tmp/tmpdepsf1oh/{from.md → to.md}
RENAMED
|
@@ -2,16 +2,12 @@
|
|
| 2 |
|
| 3 |
##### Class template `poisson_distribution` <a id="rand.dist.pois.poisson">[[rand.dist.pois.poisson]]</a>
|
| 4 |
|
| 5 |
A `poisson_distribution` random number distribution produces integer
|
| 6 |
values i ≥ 0 distributed according to the discrete probability function
|
| 7 |
-
$$
|
| 8 |
-
|
| 9 |
-
= \frac{ e^{-\mu} \mu^{i} }
|
| 10 |
-
{ i\,! }
|
| 11 |
-
\; \mbox{.}$$ The distribution parameter μ is also known as this
|
| 12 |
-
distribution’s *mean* .
|
| 13 |
|
| 14 |
``` cpp
|
| 15 |
template<class IntType = int>
|
| 16 |
class poisson_distribution
|
| 17 |
{
|
|
@@ -19,11 +15,12 @@ template<class IntType = int>
|
|
| 19 |
// types
|
| 20 |
using result_type = IntType;
|
| 21 |
using param_type = unspecified;
|
| 22 |
|
| 23 |
// constructors and reset functions
|
| 24 |
-
|
|
|
|
| 25 |
explicit poisson_distribution(const param_type& parm);
|
| 26 |
void reset();
|
| 27 |
|
| 28 |
// generating functions
|
| 29 |
template<class URBG>
|
|
@@ -39,17 +36,16 @@ template<class IntType = int>
|
|
| 39 |
result_type max() const;
|
| 40 |
};
|
| 41 |
```
|
| 42 |
|
| 43 |
``` cpp
|
| 44 |
-
explicit poisson_distribution(double mean
|
| 45 |
```
|
| 46 |
|
| 47 |
-
*
|
| 48 |
|
| 49 |
-
*
|
| 50 |
-
corresponds to the parameter of the distribution.
|
| 51 |
|
| 52 |
``` cpp
|
| 53 |
double mean() const;
|
| 54 |
```
|
| 55 |
|
|
@@ -58,25 +54,23 @@ constructed.
|
|
| 58 |
|
| 59 |
##### Class template `exponential_distribution` <a id="rand.dist.pois.exp">[[rand.dist.pois.exp]]</a>
|
| 60 |
|
| 61 |
An `exponential_distribution` random number distribution produces random
|
| 62 |
numbers x > 0 distributed according to the probability density function
|
| 63 |
-
$$
|
| 64 |
-
p(x\,|\,\lambda)
|
| 65 |
-
= \lambda e^{-\lambda x}
|
| 66 |
-
\; \mbox{.}$$
|
| 67 |
|
| 68 |
``` cpp
|
| 69 |
template<class RealType = double>
|
| 70 |
class exponential_distribution {
|
| 71 |
public:
|
| 72 |
// types
|
| 73 |
using result_type = RealType;
|
| 74 |
using param_type = unspecified;
|
| 75 |
|
| 76 |
// constructors and reset functions
|
| 77 |
-
|
|
|
|
| 78 |
explicit exponential_distribution(const param_type& parm);
|
| 79 |
void reset();
|
| 80 |
|
| 81 |
// generating functions
|
| 82 |
template<class URBG>
|
|
@@ -92,17 +86,16 @@ template<class RealType = double>
|
|
| 92 |
result_type max() const;
|
| 93 |
};
|
| 94 |
```
|
| 95 |
|
| 96 |
``` cpp
|
| 97 |
-
explicit exponential_distribution(RealType lambda
|
| 98 |
```
|
| 99 |
|
| 100 |
-
*
|
| 101 |
|
| 102 |
-
*
|
| 103 |
-
corresponds to the parameter of the distribution.
|
| 104 |
|
| 105 |
``` cpp
|
| 106 |
RealType lambda() const;
|
| 107 |
```
|
| 108 |
|
|
@@ -111,26 +104,25 @@ constructed.
|
|
| 111 |
|
| 112 |
##### Class template `gamma_distribution` <a id="rand.dist.pois.gamma">[[rand.dist.pois.gamma]]</a>
|
| 113 |
|
| 114 |
A `gamma_distribution` random number distribution produces random
|
| 115 |
numbers x > 0 distributed according to the probability density function
|
| 116 |
-
$$
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
\, \cdot \, x^{\, \alpha-1}
|
| 120 |
-
\; \mbox{.}$$
|
| 121 |
|
| 122 |
``` cpp
|
| 123 |
template<class RealType = double>
|
| 124 |
class gamma_distribution {
|
| 125 |
public:
|
| 126 |
// types
|
| 127 |
using result_type = RealType;
|
| 128 |
using param_type = unspecified;
|
| 129 |
|
| 130 |
// constructors and reset functions
|
| 131 |
-
|
|
|
|
| 132 |
explicit gamma_distribution(const param_type& parm);
|
| 133 |
void reset();
|
| 134 |
|
| 135 |
// generating functions
|
| 136 |
template<class URBG>
|
|
@@ -147,17 +139,17 @@ template<class RealType = double>
|
|
| 147 |
result_type max() const;
|
| 148 |
};
|
| 149 |
```
|
| 150 |
|
| 151 |
``` cpp
|
| 152 |
-
explicit gamma_distribution(RealType alpha
|
| 153 |
```
|
| 154 |
|
| 155 |
-
*
|
| 156 |
|
| 157 |
-
*
|
| 158 |
-
|
| 159 |
|
| 160 |
``` cpp
|
| 161 |
RealType alpha() const;
|
| 162 |
```
|
| 163 |
|
|
@@ -173,27 +165,26 @@ constructed.
|
|
| 173 |
|
| 174 |
##### Class template `weibull_distribution` <a id="rand.dist.pois.weibull">[[rand.dist.pois.weibull]]</a>
|
| 175 |
|
| 176 |
A `weibull_distribution` random number distribution produces random
|
| 177 |
numbers x ≥ 0 distributed according to the probability density function
|
| 178 |
-
$$
|
| 179 |
-
p(x\,|\,a,b)
|
| 180 |
-
= \frac{a}{b}
|
| 181 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 182 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 183 |
-
\
|
| 184 |
|
| 185 |
``` cpp
|
| 186 |
template<class RealType = double>
|
| 187 |
class weibull_distribution {
|
| 188 |
public:
|
| 189 |
// types
|
| 190 |
using result_type = RealType;
|
| 191 |
using param_type = unspecified;
|
| 192 |
|
| 193 |
// constructor and reset functions
|
| 194 |
-
|
|
|
|
| 195 |
explicit weibull_distribution(const param_type& parm);
|
| 196 |
void reset();
|
| 197 |
|
| 198 |
// generating functions
|
| 199 |
template<class URBG>
|
|
@@ -210,17 +201,17 @@ template<class RealType = double>
|
|
| 210 |
result_type max() const;
|
| 211 |
};
|
| 212 |
```
|
| 213 |
|
| 214 |
``` cpp
|
| 215 |
-
explicit weibull_distribution(RealType a
|
| 216 |
```
|
| 217 |
|
| 218 |
-
*
|
| 219 |
|
| 220 |
-
*
|
| 221 |
-
|
| 222 |
|
| 223 |
``` cpp
|
| 224 |
RealType a() const;
|
| 225 |
```
|
| 226 |
|
|
@@ -236,28 +227,25 @@ constructed.
|
|
| 236 |
|
| 237 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 238 |
|
| 239 |
An `extreme_value_distribution` random number distribution produces
|
| 240 |
random numbers x distributed according to the probability density
|
| 241 |
-
function[^6] $$
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
\cdot \exp\left( \frac{a-x}{b}
|
| 245 |
-
\,-\, \exp\left(\frac{a-x}{b}\right)
|
| 246 |
-
\right)
|
| 247 |
-
\; \mbox{.}$$
|
| 248 |
|
| 249 |
``` cpp
|
| 250 |
template<class RealType = double>
|
| 251 |
class extreme_value_distribution {
|
| 252 |
public:
|
| 253 |
// types
|
| 254 |
using result_type = RealType;
|
| 255 |
using param_type = unspecified;
|
| 256 |
|
| 257 |
// constructor and reset functions
|
| 258 |
-
|
|
|
|
| 259 |
explicit extreme_value_distribution(const param_type& parm);
|
| 260 |
void reset();
|
| 261 |
|
| 262 |
// generating functions
|
| 263 |
template<class URBG>
|
|
@@ -274,17 +262,17 @@ template<class RealType = double>
|
|
| 274 |
result_type max() const;
|
| 275 |
};
|
| 276 |
```
|
| 277 |
|
| 278 |
``` cpp
|
| 279 |
-
explicit extreme_value_distribution(RealType a
|
| 280 |
```
|
| 281 |
|
| 282 |
-
*
|
| 283 |
|
| 284 |
-
*
|
| 285 |
-
|
| 286 |
|
| 287 |
``` cpp
|
| 288 |
RealType a() const;
|
| 289 |
```
|
| 290 |
|
|
|
|
| 2 |
|
| 3 |
##### Class template `poisson_distribution` <a id="rand.dist.pois.poisson">[[rand.dist.pois.poisson]]</a>
|
| 4 |
|
| 5 |
A `poisson_distribution` random number distribution produces integer
|
| 6 |
values i ≥ 0 distributed according to the discrete probability function
|
| 7 |
+
$$P(i\,|\,\mu) = \frac{e^{-\mu} \mu^{i}}{i\,!} \text{ .}$$ The
|
| 8 |
+
distribution parameter μ is also known as this distribution’s *mean* .
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
``` cpp
|
| 11 |
template<class IntType = int>
|
| 12 |
class poisson_distribution
|
| 13 |
{
|
|
|
|
| 15 |
// types
|
| 16 |
using result_type = IntType;
|
| 17 |
using param_type = unspecified;
|
| 18 |
|
| 19 |
// constructors and reset functions
|
| 20 |
+
poisson_distribution() : poisson_distribution(1.0) {}
|
| 21 |
+
explicit poisson_distribution(double mean);
|
| 22 |
explicit poisson_distribution(const param_type& parm);
|
| 23 |
void reset();
|
| 24 |
|
| 25 |
// generating functions
|
| 26 |
template<class URBG>
|
|
|
|
| 36 |
result_type max() const;
|
| 37 |
};
|
| 38 |
```
|
| 39 |
|
| 40 |
``` cpp
|
| 41 |
+
explicit poisson_distribution(double mean);
|
| 42 |
```
|
| 43 |
|
| 44 |
+
*Preconditions:* 0 < `mean`.
|
| 45 |
|
| 46 |
+
*Remarks:* `mean` corresponds to the parameter of the distribution.
|
|
|
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
double mean() const;
|
| 50 |
```
|
| 51 |
|
|
|
|
| 54 |
|
| 55 |
##### Class template `exponential_distribution` <a id="rand.dist.pois.exp">[[rand.dist.pois.exp]]</a>
|
| 56 |
|
| 57 |
An `exponential_distribution` random number distribution produces random
|
| 58 |
numbers x > 0 distributed according to the probability density function
|
| 59 |
+
$$p(x\,|\,\lambda) = \lambda e^{-\lambda x} \text{ .}$$
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
``` cpp
|
| 62 |
template<class RealType = double>
|
| 63 |
class exponential_distribution {
|
| 64 |
public:
|
| 65 |
// types
|
| 66 |
using result_type = RealType;
|
| 67 |
using param_type = unspecified;
|
| 68 |
|
| 69 |
// constructors and reset functions
|
| 70 |
+
exponential_distribution() : exponential_distribution(1.0) {}
|
| 71 |
+
explicit exponential_distribution(RealType lambda);
|
| 72 |
explicit exponential_distribution(const param_type& parm);
|
| 73 |
void reset();
|
| 74 |
|
| 75 |
// generating functions
|
| 76 |
template<class URBG>
|
|
|
|
| 86 |
result_type max() const;
|
| 87 |
};
|
| 88 |
```
|
| 89 |
|
| 90 |
``` cpp
|
| 91 |
+
explicit exponential_distribution(RealType lambda);
|
| 92 |
```
|
| 93 |
|
| 94 |
+
*Preconditions:* 0 < `lambda`.
|
| 95 |
|
| 96 |
+
*Remarks:* `lambda` corresponds to the parameter of the distribution.
|
|
|
|
| 97 |
|
| 98 |
``` cpp
|
| 99 |
RealType lambda() const;
|
| 100 |
```
|
| 101 |
|
|
|
|
| 104 |
|
| 105 |
##### Class template `gamma_distribution` <a id="rand.dist.pois.gamma">[[rand.dist.pois.gamma]]</a>
|
| 106 |
|
| 107 |
A `gamma_distribution` random number distribution produces random
|
| 108 |
numbers x > 0 distributed according to the probability density function
|
| 109 |
+
$$p(x\,|\,\alpha,\beta) =
|
| 110 |
+
\frac{e^{-x/\beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \, \cdot \, x^{\, \alpha-1}
|
| 111 |
+
\text{ .}$$
|
|
|
|
|
|
|
| 112 |
|
| 113 |
``` cpp
|
| 114 |
template<class RealType = double>
|
| 115 |
class gamma_distribution {
|
| 116 |
public:
|
| 117 |
// types
|
| 118 |
using result_type = RealType;
|
| 119 |
using param_type = unspecified;
|
| 120 |
|
| 121 |
// constructors and reset functions
|
| 122 |
+
gamma_distribution() : gamma_distribution(1.0) {}
|
| 123 |
+
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 124 |
explicit gamma_distribution(const param_type& parm);
|
| 125 |
void reset();
|
| 126 |
|
| 127 |
// generating functions
|
| 128 |
template<class URBG>
|
|
|
|
| 139 |
result_type max() const;
|
| 140 |
};
|
| 141 |
```
|
| 142 |
|
| 143 |
``` cpp
|
| 144 |
+
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
|
| 145 |
```
|
| 146 |
|
| 147 |
+
*Preconditions:* 0 < `alpha` and 0 < `beta`.
|
| 148 |
|
| 149 |
+
*Remarks:* `alpha` and `beta` correspond to the parameters of the
|
| 150 |
+
distribution.
|
| 151 |
|
| 152 |
``` cpp
|
| 153 |
RealType alpha() const;
|
| 154 |
```
|
| 155 |
|
|
|
|
| 165 |
|
| 166 |
##### Class template `weibull_distribution` <a id="rand.dist.pois.weibull">[[rand.dist.pois.weibull]]</a>
|
| 167 |
|
| 168 |
A `weibull_distribution` random number distribution produces random
|
| 169 |
numbers x ≥ 0 distributed according to the probability density function
|
| 170 |
+
$$p(x\,|\,a,b) = \frac{a}{b}
|
|
|
|
|
|
|
| 171 |
\cdot \left(\frac{x}{b}\right)^{a-1}
|
| 172 |
\cdot \, \exp\left( -\left(\frac{x}{b}\right)^a\right)
|
| 173 |
+
\text{ .}$$
|
| 174 |
|
| 175 |
``` cpp
|
| 176 |
template<class RealType = double>
|
| 177 |
class weibull_distribution {
|
| 178 |
public:
|
| 179 |
// types
|
| 180 |
using result_type = RealType;
|
| 181 |
using param_type = unspecified;
|
| 182 |
|
| 183 |
// constructor and reset functions
|
| 184 |
+
weibull_distribution() : weibull_distribution(1.0) {}
|
| 185 |
+
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 186 |
explicit weibull_distribution(const param_type& parm);
|
| 187 |
void reset();
|
| 188 |
|
| 189 |
// generating functions
|
| 190 |
template<class URBG>
|
|
|
|
| 201 |
result_type max() const;
|
| 202 |
};
|
| 203 |
```
|
| 204 |
|
| 205 |
``` cpp
|
| 206 |
+
explicit weibull_distribution(RealType a, RealType b = 1.0);
|
| 207 |
```
|
| 208 |
|
| 209 |
+
*Preconditions:* 0 < `a` and 0 < `b`.
|
| 210 |
|
| 211 |
+
*Remarks:* `a` and `b` correspond to the respective parameters of the
|
| 212 |
+
distribution.
|
| 213 |
|
| 214 |
``` cpp
|
| 215 |
RealType a() const;
|
| 216 |
```
|
| 217 |
|
|
|
|
| 227 |
|
| 228 |
##### Class template `extreme_value_distribution` <a id="rand.dist.pois.extreme">[[rand.dist.pois.extreme]]</a>
|
| 229 |
|
| 230 |
An `extreme_value_distribution` random number distribution produces
|
| 231 |
random numbers x distributed according to the probability density
|
| 232 |
+
function[^6] $$p(x\,|\,a,b) = \frac{1}{b}
|
| 233 |
+
\cdot \exp\left(\frac{a-x}{b} - \exp\left(\frac{a-x}{b}\right)\right)
|
| 234 |
+
\text{ .}$$
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
``` cpp
|
| 237 |
template<class RealType = double>
|
| 238 |
class extreme_value_distribution {
|
| 239 |
public:
|
| 240 |
// types
|
| 241 |
using result_type = RealType;
|
| 242 |
using param_type = unspecified;
|
| 243 |
|
| 244 |
// constructor and reset functions
|
| 245 |
+
extreme_value_distribution() : extreme_value_distribution(0.0) {}
|
| 246 |
+
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 247 |
explicit extreme_value_distribution(const param_type& parm);
|
| 248 |
void reset();
|
| 249 |
|
| 250 |
// generating functions
|
| 251 |
template<class URBG>
|
|
|
|
| 262 |
result_type max() const;
|
| 263 |
};
|
| 264 |
```
|
| 265 |
|
| 266 |
``` cpp
|
| 267 |
+
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
|
| 268 |
```
|
| 269 |
|
| 270 |
+
*Preconditions:* 0 < `b`.
|
| 271 |
|
| 272 |
+
*Remarks:* `a` and `b` correspond to the respective parameters of the
|
| 273 |
+
distribution.
|
| 274 |
|
| 275 |
``` cpp
|
| 276 |
RealType a() const;
|
| 277 |
```
|
| 278 |
|