- tmp/tmpmffq9es8/{from.md → to.md} +180 -53
tmp/tmpmffq9es8/{from.md → to.md}
RENAMED
|
@@ -12,14 +12,14 @@ template<class T> void sort(Array<T>&);
|
|
| 12 |
```
|
| 13 |
|
| 14 |
— *end example*]
|
| 15 |
|
| 16 |
A function template can be overloaded with other function templates and
|
| 17 |
-
with non-template functions
|
| 18 |
-
|
| 19 |
specialization), even if it has the same name and type as a potentially
|
| 20 |
-
generated function template specialization.[^
|
| 21 |
|
| 22 |
#### Function template overloading <a id="temp.over.link">[[temp.over.link]]</a>
|
| 23 |
|
| 24 |
It is possible to overload function templates so that two different
|
| 25 |
function template specializations have the same type.
|
|
@@ -45,16 +45,16 @@ void h(int* p) {
|
|
| 45 |
```
|
| 46 |
|
| 47 |
— *end example*]
|
| 48 |
|
| 49 |
Such specializations are distinct functions and do not violate the
|
| 50 |
-
one-definition rule
|
| 51 |
|
| 52 |
-
The signature of a function template is defined in
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
[*Note 1*:
|
| 58 |
|
| 59 |
Two distinct function templates may have identical function return types
|
| 60 |
and function parameter lists, even if overload resolution alone cannot
|
|
@@ -92,120 +92,186 @@ template parameters, but it is possible for an expression to reference a
|
|
| 92 |
type parameter. For example, a template type parameter can be used in
|
| 93 |
the `sizeof` operator. — *end note*]
|
| 94 |
|
| 95 |
Two expressions involving template parameters are considered
|
| 96 |
*equivalent* if two function definitions containing the expressions
|
| 97 |
-
would satisfy the one-definition rule
|
| 98 |
-
|
| 99 |
token used to name a template parameter in one expression is replaced by
|
| 100 |
another token that names the same template parameter in the other
|
| 101 |
-
expression.
|
| 102 |
-
are
|
| 103 |
-
|
| 104 |
-
the
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
[*Example 3*:
|
| 108 |
|
| 109 |
``` cpp
|
| 110 |
template <int I, int J> void f(A<I+J>); // #1
|
| 111 |
template <int K, int L> void f(A<K+L>); // same as #1
|
| 112 |
|
| 113 |
template <class T> decltype(g(T())) h();
|
| 114 |
int g(int);
|
| 115 |
-
template <class T> decltype(g(T())) h() // redeclaration of h() uses the earlier lookup
|
| 116 |
-
{ return g(T()); } //
|
| 117 |
int i = h<int>(); // template argument substitution fails; g(int)
|
| 118 |
// was not in scope at the first declaration of h()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
```
|
| 120 |
|
| 121 |
— *end example*]
|
| 122 |
|
| 123 |
-
Two expressions involving template parameters that
|
| 124 |
-
are *functionally equivalent* if, for any given set
|
| 125 |
-
arguments, the evaluation of the expression results in the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
Two function templates are *equivalent* if they are declared in the same
|
| 128 |
-
scope, have the same name, have
|
| 129 |
-
|
| 130 |
-
rules described above to compare
|
| 131 |
-
parameters. Two function templates are
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
the program
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
[*Note
|
| 140 |
|
| 141 |
This rule guarantees that equivalent declarations will be linked with
|
| 142 |
one another, while not requiring implementations to use heroic efforts
|
| 143 |
to guarantee that functionally equivalent declarations will be treated
|
| 144 |
as distinct. For example, the last two declarations are functionally
|
| 145 |
equivalent and would cause a program to be ill-formed:
|
| 146 |
|
| 147 |
``` cpp
|
| 148 |
-
//
|
| 149 |
template <int I> void f(A<I>, A<I+10>);
|
| 150 |
template <int I> void f(A<I>, A<I+10>);
|
| 151 |
|
| 152 |
-
//
|
| 153 |
template <int I> void f(A<I>, A<I+10>);
|
| 154 |
template <int I> void f(A<I>, A<I+11>);
|
| 155 |
|
| 156 |
-
//
|
| 157 |
template <int I> void f(A<I>, A<I+10>);
|
| 158 |
template <int I> void f(A<I>, A<I+1+2+3+4>);
|
| 159 |
```
|
| 160 |
|
| 161 |
— *end note*]
|
| 162 |
|
| 163 |
#### Partial ordering of function templates <a id="temp.func.order">[[temp.func.order]]</a>
|
| 164 |
|
| 165 |
If a function template is overloaded, the use of a function template
|
| 166 |
-
specialization might be ambiguous because template argument deduction
|
| 167 |
-
[[temp.deduct]]
|
| 168 |
more than one function template declaration. *Partial ordering* of
|
| 169 |
overloaded function template declarations is used in the following
|
| 170 |
contexts to select the function template to which a function template
|
| 171 |
specialization refers:
|
| 172 |
|
| 173 |
- during overload resolution for a call to a function template
|
| 174 |
-
specialization
|
| 175 |
- when the address of a function template specialization is taken;
|
| 176 |
- when a placement operator delete that is a function template
|
| 177 |
specialization is selected to match a placement operator new (
|
| 178 |
[[basic.stc.dynamic.deallocation]], [[expr.new]]);
|
| 179 |
-
- when a friend function declaration
|
| 180 |
-
instantiation
|
| 181 |
-
[[temp.expl.spec]]
|
| 182 |
|
| 183 |
Partial ordering selects which of two function templates is more
|
| 184 |
specialized than the other by transforming each template in turn (see
|
| 185 |
next paragraph) and performing template argument deduction using the
|
| 186 |
function type. The deduction process determines whether one of the
|
| 187 |
templates is more specialized than the other. If so, the more
|
| 188 |
specialized template is the one chosen by the partial ordering process.
|
|
|
|
|
|
|
| 189 |
|
| 190 |
To produce the transformed template, for each type, non-type, or
|
| 191 |
-
template template parameter (including template parameter packs
|
| 192 |
-
[[temp.variadic]]
|
| 193 |
template respectively and substitute it for each occurrence of that
|
| 194 |
parameter in the function type of the template.
|
| 195 |
|
| 196 |
[*Note 1*: The type replacing the placeholder in the type of the value
|
| 197 |
synthesized for a non-type template parameter is also a unique
|
| 198 |
synthesized type. — *end note*]
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
[*Note 2*: This allows a non-static member to be ordered with respect
|
| 209 |
to a non-member function and for the results to be equivalent to the
|
| 210 |
ordering of two equivalent non-members. — *end note*]
|
| 211 |
|
|
@@ -223,11 +289,11 @@ template<class T, class R> int operator*(T&, R&); // #2
|
|
| 223 |
// template<class R> int operator*(B<A>&, R&);\quad\quad\quad// #1a
|
| 224 |
|
| 225 |
int main() {
|
| 226 |
A a;
|
| 227 |
B<A> b;
|
| 228 |
-
b * a; // calls #
|
| 229 |
}
|
| 230 |
```
|
| 231 |
|
| 232 |
— *end example*]
|
| 233 |
|
|
@@ -264,12 +330,12 @@ void m() {
|
|
| 264 |
|
| 265 |
— *end example*]
|
| 266 |
|
| 267 |
[*Note 3*:
|
| 268 |
|
| 269 |
-
Since
|
| 270 |
-
which there are explicit call arguments, some parameters are ignored
|
| 271 |
(namely, function parameter packs, parameters with default arguments,
|
| 272 |
and ellipsis parameters).
|
| 273 |
|
| 274 |
[*Example 3*:
|
| 275 |
|
|
@@ -316,14 +382,75 @@ template<class T, class... U> void f(T, U...); // #1
|
|
| 316 |
template<class T > void f(T); // #2
|
| 317 |
template<class T, class... U> void g(T*, U...); // #3
|
| 318 |
template<class T > void g(T); // #4
|
| 319 |
|
| 320 |
void h(int i) {
|
| 321 |
-
f(&i); //
|
| 322 |
g(&i); // OK: calls #3
|
| 323 |
}
|
| 324 |
```
|
| 325 |
|
| 326 |
— *end example*]
|
| 327 |
|
| 328 |
— *end note*]
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
```
|
| 13 |
|
| 14 |
— *end example*]
|
| 15 |
|
| 16 |
A function template can be overloaded with other function templates and
|
| 17 |
+
with non-template functions [[dcl.fct]]. A non-template function is not
|
| 18 |
+
related to a function template (i.e., it is never considered to be a
|
| 19 |
specialization), even if it has the same name and type as a potentially
|
| 20 |
+
generated function template specialization.[^9]
|
| 21 |
|
| 22 |
#### Function template overloading <a id="temp.over.link">[[temp.over.link]]</a>
|
| 23 |
|
| 24 |
It is possible to overload function templates so that two different
|
| 25 |
function template specializations have the same type.
|
|
|
|
| 45 |
```
|
| 46 |
|
| 47 |
— *end example*]
|
| 48 |
|
| 49 |
Such specializations are distinct functions and do not violate the
|
| 50 |
+
one-definition rule [[basic.def.odr]].
|
| 51 |
|
| 52 |
+
The signature of a function template is defined in [[intro.defs]]. The
|
| 53 |
+
names of the template parameters are significant only for establishing
|
| 54 |
+
the relationship between the template parameters and the rest of the
|
| 55 |
+
signature.
|
| 56 |
|
| 57 |
[*Note 1*:
|
| 58 |
|
| 59 |
Two distinct function templates may have identical function return types
|
| 60 |
and function parameter lists, even if overload resolution alone cannot
|
|
|
|
| 92 |
type parameter. For example, a template type parameter can be used in
|
| 93 |
the `sizeof` operator. — *end note*]
|
| 94 |
|
| 95 |
Two expressions involving template parameters are considered
|
| 96 |
*equivalent* if two function definitions containing the expressions
|
| 97 |
+
would satisfy the one-definition rule [[basic.def.odr]], except that the
|
| 98 |
+
tokens used to name the template parameters may differ as long as a
|
| 99 |
token used to name a template parameter in one expression is replaced by
|
| 100 |
another token that names the same template parameter in the other
|
| 101 |
+
expression. Two unevaluated operands that do not involve template
|
| 102 |
+
parameters are considered equivalent if two function definitions
|
| 103 |
+
containing the expressions would satisfy the one-definition rule, except
|
| 104 |
+
that the tokens used to name types and declarations may differ as long
|
| 105 |
+
as they name the same entities, and the tokens used to form concept-ids
|
| 106 |
+
may differ as long as the two *template-id*s are the same [[temp.type]].
|
| 107 |
+
|
| 108 |
+
[*Note 3*: For instance, `A<42>` and `A<40+2>` name the same
|
| 109 |
+
type. — *end note*]
|
| 110 |
+
|
| 111 |
+
Two *lambda-expression*s are never considered equivalent.
|
| 112 |
+
|
| 113 |
+
[*Note 4*: The intent is to avoid *lambda-expression*s appearing in the
|
| 114 |
+
signature of a function template with external linkage. — *end note*]
|
| 115 |
+
|
| 116 |
+
For determining whether two dependent names [[temp.dep]] are equivalent,
|
| 117 |
+
only the name itself is considered, not the result of name lookup in the
|
| 118 |
+
context of the template. If multiple declarations of the same function
|
| 119 |
+
template differ in the result of this name lookup, the result for the
|
| 120 |
+
first declaration is used.
|
| 121 |
|
| 122 |
[*Example 3*:
|
| 123 |
|
| 124 |
``` cpp
|
| 125 |
template <int I, int J> void f(A<I+J>); // #1
|
| 126 |
template <int K, int L> void f(A<K+L>); // same as #1
|
| 127 |
|
| 128 |
template <class T> decltype(g(T())) h();
|
| 129 |
int g(int);
|
| 130 |
+
template <class T> decltype(g(T())) h() // redeclaration of h() uses the earlier lookup…
|
| 131 |
+
{ return g(T()); } // …{} although the lookup here does find g(int)
|
| 132 |
int i = h<int>(); // template argument substitution fails; g(int)
|
| 133 |
// was not in scope at the first declaration of h()
|
| 134 |
+
|
| 135 |
+
// ill-formed, no diagnostic required: the two expressions are functionally equivalent but not equivalent
|
| 136 |
+
template <int N> void foo(const char (*s)[([]{}, N)]);
|
| 137 |
+
template <int N> void foo(const char (*s)[([]{}, N)]);
|
| 138 |
+
|
| 139 |
+
// two different declarations because the non-dependent portions are not considered equivalent
|
| 140 |
+
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);
|
| 141 |
+
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);
|
| 142 |
```
|
| 143 |
|
| 144 |
— *end example*]
|
| 145 |
|
| 146 |
+
Two potentially-evaluated expressions involving template parameters that
|
| 147 |
+
are not equivalent are *functionally equivalent* if, for any given set
|
| 148 |
+
of template arguments, the evaluation of the expression results in the
|
| 149 |
+
same value. Two unevaluated operands that are not equivalent are
|
| 150 |
+
functionally equivalent if, for any given set of template arguments, the
|
| 151 |
+
expressions perform the same operations in the same order with the same
|
| 152 |
+
entities.
|
| 153 |
+
|
| 154 |
+
[*Note 5*: For instance, one could have redundant
|
| 155 |
+
parentheses. — *end note*]
|
| 156 |
+
|
| 157 |
+
Two *template-head*s are *equivalent* if their
|
| 158 |
+
*template-parameter-list*s have the same length, corresponding
|
| 159 |
+
*template-parameter*s are equivalent and are both declared with
|
| 160 |
+
*type-constraint*s that are equivalent if either *template-parameter* is
|
| 161 |
+
declared with a *type-constraint*, and if either *template-head* has a
|
| 162 |
+
*requires-clause*, they both have *requires-clause*s and the
|
| 163 |
+
corresponding *constraint-expression*s are equivalent. Two
|
| 164 |
+
*template-parameter*s are *equivalent* under the following conditions:
|
| 165 |
+
|
| 166 |
+
- they declare template parameters of the same kind,
|
| 167 |
+
- if either declares a template parameter pack, they both do,
|
| 168 |
+
- if they declare non-type template parameters, they have equivalent
|
| 169 |
+
types ignoring the use of *type-constraint*s for placeholder types,
|
| 170 |
+
and
|
| 171 |
+
- if they declare template template parameters, their template
|
| 172 |
+
parameters are equivalent.
|
| 173 |
+
|
| 174 |
+
When determining whether types or *type-constraint*s are equivalent, the
|
| 175 |
+
rules above are used to compare expressions involving template
|
| 176 |
+
parameters. Two *template-head*s are *functionally equivalent* if they
|
| 177 |
+
accept and are satisfied by [[temp.constr.constr]] the same set of
|
| 178 |
+
template argument lists.
|
| 179 |
|
| 180 |
Two function templates are *equivalent* if they are declared in the same
|
| 181 |
+
scope, have the same name, have equivalent *template-head*s, and have
|
| 182 |
+
return types, parameter lists, and trailing *requires-clause*s (if any)
|
| 183 |
+
that are equivalent using the rules described above to compare
|
| 184 |
+
expressions involving template parameters. Two function templates are
|
| 185 |
+
*functionally equivalent* if they are declared in the same scope, have
|
| 186 |
+
the same name, accept and are satisfied by the same set of template
|
| 187 |
+
argument lists, and have return types and parameter lists that are
|
| 188 |
+
functionally equivalent using the rules described above to compare
|
| 189 |
+
expressions involving template parameters. If the validity or meaning of
|
| 190 |
+
the program depends on whether two constructs are equivalent, and they
|
| 191 |
+
are functionally equivalent but not equivalent, the program is
|
| 192 |
+
ill-formed, no diagnostic required.
|
| 193 |
|
| 194 |
+
[*Note 6*:
|
| 195 |
|
| 196 |
This rule guarantees that equivalent declarations will be linked with
|
| 197 |
one another, while not requiring implementations to use heroic efforts
|
| 198 |
to guarantee that functionally equivalent declarations will be treated
|
| 199 |
as distinct. For example, the last two declarations are functionally
|
| 200 |
equivalent and would cause a program to be ill-formed:
|
| 201 |
|
| 202 |
``` cpp
|
| 203 |
+
// guaranteed to be the same
|
| 204 |
template <int I> void f(A<I>, A<I+10>);
|
| 205 |
template <int I> void f(A<I>, A<I+10>);
|
| 206 |
|
| 207 |
+
// guaranteed to be different
|
| 208 |
template <int I> void f(A<I>, A<I+10>);
|
| 209 |
template <int I> void f(A<I>, A<I+11>);
|
| 210 |
|
| 211 |
+
// ill-formed, no diagnostic required
|
| 212 |
template <int I> void f(A<I>, A<I+10>);
|
| 213 |
template <int I> void f(A<I>, A<I+1+2+3+4>);
|
| 214 |
```
|
| 215 |
|
| 216 |
— *end note*]
|
| 217 |
|
| 218 |
#### Partial ordering of function templates <a id="temp.func.order">[[temp.func.order]]</a>
|
| 219 |
|
| 220 |
If a function template is overloaded, the use of a function template
|
| 221 |
+
specialization might be ambiguous because template argument deduction
|
| 222 |
+
[[temp.deduct]] may associate the function template specialization with
|
| 223 |
more than one function template declaration. *Partial ordering* of
|
| 224 |
overloaded function template declarations is used in the following
|
| 225 |
contexts to select the function template to which a function template
|
| 226 |
specialization refers:
|
| 227 |
|
| 228 |
- during overload resolution for a call to a function template
|
| 229 |
+
specialization [[over.match.best]];
|
| 230 |
- when the address of a function template specialization is taken;
|
| 231 |
- when a placement operator delete that is a function template
|
| 232 |
specialization is selected to match a placement operator new (
|
| 233 |
[[basic.stc.dynamic.deallocation]], [[expr.new]]);
|
| 234 |
+
- when a friend function declaration [[temp.friend]], an explicit
|
| 235 |
+
instantiation [[temp.explicit]] or an explicit specialization
|
| 236 |
+
[[temp.expl.spec]] refers to a function template specialization.
|
| 237 |
|
| 238 |
Partial ordering selects which of two function templates is more
|
| 239 |
specialized than the other by transforming each template in turn (see
|
| 240 |
next paragraph) and performing template argument deduction using the
|
| 241 |
function type. The deduction process determines whether one of the
|
| 242 |
templates is more specialized than the other. If so, the more
|
| 243 |
specialized template is the one chosen by the partial ordering process.
|
| 244 |
+
If both deductions succeed, the partial ordering selects the more
|
| 245 |
+
constrained template (if one exists) as determined below.
|
| 246 |
|
| 247 |
To produce the transformed template, for each type, non-type, or
|
| 248 |
+
template template parameter (including template parameter packs
|
| 249 |
+
[[temp.variadic]] thereof) synthesize a unique type, value, or class
|
| 250 |
template respectively and substitute it for each occurrence of that
|
| 251 |
parameter in the function type of the template.
|
| 252 |
|
| 253 |
[*Note 1*: The type replacing the placeholder in the type of the value
|
| 254 |
synthesized for a non-type template parameter is also a unique
|
| 255 |
synthesized type. — *end note*]
|
| 256 |
|
| 257 |
+
Each function template M that is a member function is considered to have
|
| 258 |
+
a new first parameter of type X(M), described below, inserted in its
|
| 259 |
+
function parameter list. If exactly one of the function templates was
|
| 260 |
+
considered by overload resolution via a rewritten candidate
|
| 261 |
+
[[over.match.oper]] with a reversed order of parameters, then the order
|
| 262 |
+
of the function parameters in its transformed template is reversed. For
|
| 263 |
+
a function template M with cv-qualifiers cv that is a member of a class
|
| 264 |
+
A:
|
| 265 |
+
|
| 266 |
+
- The type X(M) is “rvalue reference to cv A” if the optional
|
| 267 |
+
*ref-qualifier* of M is `&&` or if M has no *ref-qualifier* and the
|
| 268 |
+
positionally-corresponding parameter of the other transformed template
|
| 269 |
+
has rvalue reference type; if this determination depends recursively
|
| 270 |
+
upon whether X(M) is an rvalue reference type, it is not considered to
|
| 271 |
+
have rvalue reference type.
|
| 272 |
+
- Otherwise, X(M) is “lvalue reference to cv A”.
|
| 273 |
|
| 274 |
[*Note 2*: This allows a non-static member to be ordered with respect
|
| 275 |
to a non-member function and for the results to be equivalent to the
|
| 276 |
ordering of two equivalent non-members. — *end note*]
|
| 277 |
|
|
|
|
| 289 |
// template<class R> int operator*(B<A>&, R&);\quad\quad\quad// #1a
|
| 290 |
|
| 291 |
int main() {
|
| 292 |
A a;
|
| 293 |
B<A> b;
|
| 294 |
+
b * a; // calls #1
|
| 295 |
}
|
| 296 |
```
|
| 297 |
|
| 298 |
— *end example*]
|
| 299 |
|
|
|
|
| 330 |
|
| 331 |
— *end example*]
|
| 332 |
|
| 333 |
[*Note 3*:
|
| 334 |
|
| 335 |
+
Since, in a call context, such type deduction considers only parameters
|
| 336 |
+
for which there are explicit call arguments, some parameters are ignored
|
| 337 |
(namely, function parameter packs, parameters with default arguments,
|
| 338 |
and ellipsis parameters).
|
| 339 |
|
| 340 |
[*Example 3*:
|
| 341 |
|
|
|
|
| 382 |
template<class T > void f(T); // #2
|
| 383 |
template<class T, class... U> void g(T*, U...); // #3
|
| 384 |
template<class T > void g(T); // #4
|
| 385 |
|
| 386 |
void h(int i) {
|
| 387 |
+
f(&i); // OK: calls #2
|
| 388 |
g(&i); // OK: calls #3
|
| 389 |
}
|
| 390 |
```
|
| 391 |
|
| 392 |
— *end example*]
|
| 393 |
|
| 394 |
— *end note*]
|
| 395 |
|
| 396 |
+
If deduction against the other template succeeds for both transformed
|
| 397 |
+
templates, constraints can be considered as follows:
|
| 398 |
+
|
| 399 |
+
- If their *template-parameter-list*s (possibly including
|
| 400 |
+
*template-parameter*s invented for an abbreviated function template
|
| 401 |
+
[[dcl.fct]]) or function parameter lists differ in length, neither
|
| 402 |
+
template is more specialized than the other.
|
| 403 |
+
- Otherwise:
|
| 404 |
+
- If exactly one of the templates was considered by overload
|
| 405 |
+
resolution via a rewritten candidate with reversed order of
|
| 406 |
+
parameters:
|
| 407 |
+
- If, for either template, some of the template parameters are not
|
| 408 |
+
deducible from their function parameters, neither template is more
|
| 409 |
+
specialized than the other.
|
| 410 |
+
- If there is either no reordering or more than one reordering of
|
| 411 |
+
the associated *template-parameter-list* such that
|
| 412 |
+
- the corresponding *template-parameter*s of the
|
| 413 |
+
*template-parameter-list*s are equivalent and
|
| 414 |
+
- the function parameters that positionally correspond between the
|
| 415 |
+
two templates are of the same type,
|
| 416 |
+
|
| 417 |
+
neither template is more specialized than the other.
|
| 418 |
+
- Otherwise, if the corresponding *template-parameter*s of the
|
| 419 |
+
*template-parameter-list*s are not equivalent [[temp.over.link]] or
|
| 420 |
+
if the function parameters that positionally correspond between the
|
| 421 |
+
two templates are not of the same type, neither template is more
|
| 422 |
+
specialized than the other.
|
| 423 |
+
- Otherwise, if the context in which the partial ordering is done is
|
| 424 |
+
that of a call to a conversion function and the return types of the
|
| 425 |
+
templates are not the same, then neither template is more specialized
|
| 426 |
+
than the other.
|
| 427 |
+
- Otherwise, if one template is more constrained than the other
|
| 428 |
+
[[temp.constr.order]], the more constrained template is more
|
| 429 |
+
specialized than the other.
|
| 430 |
+
- Otherwise, neither template is more specialized than the other.
|
| 431 |
+
|
| 432 |
+
[*Example 6*:
|
| 433 |
+
|
| 434 |
+
``` cpp
|
| 435 |
+
template <typename> constexpr bool True = true;
|
| 436 |
+
template <typename T> concept C = True<T>;
|
| 437 |
+
|
| 438 |
+
void f(C auto &, auto &) = delete;
|
| 439 |
+
template <C Q> void f(Q &, C auto &);
|
| 440 |
+
|
| 441 |
+
void g(struct A *ap, struct B *bp) {
|
| 442 |
+
f(*ap, *bp); // OK: Can use different methods to produce template parameters
|
| 443 |
+
}
|
| 444 |
+
|
| 445 |
+
template <typename T, typename U> struct X {};
|
| 446 |
+
|
| 447 |
+
template <typename T, C U, typename V> bool operator==(X<T, U>, V) = delete;
|
| 448 |
+
template <C T, C U, C V> bool operator==(T, X<U, V>);
|
| 449 |
+
|
| 450 |
+
void h() {
|
| 451 |
+
X<void *, int>{} == 0; // OK: Correspondence of [T, U, V] and [U, V, T]
|
| 452 |
+
}
|
| 453 |
+
```
|
| 454 |
+
|
| 455 |
+
— *end example*]
|
| 456 |
+
|