tmp/tmpwdor6nu4/{from.md → to.md}
RENAMED
|
@@ -21,11 +21,12 @@ template<class UIntType, UIntType a, UIntType c, UIntType m>
|
|
| 21 |
static constexpr result_type min() { return c == 0u ? 1u: 0u; }
|
| 22 |
static constexpr result_type max() { return m - 1u; }
|
| 23 |
static constexpr result_type default_seed = 1u;
|
| 24 |
|
| 25 |
// constructors and seeding functions
|
| 26 |
-
|
|
|
|
| 27 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 28 |
void seed(result_type s = default_seed);
|
| 29 |
template<class Sseq> void seed(Sseq& q);
|
| 30 |
|
| 31 |
// generating functions
|
|
@@ -33,37 +34,34 @@ template<class UIntType, UIntType a, UIntType c, UIntType m>
|
|
| 33 |
void discard(unsigned long long z);
|
| 34 |
};
|
| 35 |
```
|
| 36 |
|
| 37 |
If the template parameter `m` is 0, the modulus m used throughout this
|
| 38 |
-
|
| 39 |
-
1.
|
| 40 |
|
| 41 |
[*Note 1*: m need not be representable as a value of type
|
| 42 |
`result_type`. — *end note*]
|
| 43 |
|
| 44 |
If the template parameter `m` is not 0, the following relations shall
|
| 45 |
hold: `a < m` and `c < m`.
|
| 46 |
|
| 47 |
The textual representation consists of the value of xᵢ.
|
| 48 |
|
| 49 |
``` cpp
|
| 50 |
-
explicit linear_congruential_engine(result_type s
|
| 51 |
```
|
| 52 |
|
| 53 |
-
*Effects:*
|
| 54 |
-
|
| 55 |
-
otherwise sets the engine’s state to `s` mod m.
|
| 56 |
|
| 57 |
``` cpp
|
| 58 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 59 |
```
|
| 60 |
|
| 61 |
-
*Effects:*
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
c mod m is 0 and S is 0, sets the engine’s state to 1, else sets the
|
| 68 |
-
engine’s state to S.
|
| 69 |
|
|
|
|
| 21 |
static constexpr result_type min() { return c == 0u ? 1u: 0u; }
|
| 22 |
static constexpr result_type max() { return m - 1u; }
|
| 23 |
static constexpr result_type default_seed = 1u;
|
| 24 |
|
| 25 |
// constructors and seeding functions
|
| 26 |
+
linear_congruential_engine() : linear_congruential_engine(default_seed) {}
|
| 27 |
+
explicit linear_congruential_engine(result_type s);
|
| 28 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 29 |
void seed(result_type s = default_seed);
|
| 30 |
template<class Sseq> void seed(Sseq& q);
|
| 31 |
|
| 32 |
// generating functions
|
|
|
|
| 34 |
void discard(unsigned long long z);
|
| 35 |
};
|
| 36 |
```
|
| 37 |
|
| 38 |
If the template parameter `m` is 0, the modulus m used throughout this
|
| 39 |
+
subclause [[rand.eng.lcong]] is `numeric_limits<result_type>::max()`
|
| 40 |
+
plus 1.
|
| 41 |
|
| 42 |
[*Note 1*: m need not be representable as a value of type
|
| 43 |
`result_type`. — *end note*]
|
| 44 |
|
| 45 |
If the template parameter `m` is not 0, the following relations shall
|
| 46 |
hold: `a < m` and `c < m`.
|
| 47 |
|
| 48 |
The textual representation consists of the value of xᵢ.
|
| 49 |
|
| 50 |
``` cpp
|
| 51 |
+
explicit linear_congruential_engine(result_type s);
|
| 52 |
```
|
| 53 |
|
| 54 |
+
*Effects:* If c mod m is 0 and `s` mod m is 0, sets the engine’s
|
| 55 |
+
state to 1, otherwise sets the engine’s state to `s` mod m.
|
|
|
|
| 56 |
|
| 57 |
``` cpp
|
| 58 |
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
|
| 59 |
```
|
| 60 |
|
| 61 |
+
*Effects:* With $k = \left\lceil \frac{\log_2 m}{32} \right\rceil$ and a
|
| 62 |
+
an array (or equivalent) of length k + 3, invokes
|
| 63 |
+
`q.generate(`a + 0`, `a + k + 3`)` and then computes
|
| 64 |
+
$S = \left(\sum_{j = 0}^{k - 1} a_{j + 3} \cdot 2^{32j} \right) \bmod m$.
|
| 65 |
+
If c mod m is 0 and S is 0, sets the engine’s state to 1, else sets
|
| 66 |
+
the engine’s state to S.
|
|
|
|
|
|
|
| 67 |
|