{ t <=> u } -> compares-as<Cat>;
|
| 473 |
{ u <=> t } -> compares-as<Cat>;
|
| 474 |
};
|
| 475 |
```
|
| 476 |
|
| 477 |
-
Let `t` and `
|
| 478 |
-
`const remove_reference_t<
|
|
|
|
|
|
|
|
|
|
| 479 |
`common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>`.
|
| 480 |
-
|
| 481 |
-
|
|
|
|
| 482 |
|
| 483 |
- `t <=> u` and `u <=> t` have the same domain,
|
| 484 |
- `((t <=> u) <=> 0)` and `(0 <=> (u <=> t))` are equal,
|
| 485 |
- `(t <=> u == 0) == bool(t == u)` is `true`,
|
| 486 |
- `(t <=> u != 0) == bool(t != u)` is `true`,
|
| 487 |
-
- `Cat(t <=> u) == Cat(C(
|
|
|
|
| 488 |
- `(t <=> u < 0) == bool(t < u)` is `true`,
|
| 489 |
- `(t <=> u > 0) == bool(t > u)` is `true`,
|
| 490 |
- `(t <=> u <= 0) == bool(t <= u)` is `true`,
|
| 491 |
- `(t <=> u >= 0) == bool(t >= u)` is `true`, and
|
| 492 |
- if `Cat` is convertible to `strong_ordering`, `T` and `U` model
|
|
@@ -509,38 +509,41 @@ member `type`.
|
|
| 509 |
### Comparison algorithms <a id="cmp.alg">[[cmp.alg]]</a>
|
| 510 |
|
| 511 |
The name `strong_order` denotes a customization point object
|
| 512 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 513 |
expression `strong_order(E, F)` is expression-equivalent
|
| 514 |
-
[[defns.expression
|
| 515 |
|
| 516 |
- If the decayed types of `E` and `F` differ, `strong_order(E, F)` is
|
| 517 |
ill-formed.
|
| 518 |
- Otherwise, `strong_ordering(strong_order(E, F))` if it is a
|
| 519 |
-
well-formed expression
|
| 520 |
-
|
|
|
|
| 521 |
- Otherwise, if the decayed type `T` of `E` is a floating-point type,
|
| 522 |
yields a value of type `strong_ordering` that is consistent with the
|
| 523 |
ordering observed by `T`’s comparison operators, and if
|
| 524 |
`numeric_limits<T>::is_iec559` is `true`, is additionally consistent
|
| 525 |
with the `totalOrder` operation as specified in ISO/IEC/IEEE 60559.
|
| 526 |
- Otherwise, `strong_ordering(compare_three_way()(E, F))` if it is a
|
| 527 |
well-formed expression.
|
| 528 |
-
- Otherwise, `strong_order(E, F)` is ill-formed.
|
| 529 |
-
|
| 530 |
-
|
|
|
|
|
|
|
| 531 |
|
| 532 |
The name `weak_order` denotes a customization point object
|
| 533 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 534 |
expression `weak_order(E, F)` is expression-equivalent
|
| 535 |
-
[[defns.expression
|
| 536 |
|
| 537 |
- If the decayed types of `E` and `F` differ, `weak_order(E, F)` is
|
| 538 |
ill-formed.
|
| 539 |
- Otherwise, `weak_ordering(weak_order(E, F))` if it is a well-formed
|
| 540 |
-
expression
|
| 541 |
-
|
| 542 |
- Otherwise, if the decayed type `T` of `E` is a floating-point type,
|
| 543 |
yields a value of type `weak_ordering` that is consistent with the
|
| 544 |
ordering observed by `T`’s comparison operators and `strong_order`,
|
| 545 |
and if `numeric_limits<T>::is_iec559` is `true`, is additionally
|
| 546 |
consistent with the following equivalence classes, ordered from lesser
|
|
@@ -556,86 +559,105 @@ expression `weak_order(E, F)` is expression-equivalent
|
|
| 556 |
- together, all positive NaN values.
|
| 557 |
- Otherwise, `weak_ordering(compare_three_way()(E, F))` if it is a
|
| 558 |
well-formed expression.
|
| 559 |
- Otherwise, `weak_ordering(strong_order(E, F))` if it is a well-formed
|
| 560 |
expression.
|
| 561 |
-
- Otherwise, `weak_order(E, F)` is ill-formed.
|
| 562 |
-
|
| 563 |
-
|
|
|
|
|
|
|
| 564 |
|
| 565 |
The name `partial_order` denotes a customization point object
|
| 566 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 567 |
expression `partial_order(E, F)` is expression-equivalent
|
| 568 |
-
[[defns.expression
|
| 569 |
|
| 570 |
- If the decayed types of `E` and `F` differ, `partial_order(E, F)` is
|
| 571 |
ill-formed.
|
| 572 |
- Otherwise, `partial_ordering(partial_order(E, F))` if it is a
|
| 573 |
-
well-formed expression
|
| 574 |
-
|
|
|
|
| 575 |
- Otherwise, `partial_ordering(compare_three_way()(E, F))` if it is a
|
| 576 |
well-formed expression.
|
| 577 |
- Otherwise, `partial_ordering(weak_order(E, F))` if it is a well-formed
|
| 578 |
expression.
|
| 579 |
-
- Otherwise, `partial_order(E, F)` is ill-formed.
|
| 580 |
-
|
| 581 |
-
|
|
|
|
| 582 |
instantiation. — *end note*]
|
| 583 |
|
| 584 |
The name `compare_strong_order_fallback` denotes a customization point
|
| 585 |
-
object [[customization.point.object]]. Given subexpressions `E` and F,
|
| 586 |
the expression `compare_strong_order_fallback(E, F)` is
|
| 587 |
-
expression-equivalent [[defns.expression
|
| 588 |
|
| 589 |
- If the decayed types of `E` and `F` differ,
|
| 590 |
`compare_strong_order_fallback(E, F)` is ill-formed.
|
| 591 |
- Otherwise, `strong_order(E, F)` if it is a well-formed expression.
|
| 592 |
- Otherwise, if the expressions `E == F` and `E < F` are both
|
| 593 |
-
well-formed and
|
|
|
|
| 594 |
``` cpp
|
| 595 |
E == F ? strong_ordering::equal :
|
| 596 |
E < F ? strong_ordering::less :
|
| 597 |
strong_ordering::greater
|
| 598 |
```
|
| 599 |
|
| 600 |
except that `E` and `F` are evaluated only once.
|
| 601 |
- Otherwise, `compare_strong_order_fallback(E, F)` is ill-formed.
|
| 602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
The name `compare_weak_order_fallback` denotes a customization point
|
| 604 |
object [[customization.point.object]]. Given subexpressions `E` and `F`,
|
| 605 |
the expression `compare_weak_order_fallback(E, F)` is
|
| 606 |
-
expression-equivalent [[defns.expression
|
| 607 |
|
| 608 |
- If the decayed types of `E` and `F` differ,
|
| 609 |
`compare_weak_order_fallback(E, F)` is ill-formed.
|
| 610 |
- Otherwise, `weak_order(E, F)` if it is a well-formed expression.
|
| 611 |
- Otherwise, if the expressions `E == F` and `E < F` are both
|
| 612 |
-
well-formed and
|
|
|
|
| 613 |
``` cpp
|
| 614 |
E == F ? weak_ordering::equivalent :
|
| 615 |
E < F ? weak_ordering::less :
|
| 616 |
weak_ordering::greater
|
| 617 |
```
|
| 618 |
|
| 619 |
except that `E` and `F` are evaluated only once.
|
| 620 |
- Otherwise, `compare_weak_order_fallback(E, F)` is ill-formed.
|
| 621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
The name `compare_partial_order_fallback` denotes a customization point
|
| 623 |
object [[customization.point.object]]. Given subexpressions `E` and `F`,
|
| 624 |
the expression `compare_partial_order_fallback(E, F)` is
|
| 625 |
-
expression-equivalent [[defns.expression
|
| 626 |
|
| 627 |
- If the decayed types of `E` and `F` differ,
|
| 628 |
`compare_partial_order_fallback(E, F)` is ill-formed.
|
| 629 |
- Otherwise, `partial_order(E, F)` if it is a well-formed expression.
|
| 630 |
-
- Otherwise, if the expressions `E == F`
|
| 631 |
-
well-formed and
|
|
|
|
| 632 |
``` cpp
|
| 633 |
E == F ? partial_ordering::equivalent :
|
| 634 |
E < F ? partial_ordering::less :
|
| 635 |
F < E ? partial_ordering::greater :
|
| 636 |
partial_ordering::unordered
|
| 637 |
```
|
| 638 |
|
| 639 |
except that `E` and `F` are evaluated only once.
|
| 640 |
- Otherwise, `compare_partial_order_fallback(E, F)` is ill-formed.
|
| 641 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
The header `<compare>` specifies types, objects, and functions for use
|
| 6 |
primarily in connection with the three-way comparison operator
|
| 7 |
[[expr.spaceship]].
|
| 8 |
|
| 9 |
``` cpp
|
| 10 |
+
// all freestanding
|
| 11 |
namespace std {
|
| 12 |
// [cmp.categories], comparison category types
|
| 13 |
class partial_ordering;
|
| 14 |
class weak_ordering;
|
| 15 |
class strong_ordering;
|
|
|
|
| 66 |
in terms of an exposition-only data member named `value` whose value
|
| 67 |
typically corresponds to that of an enumerator from one of the following
|
| 68 |
exposition-only enumerations:
|
| 69 |
|
| 70 |
``` cpp
|
| 71 |
+
enum class ord { equal = 0, equivalent = equal, less = -1, greater = 1 }; // exposition only
|
|
|
|
|
|
|
| 72 |
enum class ncmp { unordered = -127 }; // exposition only
|
| 73 |
```
|
| 74 |
|
| 75 |
[*Note 1*: The type `strong_ordering` corresponds to the term total
|
| 76 |
ordering in mathematics. — *end note*]
|
|
|
|
| 97 |
that is accessible via the argument’s public const members.
|
| 98 |
|
| 99 |
#### Class `partial_ordering` <a id="cmp.partialord">[[cmp.partialord]]</a>
|
| 100 |
|
| 101 |
The `partial_ordering` type is typically used as the result type of a
|
| 102 |
+
three-way comparison operator [[expr.spaceship]] for a type that admits
|
| 103 |
+
all of the six two-way comparison operators [[expr.rel]], [[expr.eq]],
|
| 104 |
+
for which equality need not imply substitutability, and that permits two
|
| 105 |
+
values to be incomparable.[^32]
|
| 106 |
|
| 107 |
``` cpp
|
| 108 |
namespace std {
|
| 109 |
class partial_ordering {
|
| 110 |
int value; // exposition only
|
| 111 |
bool is_ordered; // exposition only
|
| 112 |
|
| 113 |
// exposition-only constructors
|
|
|
|
|
|
|
| 114 |
constexpr explicit
|
| 115 |
partial_ordering(ord v) noexcept : value(int(v)), is_ordered(true) {} // exposition only
|
| 116 |
constexpr explicit
|
| 117 |
partial_ordering(ncmp v) noexcept : value(int(v)), is_ordered(false) {} // exposition only
|
| 118 |
|
|
|
|
| 138 |
friend constexpr partial_ordering operator<=>(unspecified, partial_ordering v) noexcept;
|
| 139 |
};
|
| 140 |
|
| 141 |
// valid values' definitions
|
| 142 |
inline constexpr partial_ordering partial_ordering::less(ord::less);
|
| 143 |
+
inline constexpr partial_ordering partial_ordering::equivalent(ord::equivalent);
|
| 144 |
inline constexpr partial_ordering partial_ordering::greater(ord::greater);
|
| 145 |
inline constexpr partial_ordering partial_ordering::unordered(ncmp::unordered);
|
| 146 |
}
|
| 147 |
```
|
| 148 |
|
|
|
|
| 179 |
`v < 0 ? partial_ordering::greater : v > 0 ? partial_ordering::less : v`.
|
| 180 |
|
| 181 |
#### Class `weak_ordering` <a id="cmp.weakord">[[cmp.weakord]]</a>
|
| 182 |
|
| 183 |
The `weak_ordering` type is typically used as the result type of a
|
| 184 |
+
three-way comparison operator [[expr.spaceship]] for a type that admits
|
| 185 |
+
all of the six two-way comparison operators [[expr.rel]], [[expr.eq]]
|
| 186 |
+
and for which equality need not imply substitutability.
|
| 187 |
|
| 188 |
``` cpp
|
| 189 |
namespace std {
|
| 190 |
class weak_ordering {
|
| 191 |
int value; // exposition only
|
| 192 |
|
| 193 |
// exposition-only constructors
|
|
|
|
| 194 |
constexpr explicit weak_ordering(ord v) noexcept : value(int(v)) {} // exposition only
|
| 195 |
|
| 196 |
public:
|
| 197 |
// valid values
|
| 198 |
static const weak_ordering less;
|
|
|
|
| 217 |
friend constexpr weak_ordering operator<=>(unspecified, weak_ordering v) noexcept;
|
| 218 |
};
|
| 219 |
|
| 220 |
// valid values' definitions
|
| 221 |
inline constexpr weak_ordering weak_ordering::less(ord::less);
|
| 222 |
+
inline constexpr weak_ordering weak_ordering::equivalent(ord::equivalent);
|
| 223 |
inline constexpr weak_ordering weak_ordering::greater(ord::greater);
|
| 224 |
}
|
| 225 |
```
|
| 226 |
|
| 227 |
``` cpp
|
|
|
|
| 269 |
`v < 0 ? weak_ordering::greater : v > 0 ? weak_ordering::less : v`.
|
| 270 |
|
| 271 |
#### Class `strong_ordering` <a id="cmp.strongord">[[cmp.strongord]]</a>
|
| 272 |
|
| 273 |
The `strong_ordering` type is typically used as the result type of a
|
| 274 |
+
three-way comparison operator [[expr.spaceship]] for a type that admits
|
| 275 |
+
all of the six two-way comparison operators [[expr.rel]], [[expr.eq]]
|
| 276 |
+
and for which equality does imply substitutability.
|
| 277 |
|
| 278 |
``` cpp
|
| 279 |
namespace std {
|
| 280 |
class strong_ordering {
|
| 281 |
int value; // exposition only
|
| 282 |
|
| 283 |
// exposition-only constructors
|
|
|
|
| 284 |
constexpr explicit strong_ordering(ord v) noexcept : value(int(v)) {} // exposition only
|
| 285 |
|
| 286 |
public:
|
| 287 |
// valid values
|
| 288 |
static const strong_ordering less;
|
|
|
|
| 309 |
friend constexpr strong_ordering operator<=>(unspecified, strong_ordering v) noexcept;
|
| 310 |
};
|
| 311 |
|
| 312 |
// valid values' definitions
|
| 313 |
inline constexpr strong_ordering strong_ordering::less(ord::less);
|
| 314 |
+
inline constexpr strong_ordering strong_ordering::equal(ord::equal);
|
| 315 |
+
inline constexpr strong_ordering strong_ordering::equivalent(ord::equivalent);
|
| 316 |
inline constexpr strong_ordering strong_ordering::greater(ord::greater);
|
| 317 |
}
|
| 318 |
```
|
| 319 |
|
| 320 |
``` cpp
|
|
|
|
| 396 |
type.
|
| 397 |
|
| 398 |
[*Note 1*: This is `std::strong_ordering` if the expansion is
|
| 399 |
empty. — *end note*]
|
| 400 |
|
| 401 |
+
### Concept <a id="cmp.concept">[[cmp.concept]]</a>
|
| 402 |
|
| 403 |
``` cpp
|
| 404 |
template<class T, class Cat>
|
| 405 |
concept compares-as = // exposition only
|
| 406 |
same_as<common_comparison_category_t<T, Cat>, Cat>;
|
|
|
|
| 456 |
``` cpp
|
| 457 |
template<class T, class U, class Cat = partial_ordering>
|
| 458 |
concept three_way_comparable_with =
|
| 459 |
three_way_comparable<T, Cat> &&
|
| 460 |
three_way_comparable<U, Cat> &&
|
| 461 |
+
comparison-common-type-with<T, U> &&
|
| 462 |
three_way_comparable<
|
| 463 |
common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&
|
| 464 |
weakly-equality-comparable-with<T, U> &&
|
| 465 |
partially-ordered-with<T, U> &&
|
| 466 |
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {
|
| 467 |
{ t <=> u } -> compares-as<Cat>;
|
| 468 |
{ u <=> t } -> compares-as<Cat>;
|
| 469 |
};
|
| 470 |
```
|
| 471 |
|
| 472 |
+
Let `t` and `t2` be lvalues denoting distinct equal objects of types
|
| 473 |
+
`const remove_reference_t<T>` and `remove_cvref_t<T>`, respectively, and
|
| 474 |
+
let `u` and `u2` be lvalues denoting distinct equal objects of types
|
| 475 |
+
`const remove_reference_t<U>` and `remove_cvref_t<U>`, respectively. Let
|
| 476 |
+
`C` be
|
| 477 |
`common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>`.
|
| 478 |
+
Let `CONVERT_TO_LVALUE<C>(E)` be defined as in
|
| 479 |
+
[[concepts.compare.general]]. `T`, `U`, and `Cat` model
|
| 480 |
+
`three_way_comparable_with<T, U, Cat>` only if:
|
| 481 |
|
| 482 |
- `t <=> u` and `u <=> t` have the same domain,
|
| 483 |
- `((t <=> u) <=> 0)` and `(0 <=> (u <=> t))` are equal,
|
| 484 |
- `(t <=> u == 0) == bool(t == u)` is `true`,
|
| 485 |
- `(t <=> u != 0) == bool(t != u)` is `true`,
|
| 486 |
+
- `Cat(t <=> u) == Cat(CONVERT_TO_LVALUE<C>(t2) <=>
|
| 487 |
+
CONVERT_TO_LVALUE<C>(u2))` is `true`,
|
| 488 |
- `(t <=> u < 0) == bool(t < u)` is `true`,
|
| 489 |
- `(t <=> u > 0) == bool(t > u)` is `true`,
|
| 490 |
- `(t <=> u <= 0) == bool(t <= u)` is `true`,
|
| 491 |
- `(t <=> u >= 0) == bool(t >= u)` is `true`, and
|
| 492 |
- if `Cat` is convertible to `strong_ordering`, `T` and `U` model
|
|
|
|
| 509 |
### Comparison algorithms <a id="cmp.alg">[[cmp.alg]]</a>
|
| 510 |
|
| 511 |
The name `strong_order` denotes a customization point object
|
| 512 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 513 |
expression `strong_order(E, F)` is expression-equivalent
|
| 514 |
+
[[defns.expression.equivalent]] to the following:
|
| 515 |
|
| 516 |
- If the decayed types of `E` and `F` differ, `strong_order(E, F)` is
|
| 517 |
ill-formed.
|
| 518 |
- Otherwise, `strong_ordering(strong_order(E, F))` if it is a
|
| 519 |
+
well-formed expression where the meaning of `strong_order` is
|
| 520 |
+
established as-if by performing argument-dependent lookup only
|
| 521 |
+
[[basic.lookup.argdep]].
|
| 522 |
- Otherwise, if the decayed type `T` of `E` is a floating-point type,
|
| 523 |
yields a value of type `strong_ordering` that is consistent with the
|
| 524 |
ordering observed by `T`’s comparison operators, and if
|
| 525 |
`numeric_limits<T>::is_iec559` is `true`, is additionally consistent
|
| 526 |
with the `totalOrder` operation as specified in ISO/IEC/IEEE 60559.
|
| 527 |
- Otherwise, `strong_ordering(compare_three_way()(E, F))` if it is a
|
| 528 |
well-formed expression.
|
| 529 |
+
- Otherwise, `strong_order(E, F)` is ill-formed.
|
| 530 |
+
|
| 531 |
+
[*Note 1*: Ill-formed cases above result in substitution failure when
|
| 532 |
+
`strong_order(E, F)` appears in the immediate context of a template
|
| 533 |
+
instantiation. — *end note*]
|
| 534 |
|
| 535 |
The name `weak_order` denotes a customization point object
|
| 536 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 537 |
expression `weak_order(E, F)` is expression-equivalent
|
| 538 |
+
[[defns.expression.equivalent]] to the following:
|
| 539 |
|
| 540 |
- If the decayed types of `E` and `F` differ, `weak_order(E, F)` is
|
| 541 |
ill-formed.
|
| 542 |
- Otherwise, `weak_ordering(weak_order(E, F))` if it is a well-formed
|
| 543 |
+
expression where the meaning of `weak_order` is established as-if by
|
| 544 |
+
performing argument-dependent lookup only [[basic.lookup.argdep]].
|
| 545 |
- Otherwise, if the decayed type `T` of `E` is a floating-point type,
|
| 546 |
yields a value of type `weak_ordering` that is consistent with the
|
| 547 |
ordering observed by `T`’s comparison operators and `strong_order`,
|
| 548 |
and if `numeric_limits<T>::is_iec559` is `true`, is additionally
|
| 549 |
consistent with the following equivalence classes, ordered from lesser
|
|
|
|
| 559 |
- together, all positive NaN values.
|
| 560 |
- Otherwise, `weak_ordering(compare_three_way()(E, F))` if it is a
|
| 561 |
well-formed expression.
|
| 562 |
- Otherwise, `weak_ordering(strong_order(E, F))` if it is a well-formed
|
| 563 |
expression.
|
| 564 |
+
- Otherwise, `weak_order(E, F)` is ill-formed.
|
| 565 |
+
|
| 566 |
+
[*Note 2*: Ill-formed cases above result in substitution failure when
|
| 567 |
+
`weak_order(E, F)` appears in the immediate context of a template
|
| 568 |
+
instantiation. — *end note*]
|
| 569 |
|
| 570 |
The name `partial_order` denotes a customization point object
|
| 571 |
[[customization.point.object]]. Given subexpressions `E` and `F`, the
|
| 572 |
expression `partial_order(E, F)` is expression-equivalent
|
| 573 |
+
[[defns.expression.equivalent]] to the following:
|
| 574 |
|
| 575 |
- If the decayed types of `E` and `F` differ, `partial_order(E, F)` is
|
| 576 |
ill-formed.
|
| 577 |
- Otherwise, `partial_ordering(partial_order(E, F))` if it is a
|
| 578 |
+
well-formed expression where the meaning of `partial_order` is
|
| 579 |
+
established as-if by performing argument-dependent lookup only
|
| 580 |
+
[[basic.lookup.argdep]].
|
| 581 |
- Otherwise, `partial_ordering(compare_three_way()(E, F))` if it is a
|
| 582 |
well-formed expression.
|
| 583 |
- Otherwise, `partial_ordering(weak_order(E, F))` if it is a well-formed
|
| 584 |
expression.
|
| 585 |
+
- Otherwise, `partial_order(E, F)` is ill-formed.
|
| 586 |
+
|
| 587 |
+
[*Note 3*: Ill-formed cases above result in substitution failure when
|
| 588 |
+
`partial_order(E, F)` appears in the immediate context of a template
|
| 589 |
instantiation. — *end note*]
|
| 590 |
|
| 591 |
The name `compare_strong_order_fallback` denotes a customization point
|
| 592 |
+
object [[customization.point.object]]. Given subexpressions `E` and `F`,
|
| 593 |
the expression `compare_strong_order_fallback(E, F)` is
|
| 594 |
+
expression-equivalent [[defns.expression.equivalent]] to:
|
| 595 |
|
| 596 |
- If the decayed types of `E` and `F` differ,
|
| 597 |
`compare_strong_order_fallback(E, F)` is ill-formed.
|
| 598 |
- Otherwise, `strong_order(E, F)` if it is a well-formed expression.
|
| 599 |
- Otherwise, if the expressions `E == F` and `E < F` are both
|
| 600 |
+
well-formed and each of `decltype(E == F)` and `decltype(E < F)`
|
| 601 |
+
models `boolean-testable`,
|
| 602 |
``` cpp
|
| 603 |
E == F ? strong_ordering::equal :
|
| 604 |
E < F ? strong_ordering::less :
|
| 605 |
strong_ordering::greater
|
| 606 |
```
|
| 607 |
|
| 608 |
except that `E` and `F` are evaluated only once.
|
| 609 |
- Otherwise, `compare_strong_order_fallback(E, F)` is ill-formed.
|
| 610 |
|
| 611 |
+
[*Note 4*: Ill-formed cases above result in substitution failure when
|
| 612 |
+
`compare_strong_order_fallback(E, F)` appears in the immediate context
|
| 613 |
+
of a template instantiation. — *end note*]
|
| 614 |
+
|
| 615 |
The name `compare_weak_order_fallback` denotes a customization point
|
| 616 |
object [[customization.point.object]]. Given subexpressions `E` and `F`,
|
| 617 |
the expression `compare_weak_order_fallback(E, F)` is
|
| 618 |
+
expression-equivalent [[defns.expression.equivalent]] to:
|
| 619 |
|
| 620 |
- If the decayed types of `E` and `F` differ,
|
| 621 |
`compare_weak_order_fallback(E, F)` is ill-formed.
|
| 622 |
- Otherwise, `weak_order(E, F)` if it is a well-formed expression.
|
| 623 |
- Otherwise, if the expressions `E == F` and `E < F` are both
|
| 624 |
+
well-formed and each of `decltype(E == F)` and `decltype(E < F)`
|
| 625 |
+
models `boolean-testable`,
|
| 626 |
``` cpp
|
| 627 |
E == F ? weak_ordering::equivalent :
|
| 628 |
E < F ? weak_ordering::less :
|
| 629 |
weak_ordering::greater
|
| 630 |
```
|
| 631 |
|
| 632 |
except that `E` and `F` are evaluated only once.
|
| 633 |
- Otherwise, `compare_weak_order_fallback(E, F)` is ill-formed.
|
| 634 |
|
| 635 |
+
[*Note 5*: Ill-formed cases above result in substitution failure when
|
| 636 |
+
`compare_weak_order_fallback(E, F)` appears in the immediate context of
|
| 637 |
+
a template instantiation. — *end note*]
|
| 638 |
+
|
| 639 |
The name `compare_partial_order_fallback` denotes a customization point
|
| 640 |
object [[customization.point.object]]. Given subexpressions `E` and `F`,
|
| 641 |
the expression `compare_partial_order_fallback(E, F)` is
|
| 642 |
+
expression-equivalent [[defns.expression.equivalent]] to:
|
| 643 |
|
| 644 |
- If the decayed types of `E` and `F` differ,
|
| 645 |
`compare_partial_order_fallback(E, F)` is ill-formed.
|
| 646 |
- Otherwise, `partial_order(E, F)` if it is a well-formed expression.
|
| 647 |
+
- Otherwise, if the expressions `E == F`, `E < F`, and `F < E` are all
|
| 648 |
+
well-formed and each of `decltype(E == F)` and `decltype(E < F)`
|
| 649 |
+
models `boolean-testable`,
|
| 650 |
``` cpp
|
| 651 |
E == F ? partial_ordering::equivalent :
|
| 652 |
E < F ? partial_ordering::less :
|
| 653 |
F < E ? partial_ordering::greater :
|
| 654 |
partial_ordering::unordered
|
| 655 |
```
|
| 656 |
|
| 657 |
except that `E` and `F` are evaluated only once.
|
| 658 |
- Otherwise, `compare_partial_order_fallback(E, F)` is ill-formed.
|
| 659 |
|
| 660 |
+
[*Note 6*: Ill-formed cases above result in substitution failure when
|
| 661 |
+
`compare_partial_order_fallback(E, F)` appears in the immediate context
|
| 662 |
+
of a template instantiation. — *end note*]
|
| 663 |
+
|