tmp/tmpvhsc1dzg/{from.md → to.md}
RENAMED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
#### Cylindrical Neumann functions <a id="sf.cmath.cyl_neumann">[[sf.cmath.cyl_neumann]]</a>
|
| 2 |
-
|
| 3 |
-
``` cpp
|
| 4 |
-
double cyl_neumann(double nu, double x);
|
| 5 |
-
float cyl_neumannf(float nu, float x);
|
| 6 |
-
long double cyl_neumannl(long double nu, long double x);
|
| 7 |
-
```
|
| 8 |
-
|
| 9 |
-
*Effects:* These functions compute the cylindrical Neumann functions,
|
| 10 |
-
also known as the cylindrical Bessel functions of the second kind, of
|
| 11 |
-
their respective arguments `nu` and `x`.
|
| 12 |
-
|
| 13 |
-
*Returns:* $$%
|
| 14 |
-
\mathsf{N}_\nu(x) =
|
| 15 |
-
\left\{
|
| 16 |
-
\begin{array}{cl}
|
| 17 |
-
\displaystyle
|
| 18 |
-
\frac{\mathsf{J}_\nu(x) \cos \nu\pi - \mathsf{J}_{-\nu}(x)}
|
| 19 |
-
{\sin \nu\pi },
|
| 20 |
-
& \mbox{for $x \ge 0$ and non-integral $\nu$}
|
| 21 |
-
\\
|
| 22 |
-
\\
|
| 23 |
-
\displaystyle
|
| 24 |
-
\lim_{\mu \rightarrow \nu} \frac{\mathsf{J}_\mu(x) \cos \mu\pi - \mathsf{J}_{-\mu}(x)}
|
| 25 |
-
{\sin \mu\pi },
|
| 26 |
-
& \mbox{for $x \ge 0$ and integral $\nu$}
|
| 27 |
-
\end{array}
|
| 28 |
-
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 29 |
-
|
| 30 |
-
*Remarks:* The effect of calling each of these functions is
|
| 31 |
-
*implementation-defined* if `nu >= 128`.
|
| 32 |
-
|
| 33 |
-
See also [[sf.cmath.cyl_bessel_j]].
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|