tmp/tmpo82mrrcd/{from.md → to.md}
RENAMED
|
@@ -1,27 +1,26 @@
|
|
| 1 |
#### Bernoulli distributions <a id="rand.dist.bern">[[rand.dist.bern]]</a>
|
| 2 |
|
| 3 |
##### Class `bernoulli_distribution` <a id="rand.dist.bern.bernoulli">[[rand.dist.bern.bernoulli]]</a>
|
| 4 |
|
| 5 |
A `bernoulli_distribution` random number distribution produces `bool`
|
| 6 |
-
values b distributed according to the discrete probability function
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
\end{array}\right.
|
| 12 |
-
\; \mbox{.}$$
|
| 13 |
|
| 14 |
``` cpp
|
| 15 |
class bernoulli_distribution {
|
| 16 |
public:
|
| 17 |
// types
|
| 18 |
using result_type = bool;
|
| 19 |
using param_type = unspecified;
|
| 20 |
|
| 21 |
// constructors and reset functions
|
| 22 |
-
|
|
|
|
| 23 |
explicit bernoulli_distribution(const param_type& parm);
|
| 24 |
void reset();
|
| 25 |
|
| 26 |
// generating functions
|
| 27 |
template<class URBG>
|
|
@@ -37,17 +36,16 @@ public:
|
|
| 37 |
result_type max() const;
|
| 38 |
};
|
| 39 |
```
|
| 40 |
|
| 41 |
``` cpp
|
| 42 |
-
explicit bernoulli_distribution(double p
|
| 43 |
```
|
| 44 |
|
| 45 |
-
*
|
| 46 |
|
| 47 |
-
*
|
| 48 |
-
to the parameter of the distribution.
|
| 49 |
|
| 50 |
``` cpp
|
| 51 |
double p() const;
|
| 52 |
```
|
| 53 |
|
|
@@ -56,25 +54,23 @@ constructed.
|
|
| 56 |
|
| 57 |
##### Class template `binomial_distribution` <a id="rand.dist.bern.bin">[[rand.dist.bern.bin]]</a>
|
| 58 |
|
| 59 |
A `binomial_distribution` random number distribution produces integer
|
| 60 |
values i ≥ 0 distributed according to the discrete probability function
|
| 61 |
-
$$
|
| 62 |
-
P(i\,|\,t,p)
|
| 63 |
-
= \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i}
|
| 64 |
-
\; \mbox{.}$$
|
| 65 |
|
| 66 |
``` cpp
|
| 67 |
template<class IntType = int>
|
| 68 |
class binomial_distribution {
|
| 69 |
public:
|
| 70 |
// types
|
| 71 |
using result_type = IntType;
|
| 72 |
using param_type = unspecified;
|
| 73 |
|
| 74 |
// constructors and reset functions
|
| 75 |
-
|
|
|
|
| 76 |
explicit binomial_distribution(const param_type& parm);
|
| 77 |
void reset();
|
| 78 |
|
| 79 |
// generating functions
|
| 80 |
template<class URBG>
|
|
@@ -91,17 +87,17 @@ template<class IntType = int>
|
|
| 91 |
result_type max() const;
|
| 92 |
};
|
| 93 |
```
|
| 94 |
|
| 95 |
``` cpp
|
| 96 |
-
explicit binomial_distribution(IntType t
|
| 97 |
```
|
| 98 |
|
| 99 |
-
*
|
| 100 |
|
| 101 |
-
*
|
| 102 |
-
|
| 103 |
|
| 104 |
``` cpp
|
| 105 |
IntType t() const;
|
| 106 |
```
|
| 107 |
|
|
@@ -117,25 +113,23 @@ constructed.
|
|
| 117 |
|
| 118 |
##### Class template `geometric_distribution` <a id="rand.dist.bern.geo">[[rand.dist.bern.geo]]</a>
|
| 119 |
|
| 120 |
A `geometric_distribution` random number distribution produces integer
|
| 121 |
values i ≥ 0 distributed according to the discrete probability function
|
| 122 |
-
$$
|
| 123 |
-
P(i\,|\,p)
|
| 124 |
-
= p \cdot (1-p)^{i}
|
| 125 |
-
\; \mbox{.}$$
|
| 126 |
|
| 127 |
``` cpp
|
| 128 |
template<class IntType = int>
|
| 129 |
class geometric_distribution {
|
| 130 |
public:
|
| 131 |
// types
|
| 132 |
using result_type = IntType;
|
| 133 |
using param_type = unspecified;
|
| 134 |
|
| 135 |
// constructors and reset functions
|
| 136 |
-
|
|
|
|
| 137 |
explicit geometric_distribution(const param_type& parm);
|
| 138 |
void reset();
|
| 139 |
|
| 140 |
// generating functions
|
| 141 |
template<class URBG>
|
|
@@ -151,17 +145,16 @@ template<class IntType = int>
|
|
| 151 |
result_type max() const;
|
| 152 |
};
|
| 153 |
```
|
| 154 |
|
| 155 |
``` cpp
|
| 156 |
-
explicit geometric_distribution(double p
|
| 157 |
```
|
| 158 |
|
| 159 |
-
*
|
| 160 |
|
| 161 |
-
*
|
| 162 |
-
to the parameter of the distribution.
|
| 163 |
|
| 164 |
``` cpp
|
| 165 |
double p() const;
|
| 166 |
```
|
| 167 |
|
|
@@ -170,14 +163,12 @@ constructed.
|
|
| 170 |
|
| 171 |
##### Class template `negative_binomial_distribution` <a id="rand.dist.bern.negbin">[[rand.dist.bern.negbin]]</a>
|
| 172 |
|
| 173 |
A `negative_binomial_distribution` random number distribution produces
|
| 174 |
random integers i ≥ 0 distributed according to the discrete probability
|
| 175 |
-
function
|
| 176 |
-
|
| 177 |
-
= \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i
|
| 178 |
-
\; \mbox{.}$$
|
| 179 |
|
| 180 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 181 |
`p == 1`. — *end note*]
|
| 182 |
|
| 183 |
``` cpp
|
|
@@ -187,11 +178,12 @@ template<class IntType = int>
|
|
| 187 |
// types
|
| 188 |
using result_type = IntType;
|
| 189 |
using param_type = unspecified;
|
| 190 |
|
| 191 |
// constructor and reset functions
|
| 192 |
-
|
|
|
|
| 193 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 194 |
void reset();
|
| 195 |
|
| 196 |
// generating functions
|
| 197 |
template<class URBG>
|
|
@@ -208,17 +200,17 @@ template<class IntType = int>
|
|
| 208 |
result_type max() const;
|
| 209 |
};
|
| 210 |
```
|
| 211 |
|
| 212 |
``` cpp
|
| 213 |
-
explicit negative_binomial_distribution(IntType k
|
| 214 |
```
|
| 215 |
|
| 216 |
-
*
|
| 217 |
|
| 218 |
-
*
|
| 219 |
-
|
| 220 |
|
| 221 |
``` cpp
|
| 222 |
IntType k() const;
|
| 223 |
```
|
| 224 |
|
|
|
|
| 1 |
#### Bernoulli distributions <a id="rand.dist.bern">[[rand.dist.bern]]</a>
|
| 2 |
|
| 3 |
##### Class `bernoulli_distribution` <a id="rand.dist.bern.bernoulli">[[rand.dist.bern.bernoulli]]</a>
|
| 4 |
|
| 5 |
A `bernoulli_distribution` random number distribution produces `bool`
|
| 6 |
+
values b distributed according to the discrete probability function
|
| 7 |
+
$$P(b\,|\,p) = \left\{ \begin{array}{ll}
|
| 8 |
+
p & \text{ if $b = \tcode{true}$, or} \\
|
| 9 |
+
1 - p & \text{ if $b = \tcode{false}$.}
|
| 10 |
+
\end{array}\right.$$
|
|
|
|
|
|
|
| 11 |
|
| 12 |
``` cpp
|
| 13 |
class bernoulli_distribution {
|
| 14 |
public:
|
| 15 |
// types
|
| 16 |
using result_type = bool;
|
| 17 |
using param_type = unspecified;
|
| 18 |
|
| 19 |
// constructors and reset functions
|
| 20 |
+
bernoulli_distribution() : bernoulli_distribution(0.5) {}
|
| 21 |
+
explicit bernoulli_distribution(double p);
|
| 22 |
explicit bernoulli_distribution(const param_type& parm);
|
| 23 |
void reset();
|
| 24 |
|
| 25 |
// generating functions
|
| 26 |
template<class URBG>
|
|
|
|
| 36 |
result_type max() const;
|
| 37 |
};
|
| 38 |
```
|
| 39 |
|
| 40 |
``` cpp
|
| 41 |
+
explicit bernoulli_distribution(double p);
|
| 42 |
```
|
| 43 |
|
| 44 |
+
*Preconditions:* 0 ≤ `p` ≤ 1.
|
| 45 |
|
| 46 |
+
*Remarks:* `p` corresponds to the parameter of the distribution.
|
|
|
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
double p() const;
|
| 50 |
```
|
| 51 |
|
|
|
|
| 54 |
|
| 55 |
##### Class template `binomial_distribution` <a id="rand.dist.bern.bin">[[rand.dist.bern.bin]]</a>
|
| 56 |
|
| 57 |
A `binomial_distribution` random number distribution produces integer
|
| 58 |
values i ≥ 0 distributed according to the discrete probability function
|
| 59 |
+
$$P(i\,|\,t,p) = \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i} \text{ .}$$
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
``` cpp
|
| 62 |
template<class IntType = int>
|
| 63 |
class binomial_distribution {
|
| 64 |
public:
|
| 65 |
// types
|
| 66 |
using result_type = IntType;
|
| 67 |
using param_type = unspecified;
|
| 68 |
|
| 69 |
// constructors and reset functions
|
| 70 |
+
binomial_distribution() : binomial_distribution(1) {}
|
| 71 |
+
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 72 |
explicit binomial_distribution(const param_type& parm);
|
| 73 |
void reset();
|
| 74 |
|
| 75 |
// generating functions
|
| 76 |
template<class URBG>
|
|
|
|
| 87 |
result_type max() const;
|
| 88 |
};
|
| 89 |
```
|
| 90 |
|
| 91 |
``` cpp
|
| 92 |
+
explicit binomial_distribution(IntType t, double p = 0.5);
|
| 93 |
```
|
| 94 |
|
| 95 |
+
*Preconditions:* 0 ≤ `p` ≤ 1 and 0 ≤ `t`.
|
| 96 |
|
| 97 |
+
*Remarks:* `t` and `p` correspond to the respective parameters of the
|
| 98 |
+
distribution.
|
| 99 |
|
| 100 |
``` cpp
|
| 101 |
IntType t() const;
|
| 102 |
```
|
| 103 |
|
|
|
|
| 113 |
|
| 114 |
##### Class template `geometric_distribution` <a id="rand.dist.bern.geo">[[rand.dist.bern.geo]]</a>
|
| 115 |
|
| 116 |
A `geometric_distribution` random number distribution produces integer
|
| 117 |
values i ≥ 0 distributed according to the discrete probability function
|
| 118 |
+
$$P(i\,|\,p) = p \cdot (1-p)^{i} \text{ .}$$
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
``` cpp
|
| 121 |
template<class IntType = int>
|
| 122 |
class geometric_distribution {
|
| 123 |
public:
|
| 124 |
// types
|
| 125 |
using result_type = IntType;
|
| 126 |
using param_type = unspecified;
|
| 127 |
|
| 128 |
// constructors and reset functions
|
| 129 |
+
geometric_distribution() : geometric_distribution(0.5) {}
|
| 130 |
+
explicit geometric_distribution(double p);
|
| 131 |
explicit geometric_distribution(const param_type& parm);
|
| 132 |
void reset();
|
| 133 |
|
| 134 |
// generating functions
|
| 135 |
template<class URBG>
|
|
|
|
| 145 |
result_type max() const;
|
| 146 |
};
|
| 147 |
```
|
| 148 |
|
| 149 |
``` cpp
|
| 150 |
+
explicit geometric_distribution(double p);
|
| 151 |
```
|
| 152 |
|
| 153 |
+
*Preconditions:* 0 < `p` < 1.
|
| 154 |
|
| 155 |
+
*Remarks:* `p` corresponds to the parameter of the distribution.
|
|
|
|
| 156 |
|
| 157 |
``` cpp
|
| 158 |
double p() const;
|
| 159 |
```
|
| 160 |
|
|
|
|
| 163 |
|
| 164 |
##### Class template `negative_binomial_distribution` <a id="rand.dist.bern.negbin">[[rand.dist.bern.negbin]]</a>
|
| 165 |
|
| 166 |
A `negative_binomial_distribution` random number distribution produces
|
| 167 |
random integers i ≥ 0 distributed according to the discrete probability
|
| 168 |
+
function
|
| 169 |
+
$$P(i\,|\,k,p) = \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i \text{ .}$$
|
|
|
|
|
|
|
| 170 |
|
| 171 |
[*Note 1*: This implies that P(i | k,p) is undefined when
|
| 172 |
`p == 1`. — *end note*]
|
| 173 |
|
| 174 |
``` cpp
|
|
|
|
| 178 |
// types
|
| 179 |
using result_type = IntType;
|
| 180 |
using param_type = unspecified;
|
| 181 |
|
| 182 |
// constructor and reset functions
|
| 183 |
+
negative_binomial_distribution() : negative_binomial_distribution(1) {}
|
| 184 |
+
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 185 |
explicit negative_binomial_distribution(const param_type& parm);
|
| 186 |
void reset();
|
| 187 |
|
| 188 |
// generating functions
|
| 189 |
template<class URBG>
|
|
|
|
| 200 |
result_type max() const;
|
| 201 |
};
|
| 202 |
```
|
| 203 |
|
| 204 |
``` cpp
|
| 205 |
+
explicit negative_binomial_distribution(IntType k, double p = 0.5);
|
| 206 |
```
|
| 207 |
|
| 208 |
+
*Preconditions:* 0 < `p` ≤ 1 and 0 < `k`.
|
| 209 |
|
| 210 |
+
*Remarks:* `k` and `p` correspond to the respective parameters of the
|
| 211 |
+
distribution.
|
| 212 |
|
| 213 |
``` cpp
|
| 214 |
IntType k() const;
|
| 215 |
```
|
| 216 |
|