- tmp/tmpjapicmag/{from.md → to.md} +1389 -125
tmp/tmpjapicmag/{from.md → to.md}
RENAMED
|
@@ -1,50 +1,62 @@
|
|
| 1 |
## Iterator requirements <a id="iterator.requirements">[[iterator.requirements]]</a>
|
| 2 |
|
| 3 |
### In general <a id="iterator.requirements.general">[[iterator.requirements.general]]</a>
|
| 4 |
|
| 5 |
Iterators are a generalization of pointers that allow a C++ program to
|
| 6 |
-
work with different data structures (
|
| 7 |
-
be able to construct template algorithms that
|
| 8 |
-
efficiently on different types of data structures,
|
| 9 |
-
formalizes not just the interfaces but also the semantics
|
| 10 |
-
assumptions of iterators. An input iterator `i` supports
|
| 11 |
-
`*i`, resulting in a value of some object type `T`,
|
| 12 |
-
type* of the iterator. An output iterator `i` has a
|
| 13 |
-
types that are
|
| 14 |
-
expression `*i = o` is valid where `o` is a
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
corresponding signed integer type called the *difference type* of the
|
| 19 |
-
iterator.
|
| 20 |
|
| 21 |
-
Since iterators are an abstraction of pointers, their semantics
|
| 22 |
generalization of most of the semantics of pointers in C++. This ensures
|
| 23 |
that every function template that takes iterators works as well with
|
| 24 |
-
regular pointers. This
|
| 25 |
-
|
| 26 |
-
iterators*, *
|
| 27 |
-
iterators* and *
|
| 28 |
-
[[
|
| 29 |
|
| 30 |
-
**Table: Relations among iterator categories** <a id="
|
| 31 |
|
| 32 |
-
|
|
| 33 |
-
| ----------------- | ------------------------------- | ------------------------- | ------------------------ |
|
| 34 |
-
| **Random Access** | $\rightarrow$ **Bidirectional** | $\rightarrow$ **Forward** | $\rightarrow$ **Input** |
|
| 35 |
-
|
|
| 36 |
|
| 37 |
|
| 38 |
-
|
| 39 |
-
can be used whenever an input iterator is specified; Bidirectional
|
| 40 |
-
iterators also satisfy all the requirements of forward iterators and can
|
| 41 |
-
be used whenever a forward iterator is specified; Random access
|
| 42 |
-
iterators also satisfy all the requirements of bidirectional iterators
|
| 43 |
-
and can be used whenever a bidirectional iterator is specified.
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
called *mutable iterators*. Nonmutable iterators are referred to as
|
| 47 |
*constant iterators*.
|
| 48 |
|
| 49 |
In addition to the requirements in this subclause, the nested
|
| 50 |
*typedef-name*s specified in [[iterator.traits]] shall be provided for
|
|
@@ -52,24 +64,14 @@ the iterator type.
|
|
| 52 |
|
| 53 |
[*Note 1*: Either the iterator type must provide the *typedef-name*s
|
| 54 |
directly (in which case `iterator_traits` pick them up automatically),
|
| 55 |
or an `iterator_traits` specialization must provide them. — *end note*]
|
| 56 |
|
| 57 |
-
Iterators that further satisfy the requirement that, for integral values
|
| 58 |
-
`n` and dereferenceable iterator values `a` and `(a + n)`, `*(a + n)` is
|
| 59 |
-
equivalent to `*(addressof(*a) + n)`, are called *contiguous iterators*.
|
| 60 |
-
|
| 61 |
-
[*Note 2*: For example, the type “pointer to `int`” is a contiguous
|
| 62 |
-
iterator, but `reverse_iterator<int *>` is not. For a valid iterator
|
| 63 |
-
range [`a`,`b`) with dereferenceable `a`, the corresponding range
|
| 64 |
-
denoted by pointers is [`addressof(*a)`,`addressof(*a) + (b - a)`); `b`
|
| 65 |
-
might not be dereferenceable. — *end note*]
|
| 66 |
-
|
| 67 |
Just as a regular pointer to an array guarantees that there is a pointer
|
| 68 |
value pointing past the last element of the array, so for any iterator
|
| 69 |
type there is an iterator value that points past the last element of a
|
| 70 |
-
corresponding sequence.
|
| 71 |
Values of an iterator `i` for which the expression `*i` is defined are
|
| 72 |
called *dereferenceable*. The library never assumes that past-the-end
|
| 73 |
values are dereferenceable. Iterators can also have singular values that
|
| 74 |
are not associated with any sequence.
|
| 75 |
|
|
@@ -78,135 +80,1123 @@ with `int* x;`), `x` must always be assumed to have a singular value of
|
|
| 78 |
a pointer. — *end example*]
|
| 79 |
|
| 80 |
Results of most expressions are undefined for singular values; the only
|
| 81 |
exceptions are destroying an iterator that holds a singular value, the
|
| 82 |
assignment of a non-singular value to an iterator that holds a singular
|
| 83 |
-
value, and, for iterators that
|
| 84 |
requirements, using a value-initialized iterator as the source of a copy
|
| 85 |
or move operation.
|
| 86 |
|
| 87 |
-
[*Note
|
| 88 |
although the distinction only matters for types with trivial default
|
| 89 |
constructors such as pointers or aggregates holding
|
| 90 |
pointers. — *end note*]
|
| 91 |
|
| 92 |
In these cases the singular value is overwritten the same way as any
|
| 93 |
other value. Dereferenceable values are always non-singular.
|
| 94 |
|
| 95 |
-
An iterator `j` is called *reachable* from an iterator `i` if and only
|
| 96 |
-
if there is a finite sequence of applications of the expression `++i`
|
| 97 |
-
that makes `i == j`. If `j` is reachable from `i`, they refer to
|
| 98 |
-
elements of the same sequence.
|
| 99 |
-
|
| 100 |
Most of the library’s algorithmic templates that operate on data
|
| 101 |
-
structures have interfaces that use ranges. A *range* is
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
`i`
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
All the categories of iterators require only those functions that are
|
| 111 |
realizable for a given category in constant time (amortized). Therefore,
|
| 112 |
-
requirement tables for the iterators do not
|
|
|
|
| 113 |
|
| 114 |
-
Destruction of
|
| 115 |
-
previously obtained from that iterator.
|
| 116 |
|
| 117 |
-
An *invalid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
In the following sections, `a` and `b` denote values of type `X` or
|
| 120 |
`const X`, `difference_type` and `reference` refer to the types
|
| 121 |
`iterator_traits<X>::difference_type` and
|
| 122 |
`iterator_traits<X>::reference`, respectively, `n` denotes a value of
|
| 123 |
`difference_type`, `u`, `tmp`, and `m` denote identifiers, `r` denotes a
|
| 124 |
value of `X&`, `t` denotes a value of value type `T`, `o` denotes a
|
| 125 |
value of some type that is writable to the output iterator.
|
| 126 |
|
| 127 |
-
[*Note
|
| 128 |
-
`iterator_traits<X>`
|
| 129 |
|
| 130 |
-
###
|
| 131 |
|
| 132 |
-
The
|
| 133 |
-
taxonomy; every iterator
|
| 134 |
-
of requirements specifies operations for dereferencing and
|
| 135 |
-
an iterator. Most algorithms will require additional
|
| 136 |
-
read
|
| 137 |
-
to provide a richer set of iterator movements (
|
| 138 |
-
[[
|
|
|
|
| 139 |
|
| 140 |
-
A type `X`
|
| 141 |
|
| 142 |
-
- `X`
|
| 143 |
-
|
| 144 |
-
lvalues of type `X` are swappable
|
| 145 |
-
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
### Input iterators <a id="input.iterators">[[input.iterators]]</a>
|
| 149 |
-
|
| 150 |
-
A class or pointer type `X` satisfies the requirements of an input
|
| 151 |
-
iterator for the value type `T` if `X` satisfies the `Iterator` (
|
| 152 |
-
[[iterator.iterators]]) and `EqualityComparable` (Table
|
| 153 |
-
[[tab:equalitycomparable]]) requirements and the expressions in Table
|
| 154 |
-
[[tab:iterator.input.requirements]] are valid and have the indicated
|
| 155 |
semantics.
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
[*Example 1*: The call `find(a,b,x)` is defined only if the value of
|
| 165 |
`a` has the property *p* defined as follows: `b` has property *p* and a
|
| 166 |
value `i` has property *p* if (`*i==x`) or if (`*i!=x` and `++i` has
|
| 167 |
property *p*). — *end example*]
|
| 168 |
|
| 169 |
[*Note 1*: For input iterators, `a == b` does not imply `++a == ++b`.
|
| 170 |
(Equality does not guarantee the substitution property or referential
|
| 171 |
transparency.) Algorithms on input iterators should never attempt to
|
| 172 |
pass through the same iterator twice. They should be *single pass*
|
| 173 |
-
algorithms. Value type `T` is not required to be a
|
| 174 |
-
(
|
| 175 |
istreams as the source of the input data through the `istream_iterator`
|
| 176 |
class template. — *end note*]
|
| 177 |
|
| 178 |
-
### Output iterators <a id="output.iterators">[[output.iterators]]</a>
|
| 179 |
|
| 180 |
-
A class or pointer type `X`
|
| 181 |
-
|
| 182 |
-
[[
|
| 183 |
-
[[tab:iterator.output.requirements]] are valid and have the indicated
|
| 184 |
semantics.
|
| 185 |
|
| 186 |
[*Note 1*: The only valid use of an `operator*` is on the left side of
|
| 187 |
-
the assignment statement.
|
| 188 |
-
iterator happens only once.
|
| 189 |
-
attempt to pass through the same iterator twice. They should be
|
| 190 |
-
pass
|
| 191 |
-
|
| 192 |
-
destination for placing data through the `ostream_iterator` class as
|
| 193 |
-
well as with insert iterators and insert pointers. — *end note*]
|
| 194 |
|
| 195 |
-
### Forward iterators <a id="forward.iterators">[[forward.iterators]]</a>
|
| 196 |
|
| 197 |
-
A class or pointer type `X`
|
| 198 |
-
|
| 199 |
|
| 200 |
-
- `X`
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
[[utility.arg.requirements]]),
|
| 204 |
- if `X` is a mutable iterator, `reference` is a reference to `T`; if
|
| 205 |
`X` is a constant iterator, `reference` is a reference to `const T`,
|
| 206 |
-
- the expressions in
|
| 207 |
-
|
| 208 |
- objects of type `X` offer the multi-pass guarantee, described below.
|
| 209 |
|
| 210 |
The domain of `==` for forward iterators is that of iterators over the
|
| 211 |
same underlying sequence. However, value-initialized iterators may be
|
| 212 |
compared and shall compare equal to other value-initialized iterators of
|
|
@@ -232,22 +1222,296 @@ If `a` and `b` are equal, then either `a` and `b` are both
|
|
| 232 |
dereferenceable or else neither is dereferenceable.
|
| 233 |
|
| 234 |
If `a` and `b` are both dereferenceable, then `a == b` if and only if
|
| 235 |
`*a` and `*b` are bound to the same object.
|
| 236 |
|
| 237 |
-
### Bidirectional iterators <a id="bidirectional.iterators">[[bidirectional.iterators]]</a>
|
| 238 |
|
| 239 |
-
A class or pointer type `X`
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
|
| 244 |
[*Note 1*: Bidirectional iterators allow algorithms to move iterators
|
| 245 |
backward as well as forward. — *end note*]
|
| 246 |
|
| 247 |
-
### Random access iterators <a id="random.access.iterators">[[random.access.iterators]]</a>
|
| 248 |
|
| 249 |
-
A class or pointer type `X`
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
|
|
|
| 1 |
## Iterator requirements <a id="iterator.requirements">[[iterator.requirements]]</a>
|
| 2 |
|
| 3 |
### In general <a id="iterator.requirements.general">[[iterator.requirements.general]]</a>
|
| 4 |
|
| 5 |
Iterators are a generalization of pointers that allow a C++ program to
|
| 6 |
+
work with different data structures (for example, containers and ranges)
|
| 7 |
+
in a uniform manner. To be able to construct template algorithms that
|
| 8 |
+
work correctly and efficiently on different types of data structures,
|
| 9 |
+
the library formalizes not just the interfaces but also the semantics
|
| 10 |
+
and complexity assumptions of iterators. An input iterator `i` supports
|
| 11 |
+
the expression `*i`, resulting in a value of some object type `T`,
|
| 12 |
+
called the *value type* of the iterator. An output iterator `i` has a
|
| 13 |
+
non-empty set of types that are `indirectly_writable` to the iterator;
|
| 14 |
+
for each such type `T`, the expression `*i = o` is valid where `o` is a
|
| 15 |
+
value of type `T`. For every iterator type `X`, there is a corresponding
|
| 16 |
+
signed integer-like type [[iterator.concept.winc]] called the
|
| 17 |
+
*difference type* of the iterator.
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
Since iterators are an abstraction of pointers, their semantics are a
|
| 20 |
generalization of most of the semantics of pointers in C++. This ensures
|
| 21 |
that every function template that takes iterators works as well with
|
| 22 |
+
regular pointers. This document defines six categories of iterators,
|
| 23 |
+
according to the operations defined on them: *input iterators*, *output
|
| 24 |
+
iterators*, *forward iterators*, *bidirectional iterators*, *random
|
| 25 |
+
access iterators*, and *contiguous iterators*, as shown in
|
| 26 |
+
[[iterators.relations]].
|
| 27 |
|
| 28 |
+
**Table: Relations among iterator categories** <a id="iterators.relations">[iterators.relations]</a>
|
| 29 |
|
| 30 |
+
| | | | | |
|
| 31 |
+
| -------------- | ------------------------------- | ------------------------------- | ------------------------- | ------------------------ |
|
| 32 |
+
| **Contiguous** | $\rightarrow$ **Random Access** | $\rightarrow$ **Bidirectional** | $\rightarrow$ **Forward** | $\rightarrow$ **Input** |
|
| 33 |
+
| | | | | $\rightarrow$ **Output** |
|
| 34 |
|
| 35 |
|
| 36 |
+
The six categories of iterators correspond to the iterator concepts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
- `input_iterator` [[iterator.concept.input]],
|
| 39 |
+
- `output_iterator` [[iterator.concept.output]],
|
| 40 |
+
- `forward_iterator` [[iterator.concept.forward]],
|
| 41 |
+
- `bidirectional_iterator` [[iterator.concept.bidir]]
|
| 42 |
+
- `random_access_iterator` [[iterator.concept.random.access]], and
|
| 43 |
+
- `contiguous_iterator` [[iterator.concept.contiguous]],
|
| 44 |
+
|
| 45 |
+
respectively. The generic term *iterator* refers to any type that models
|
| 46 |
+
the `input_or_output_iterator` concept [[iterator.concept.iterator]].
|
| 47 |
+
|
| 48 |
+
Forward iterators meet all the requirements of input iterators and can
|
| 49 |
+
be used whenever an input iterator is specified; Bidirectional iterators
|
| 50 |
+
also meet all the requirements of forward iterators and can be used
|
| 51 |
+
whenever a forward iterator is specified; Random access iterators also
|
| 52 |
+
meet all the requirements of bidirectional iterators and can be used
|
| 53 |
+
whenever a bidirectional iterator is specified; Contiguous iterators
|
| 54 |
+
also meet all the requirements of random access iterators and can be
|
| 55 |
+
used whenever a random access iterator is specified.
|
| 56 |
+
|
| 57 |
+
Iterators that further meet the requirements of output iterators are
|
| 58 |
called *mutable iterators*. Nonmutable iterators are referred to as
|
| 59 |
*constant iterators*.
|
| 60 |
|
| 61 |
In addition to the requirements in this subclause, the nested
|
| 62 |
*typedef-name*s specified in [[iterator.traits]] shall be provided for
|
|
|
|
| 64 |
|
| 65 |
[*Note 1*: Either the iterator type must provide the *typedef-name*s
|
| 66 |
directly (in which case `iterator_traits` pick them up automatically),
|
| 67 |
or an `iterator_traits` specialization must provide them. — *end note*]
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
Just as a regular pointer to an array guarantees that there is a pointer
|
| 70 |
value pointing past the last element of the array, so for any iterator
|
| 71 |
type there is an iterator value that points past the last element of a
|
| 72 |
+
corresponding sequence. Such a value is called a *past-the-end value*.
|
| 73 |
Values of an iterator `i` for which the expression `*i` is defined are
|
| 74 |
called *dereferenceable*. The library never assumes that past-the-end
|
| 75 |
values are dereferenceable. Iterators can also have singular values that
|
| 76 |
are not associated with any sequence.
|
| 77 |
|
|
|
|
| 80 |
a pointer. — *end example*]
|
| 81 |
|
| 82 |
Results of most expressions are undefined for singular values; the only
|
| 83 |
exceptions are destroying an iterator that holds a singular value, the
|
| 84 |
assignment of a non-singular value to an iterator that holds a singular
|
| 85 |
+
value, and, for iterators that meet the *Cpp17DefaultConstructible*
|
| 86 |
requirements, using a value-initialized iterator as the source of a copy
|
| 87 |
or move operation.
|
| 88 |
|
| 89 |
+
[*Note 2*: This guarantee is not offered for default-initialization,
|
| 90 |
although the distinction only matters for types with trivial default
|
| 91 |
constructors such as pointers or aggregates holding
|
| 92 |
pointers. — *end note*]
|
| 93 |
|
| 94 |
In these cases the singular value is overwritten the same way as any
|
| 95 |
other value. Dereferenceable values are always non-singular.
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
Most of the library’s algorithmic templates that operate on data
|
| 98 |
+
structures have interfaces that use ranges. A *range* is an iterator and
|
| 99 |
+
a *sentinel* that designate the beginning and end of the computation, or
|
| 100 |
+
an iterator and a count that designate the beginning and the number of
|
| 101 |
+
elements to which the computation is to be applied.[^1]
|
| 102 |
+
|
| 103 |
+
An iterator and a sentinel denoting a range are comparable. A range
|
| 104 |
+
\[`i`, `s`) is empty if `i == s`; otherwise, \[`i`, `s`) refers to the
|
| 105 |
+
elements in the data structure starting with the element pointed to by
|
| 106 |
+
`i` and up to but not including the element, if any, pointed to by the
|
| 107 |
+
first iterator `j` such that `j == s`.
|
| 108 |
+
|
| 109 |
+
A sentinel `s` is called *reachable from* an iterator `i` if and only if
|
| 110 |
+
there is a finite sequence of applications of the expression `++i` that
|
| 111 |
+
makes `i == s`. If `s` is reachable from `i`, \[`i`, `s`) denotes a
|
| 112 |
+
valid range.
|
| 113 |
+
|
| 114 |
+
A *counted range* `i`+\[0, `n`) is empty if `n == 0`; otherwise,
|
| 115 |
+
`i`+\[0, `n`) refers to the `n` elements in the data structure starting
|
| 116 |
+
with the element pointed to by `i` and up to but not including the
|
| 117 |
+
element, if any, pointed to by the result of `n` applications of `++i`.
|
| 118 |
+
A counted range `i`+\[0, `n`) is valid if and only if `n == 0`; or `n`
|
| 119 |
+
is positive, `i` is dereferenceable, and `++i`+\[0, `-``-``n`) is valid.
|
| 120 |
+
|
| 121 |
+
The result of the application of library functions to invalid ranges is
|
| 122 |
+
undefined.
|
| 123 |
|
| 124 |
All the categories of iterators require only those functions that are
|
| 125 |
realizable for a given category in constant time (amortized). Therefore,
|
| 126 |
+
requirement tables and concept definitions for the iterators do not
|
| 127 |
+
specify complexity.
|
| 128 |
|
| 129 |
+
Destruction of a non-forward iterator may invalidate pointers and
|
| 130 |
+
references previously obtained from that iterator.
|
| 131 |
|
| 132 |
+
An *invalid iterator* is an iterator that may be singular.[^2]
|
| 133 |
+
|
| 134 |
+
Iterators are called *constexpr iterators* if all operations provided to
|
| 135 |
+
meet iterator category requirements are constexpr functions.
|
| 136 |
+
|
| 137 |
+
[*Note 3*: For example, the types “pointer to `int`” and
|
| 138 |
+
`reverse_iterator<int*>` are constexpr iterators. — *end note*]
|
| 139 |
+
|
| 140 |
+
### Associated types <a id="iterator.assoc.types">[[iterator.assoc.types]]</a>
|
| 141 |
+
|
| 142 |
+
#### Incrementable traits <a id="incrementable.traits">[[incrementable.traits]]</a>
|
| 143 |
+
|
| 144 |
+
To implement algorithms only in terms of incrementable types, it is
|
| 145 |
+
often necessary to determine the difference type that corresponds to a
|
| 146 |
+
particular incrementable type. Accordingly, it is required that if `WI`
|
| 147 |
+
is the name of a type that models the `weakly_incrementable` concept
|
| 148 |
+
[[iterator.concept.winc]], the type
|
| 149 |
+
|
| 150 |
+
``` cpp
|
| 151 |
+
iter_difference_t<WI>
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
be defined as the incrementable type’s difference type.
|
| 155 |
+
|
| 156 |
+
``` cpp
|
| 157 |
+
namespace std {
|
| 158 |
+
template<class> struct incrementable_traits { };
|
| 159 |
+
|
| 160 |
+
template<class T>
|
| 161 |
+
requires is_object_v<T>
|
| 162 |
+
struct incrementable_traits<T*> {
|
| 163 |
+
using difference_type = ptrdiff_t;
|
| 164 |
+
};
|
| 165 |
+
|
| 166 |
+
template<class I>
|
| 167 |
+
struct incrementable_traits<const I>
|
| 168 |
+
: incrementable_traits<I> { };
|
| 169 |
+
|
| 170 |
+
template<class T>
|
| 171 |
+
requires requires { typename T::difference_type; }
|
| 172 |
+
struct incrementable_traits<T> {
|
| 173 |
+
using difference_type = typename T::difference_type;
|
| 174 |
+
};
|
| 175 |
+
|
| 176 |
+
template<class T>
|
| 177 |
+
requires (!requires { typename T::difference_type; } &&
|
| 178 |
+
requires(const T& a, const T& b) { { a - b } -> integral; })
|
| 179 |
+
struct incrementable_traits<T> {
|
| 180 |
+
using difference_type = make_signed_t<decltype(declval<T>() - declval<T>())>;
|
| 181 |
+
};
|
| 182 |
+
|
| 183 |
+
template<class T>
|
| 184 |
+
using iter_difference_t = see below;
|
| 185 |
+
}
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
Let R_`I` be `remove_cvref_t<I>`. The type `iter_difference_t<I>`
|
| 189 |
+
denotes
|
| 190 |
+
|
| 191 |
+
- `incrementable_traits<R_I>::difference_type` if `iterator_traits<R_I>`
|
| 192 |
+
names a specialization generated from the primary template, and
|
| 193 |
+
- `iterator_traits<R_I>::difference_type` otherwise.
|
| 194 |
+
|
| 195 |
+
Users may specialize `incrementable_traits` on program-defined types.
|
| 196 |
+
|
| 197 |
+
#### Indirectly readable traits <a id="readable.traits">[[readable.traits]]</a>
|
| 198 |
+
|
| 199 |
+
To implement algorithms only in terms of indirectly readable types, it
|
| 200 |
+
is often necessary to determine the value type that corresponds to a
|
| 201 |
+
particular indirectly readable type. Accordingly, it is required that if
|
| 202 |
+
`R` is the name of a type that models the `indirectly_readable` concept
|
| 203 |
+
[[iterator.concept.readable]], the type
|
| 204 |
+
|
| 205 |
+
``` cpp
|
| 206 |
+
iter_value_t<R>
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
be defined as the indirectly readable type’s value type.
|
| 210 |
+
|
| 211 |
+
``` cpp
|
| 212 |
+
template<class> struct cond-value-type { }; // exposition only
|
| 213 |
+
template<class T>
|
| 214 |
+
requires is_object_v<T>
|
| 215 |
+
struct cond-value-type<T> {
|
| 216 |
+
using value_type = remove_cv_t<T>;
|
| 217 |
+
};
|
| 218 |
+
|
| 219 |
+
template<class> struct indirectly_readable_traits { };
|
| 220 |
+
|
| 221 |
+
template<class T>
|
| 222 |
+
struct indirectly_readable_traits<T*>
|
| 223 |
+
: cond-value-type<T> { };
|
| 224 |
+
|
| 225 |
+
template<class I>
|
| 226 |
+
requires is_array_v<I>
|
| 227 |
+
struct indirectly_readable_traits<I> {
|
| 228 |
+
using value_type = remove_cv_t<remove_extent_t<I>>;
|
| 229 |
+
};
|
| 230 |
+
|
| 231 |
+
template<class I>
|
| 232 |
+
struct indirectly_readable_traits<const I>
|
| 233 |
+
: indirectly_readable_traits<I> { };
|
| 234 |
+
|
| 235 |
+
template<class T>
|
| 236 |
+
requires requires { typename T::value_type; }
|
| 237 |
+
struct indirectly_readable_traits<T>
|
| 238 |
+
: cond-value-type<typename T::value_type> { };
|
| 239 |
+
|
| 240 |
+
template<class T>
|
| 241 |
+
requires requires { typename T::element_type; }
|
| 242 |
+
struct indirectly_readable_traits<T>
|
| 243 |
+
: cond-value-type<typename T::element_type> { };
|
| 244 |
+
|
| 245 |
+
template<class T> using iter_value_t = see below;
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
Let R_`I` be `remove_cvref_t<I>`. The type `iter_value_t<I>` denotes
|
| 249 |
+
|
| 250 |
+
- `indirectly_readable_traits<R_I>::value_type` if
|
| 251 |
+
`iterator_traits<R_I>` names a specialization generated from the
|
| 252 |
+
primary template, and
|
| 253 |
+
- `iterator_traits<R_I>::value_type` otherwise.
|
| 254 |
+
|
| 255 |
+
Class template `indirectly_readable_traits` may be specialized on
|
| 256 |
+
program-defined types.
|
| 257 |
+
|
| 258 |
+
[*Note 1*: Some legacy output iterators define a nested type named
|
| 259 |
+
`value_type` that is an alias for `void`. These types are not
|
| 260 |
+
`indirectly_readable` and have no associated value types. — *end note*]
|
| 261 |
+
|
| 262 |
+
[*Note 2*: Smart pointers like `shared_ptr<int>` are
|
| 263 |
+
`indirectly_readable` and have an associated value type, but a smart
|
| 264 |
+
pointer like `shared_ptr<void>` is not `indirectly_readable` and has no
|
| 265 |
+
associated value type. — *end note*]
|
| 266 |
+
|
| 267 |
+
#### Iterator traits <a id="iterator.traits">[[iterator.traits]]</a>
|
| 268 |
+
|
| 269 |
+
To implement algorithms only in terms of iterators, it is sometimes
|
| 270 |
+
necessary to determine the iterator category that corresponds to a
|
| 271 |
+
particular iterator type. Accordingly, it is required that if `I` is the
|
| 272 |
+
type of an iterator, the type
|
| 273 |
+
|
| 274 |
+
``` cpp
|
| 275 |
+
iterator_traits<I>::iterator_category
|
| 276 |
+
```
|
| 277 |
+
|
| 278 |
+
be defined as the iterator’s iterator category. In addition, the types
|
| 279 |
+
|
| 280 |
+
``` cpp
|
| 281 |
+
iterator_traits<I>::pointer
|
| 282 |
+
iterator_traits<I>::reference
|
| 283 |
+
```
|
| 284 |
+
|
| 285 |
+
shall be defined as the iterator’s pointer and reference types; that is,
|
| 286 |
+
for an iterator object `a` of class type, the same type as
|
| 287 |
+
`decltype(a.operator->())` and `decltype(*a)`, respectively. The type
|
| 288 |
+
`iterator_traits<I>::pointer` shall be `void` for an iterator of class
|
| 289 |
+
type `I` that does not support `operator->`. Additionally, in the case
|
| 290 |
+
of an output iterator, the types
|
| 291 |
+
|
| 292 |
+
``` cpp
|
| 293 |
+
iterator_traits<I>::value_type
|
| 294 |
+
iterator_traits<I>::difference_type
|
| 295 |
+
iterator_traits<I>::reference
|
| 296 |
+
```
|
| 297 |
+
|
| 298 |
+
may be defined as `void`.
|
| 299 |
+
|
| 300 |
+
The definitions in this subclause make use of the following
|
| 301 |
+
exposition-only concepts:
|
| 302 |
+
|
| 303 |
+
``` cpp
|
| 304 |
+
template<class I>
|
| 305 |
+
concept cpp17-iterator =
|
| 306 |
+
copyable<I> && requires(I i) {
|
| 307 |
+
{ *i } -> can-reference;
|
| 308 |
+
{ ++i } -> same_as<I&>;
|
| 309 |
+
{ *i++ } -> can-reference;
|
| 310 |
+
};
|
| 311 |
+
|
| 312 |
+
template<class I>
|
| 313 |
+
concept cpp17-input-iterator =
|
| 314 |
+
cpp17-iterator<I> && equality_comparable<I> && requires(I i) {
|
| 315 |
+
typename incrementable_traits<I>::difference_type;
|
| 316 |
+
typename indirectly_readable_traits<I>::value_type;
|
| 317 |
+
typename common_reference_t<iter_reference_t<I>&&,
|
| 318 |
+
typename indirectly_readable_traits<I>::value_type&>;
|
| 319 |
+
typename common_reference_t<decltype(*i++)&&,
|
| 320 |
+
typename indirectly_readable_traits<I>::value_type&>;
|
| 321 |
+
requires signed_integral<typename incrementable_traits<I>::difference_type>;
|
| 322 |
+
};
|
| 323 |
+
|
| 324 |
+
template<class I>
|
| 325 |
+
concept cpp17-forward-iterator =
|
| 326 |
+
cpp17-input-iterator<I> && constructible_from<I> &&
|
| 327 |
+
is_lvalue_reference_v<iter_reference_t<I>> &&
|
| 328 |
+
same_as<remove_cvref_t<iter_reference_t<I>>,
|
| 329 |
+
typename indirectly_readable_traits<I>::value_type> &&
|
| 330 |
+
requires(I i) {
|
| 331 |
+
{ i++ } -> convertible_to<const I&>;
|
| 332 |
+
{ *i++ } -> same_as<iter_reference_t<I>>;
|
| 333 |
+
};
|
| 334 |
+
|
| 335 |
+
template<class I>
|
| 336 |
+
concept cpp17-bidirectional-iterator =
|
| 337 |
+
cpp17-forward-iterator<I> && requires(I i) {
|
| 338 |
+
{ --i } -> same_as<I&>;
|
| 339 |
+
{ i-- } -> convertible_to<const I&>;
|
| 340 |
+
{ *i-- } -> same_as<iter_reference_t<I>>;
|
| 341 |
+
};
|
| 342 |
+
|
| 343 |
+
template<class I>
|
| 344 |
+
concept cpp17-random-access-iterator =
|
| 345 |
+
cpp17-bidirectional-iterator<I> && totally_ordered<I> &&
|
| 346 |
+
requires(I i, typename incrementable_traits<I>::difference_type n) {
|
| 347 |
+
{ i += n } -> same_as<I&>;
|
| 348 |
+
{ i -= n } -> same_as<I&>;
|
| 349 |
+
{ i + n } -> same_as<I>;
|
| 350 |
+
{ n + i } -> same_as<I>;
|
| 351 |
+
{ i - n } -> same_as<I>;
|
| 352 |
+
{ i - i } -> same_as<decltype(n)>;
|
| 353 |
+
{ i[n] } -> convertible_to<iter_reference_t<I>>;
|
| 354 |
+
};
|
| 355 |
+
```
|
| 356 |
+
|
| 357 |
+
The members of a specialization `iterator_traits<I>` generated from the
|
| 358 |
+
`iterator_traits` primary template are computed as follows:
|
| 359 |
+
|
| 360 |
+
- If `I` has valid [[temp.deduct]] member types `difference_type`,
|
| 361 |
+
`value_type`, `reference`, and `iterator_category`, then
|
| 362 |
+
`iterator_traits<I>` has the following publicly accessible members:
|
| 363 |
+
``` cpp
|
| 364 |
+
using iterator_category = typename I::iterator_category;
|
| 365 |
+
using value_type = typename I::value_type;
|
| 366 |
+
using difference_type = typename I::difference_type;
|
| 367 |
+
using pointer = see below;
|
| 368 |
+
using reference = typename I::reference;
|
| 369 |
+
```
|
| 370 |
+
|
| 371 |
+
If the *qualified-id* `I::pointer` is valid and denotes a type, then
|
| 372 |
+
`iterator_traits<I>::pointer` names that type; otherwise, it names
|
| 373 |
+
`void`.
|
| 374 |
+
- Otherwise, if `I` satisfies the exposition-only concept
|
| 375 |
+
`cpp17-input-iterator`, `iterator_traits<I>` has the following
|
| 376 |
+
publicly accessible members:
|
| 377 |
+
``` cpp
|
| 378 |
+
using iterator_category = see below;
|
| 379 |
+
using value_type = typename indirectly_readable_traits<I>::value_type;
|
| 380 |
+
using difference_type = typename incrementable_traits<I>::difference_type;
|
| 381 |
+
using pointer = see below;
|
| 382 |
+
using reference = see below;
|
| 383 |
+
```
|
| 384 |
+
|
| 385 |
+
- If the *qualified-id* `I::pointer` is valid and denotes a type,
|
| 386 |
+
`pointer` names that type. Otherwise, if
|
| 387 |
+
`decltype({}declval<I&>().operator->())` is well-formed, then
|
| 388 |
+
`pointer` names that type. Otherwise, `pointer` names `void`.
|
| 389 |
+
- If the *qualified-id* `I::reference` is valid and denotes a type,
|
| 390 |
+
`reference` names that type. Otherwise, `reference` names
|
| 391 |
+
`iter_reference_t<I>`.
|
| 392 |
+
- If the *qualified-id* `I::iterator_category` is valid and denotes a
|
| 393 |
+
type, `iterator_category` names that type. Otherwise,
|
| 394 |
+
`iterator_category` names:
|
| 395 |
+
- `random_access_iterator_tag` if `I` satisfies
|
| 396 |
+
`cpp17-random-access-iterator`, or otherwise
|
| 397 |
+
- `bidirectional_iterator_tag` if `I` satisfies
|
| 398 |
+
`cpp17-bidirectional-iterator`, or otherwise
|
| 399 |
+
- `forward_iterator_tag` if `I` satisfies `cpp17-forward-iterator`,
|
| 400 |
+
or otherwise
|
| 401 |
+
- `input_iterator_tag`.
|
| 402 |
+
- Otherwise, if `I` satisfies the exposition-only concept
|
| 403 |
+
`cpp17-iterator`, then `iterator_traits<I>` has the following publicly
|
| 404 |
+
accessible members:
|
| 405 |
+
``` cpp
|
| 406 |
+
using iterator_category = output_iterator_tag;
|
| 407 |
+
using value_type = void;
|
| 408 |
+
using difference_type = see below;
|
| 409 |
+
using pointer = void;
|
| 410 |
+
using reference = void;
|
| 411 |
+
```
|
| 412 |
+
|
| 413 |
+
If the *qualified-id* `incrementable_traits<I>::difference_type` is
|
| 414 |
+
valid and denotes a type, then `difference_type` names that type;
|
| 415 |
+
otherwise, it names `void`.
|
| 416 |
+
- Otherwise, `iterator_traits<I>` has no members by any of the above
|
| 417 |
+
names.
|
| 418 |
+
|
| 419 |
+
Explicit or partial specializations of `iterator_traits` may have a
|
| 420 |
+
member type `iterator_concept` that is used to indicate conformance to
|
| 421 |
+
the iterator concepts [[iterator.concepts]].
|
| 422 |
+
|
| 423 |
+
`iterator_traits` is specialized for pointers as
|
| 424 |
+
|
| 425 |
+
``` cpp
|
| 426 |
+
namespace std {
|
| 427 |
+
template<class T>
|
| 428 |
+
requires is_object_v<T>
|
| 429 |
+
struct iterator_traits<T*> {
|
| 430 |
+
using iterator_concept = contiguous_iterator_tag;
|
| 431 |
+
using iterator_category = random_access_iterator_tag;
|
| 432 |
+
using value_type = remove_cv_t<T>;
|
| 433 |
+
using difference_type = ptrdiff_t;
|
| 434 |
+
using pointer = T*;
|
| 435 |
+
using reference = T&;
|
| 436 |
+
};
|
| 437 |
+
}
|
| 438 |
+
```
|
| 439 |
+
|
| 440 |
+
[*Example 1*:
|
| 441 |
+
|
| 442 |
+
To implement a generic `reverse` function, a C++ program can do the
|
| 443 |
+
following:
|
| 444 |
+
|
| 445 |
+
``` cpp
|
| 446 |
+
template<class BI>
|
| 447 |
+
void reverse(BI first, BI last) {
|
| 448 |
+
typename iterator_traits<BI>::difference_type n =
|
| 449 |
+
distance(first, last);
|
| 450 |
+
--n;
|
| 451 |
+
while(n > 0) {
|
| 452 |
+
typename iterator_traits<BI>::value_type
|
| 453 |
+
tmp = *first;
|
| 454 |
+
*first++ = *--last;
|
| 455 |
+
*last = tmp;
|
| 456 |
+
n -= 2;
|
| 457 |
+
}
|
| 458 |
+
}
|
| 459 |
+
```
|
| 460 |
+
|
| 461 |
+
— *end example*]
|
| 462 |
+
|
| 463 |
+
### Customization points <a id="iterator.cust">[[iterator.cust]]</a>
|
| 464 |
+
|
| 465 |
+
#### `ranges::iter_move` <a id="iterator.cust.move">[[iterator.cust.move]]</a>
|
| 466 |
+
|
| 467 |
+
The name `ranges::iter_move` denotes a customization point object
|
| 468 |
+
[[customization.point.object]]. The expression `ranges::iter_move(E)`
|
| 469 |
+
for a subexpression `E` is expression-equivalent to:
|
| 470 |
+
|
| 471 |
+
- `iter_move(E)`, if `E` has class or enumeration type and
|
| 472 |
+
`iter_move(E)` is a well-formed expression when treated as an
|
| 473 |
+
unevaluated operand, with overload resolution performed in a context
|
| 474 |
+
that does not include a declaration of `ranges::iter_move` but does
|
| 475 |
+
include the declaration
|
| 476 |
+
``` cpp
|
| 477 |
+
void iter_move();
|
| 478 |
+
```
|
| 479 |
+
- Otherwise, if the expression `*E` is well-formed:
|
| 480 |
+
- if `*E` is an lvalue, `std::move(*E)`;
|
| 481 |
+
- otherwise, `*E`.
|
| 482 |
+
- Otherwise, `ranges::iter_move(E)` is ill-formed. \[*Note 1*: This case
|
| 483 |
+
can result in substitution failure when `ranges::iter_move(E)` appears
|
| 484 |
+
in the immediate context of a template instantiation. — *end note*]
|
| 485 |
+
|
| 486 |
+
If `ranges::iter_move(E)` is not equal to `*E`, the program is
|
| 487 |
+
ill-formed, no diagnostic required.
|
| 488 |
+
|
| 489 |
+
#### `ranges::iter_swap` <a id="iterator.cust.swap">[[iterator.cust.swap]]</a>
|
| 490 |
+
|
| 491 |
+
The name `ranges::iter_swap` denotes a customization point object
|
| 492 |
+
[[customization.point.object]] that exchanges the values
|
| 493 |
+
[[concept.swappable]] denoted by its arguments.
|
| 494 |
+
|
| 495 |
+
Let *`iter-exchange-move`* be the exposition-only function:
|
| 496 |
+
|
| 497 |
+
``` cpp
|
| 498 |
+
template<class X, class Y>
|
| 499 |
+
constexpr iter_value_t<X> iter-exchange-move(X&& x, Y&& y)
|
| 500 |
+
noexcept(noexcept(iter_value_t<X>(iter_move(x))) &&
|
| 501 |
+
noexcept(*x = iter_move(y)));
|
| 502 |
+
```
|
| 503 |
+
|
| 504 |
+
*Effects:* Equivalent to:
|
| 505 |
+
|
| 506 |
+
``` cpp
|
| 507 |
+
iter_value_t<X> old_value(iter_move(x));
|
| 508 |
+
*x = iter_move(y);
|
| 509 |
+
return old_value;
|
| 510 |
+
```
|
| 511 |
+
|
| 512 |
+
The expression `ranges::iter_swap(E1, E2)` for subexpressions `E1` and
|
| 513 |
+
`E2` is expression-equivalent to:
|
| 514 |
+
|
| 515 |
+
- `(void)iter_swap(E1, E2)`, if either `E1` or `E2` has class or
|
| 516 |
+
enumeration type and `iter_swap(E1, E2)` is a well-formed expression
|
| 517 |
+
with overload resolution performed in a context that includes the
|
| 518 |
+
declaration
|
| 519 |
+
``` cpp
|
| 520 |
+
template<class I1, class I2>
|
| 521 |
+
void iter_swap(I1, I2) = delete;
|
| 522 |
+
```
|
| 523 |
+
|
| 524 |
+
and does not include a declaration of `ranges::iter_swap`. If the
|
| 525 |
+
function selected by overload resolution does not exchange the values
|
| 526 |
+
denoted by `E1` and `E2`, the program is ill-formed, no diagnostic
|
| 527 |
+
required.
|
| 528 |
+
- Otherwise, if the types of `E1` and `E2` each model
|
| 529 |
+
`indirectly_readable`, and if the reference types of `E1` and `E2`
|
| 530 |
+
model `swappable_with` [[concept.swappable]], then
|
| 531 |
+
`ranges::swap(*E1, *E2)`.
|
| 532 |
+
- Otherwise, if the types `T1` and `T2` of `E1` and `E2` model
|
| 533 |
+
`indirectly_movable_storable<T1, T2>` and
|
| 534 |
+
`indirectly_movable_storable<T2, T1>`, then
|
| 535 |
+
`(void)(*E1 = iter-exchange-move(E2, E1))`, except that `E1` is
|
| 536 |
+
evaluated only once.
|
| 537 |
+
- Otherwise, `ranges::iter_swap(E1, E2)` is ill-formed. \[*Note 1*: This
|
| 538 |
+
case can result in substitution failure when
|
| 539 |
+
`ranges::iter_swap(E1, E2)` appears in the immediate context of a
|
| 540 |
+
template instantiation. — *end note*]
|
| 541 |
+
|
| 542 |
+
### Iterator concepts <a id="iterator.concepts">[[iterator.concepts]]</a>
|
| 543 |
+
|
| 544 |
+
#### General <a id="iterator.concepts.general">[[iterator.concepts.general]]</a>
|
| 545 |
+
|
| 546 |
+
For a type `I`, let `ITER_TRAITS(I)` denote the type `I` if
|
| 547 |
+
`iterator_traits<I>` names a specialization generated from the primary
|
| 548 |
+
template. Otherwise, `ITER_TRAITS(I)` denotes `iterator_traits<I>`.
|
| 549 |
+
|
| 550 |
+
- If the *qualified-id* `ITER_TRAITS(I)::iterator_concept` is valid and
|
| 551 |
+
names a type, then `ITER_CONCEPT(I)` denotes that type.
|
| 552 |
+
- Otherwise, if the *qualified-id* `ITER_TRAITS(I){}::iterator_category`
|
| 553 |
+
is valid and names a type, then `ITER_CONCEPT(I)` denotes that type.
|
| 554 |
+
- Otherwise, if `iterator_traits<I>` names a specialization generated
|
| 555 |
+
from the primary template, then `ITER_CONCEPT(I)` denotes
|
| 556 |
+
`random_access_iterator_tag`.
|
| 557 |
+
- Otherwise, `ITER_CONCEPT(I)` does not denote a type.
|
| 558 |
+
|
| 559 |
+
[*Note 1*: `ITER_TRAITS` enables independent syntactic determination of
|
| 560 |
+
an iterator’s category and concept. — *end note*]
|
| 561 |
+
|
| 562 |
+
[*Example 1*:
|
| 563 |
+
|
| 564 |
+
``` cpp
|
| 565 |
+
struct I {
|
| 566 |
+
using value_type = int;
|
| 567 |
+
using difference_type = int;
|
| 568 |
+
|
| 569 |
+
int operator*() const;
|
| 570 |
+
I& operator++();
|
| 571 |
+
I operator++(int);
|
| 572 |
+
I& operator--();
|
| 573 |
+
I operator--(int);
|
| 574 |
+
|
| 575 |
+
bool operator==(I) const;
|
| 576 |
+
bool operator!=(I) const;
|
| 577 |
+
};
|
| 578 |
+
```
|
| 579 |
+
|
| 580 |
+
`iterator_traits<I>::iterator_category` denotes `input_iterator_tag`,
|
| 581 |
+
and `ITER_CONCEPT(I)` denotes `random_access_iterator_tag`.
|
| 582 |
+
|
| 583 |
+
— *end example*]
|
| 584 |
+
|
| 585 |
+
#### Concept <a id="iterator.concept.readable">[[iterator.concept.readable]]</a>
|
| 586 |
+
|
| 587 |
+
Types that are indirectly readable by applying `operator*` model the
|
| 588 |
+
`indirectly_readable` concept, including pointers, smart pointers, and
|
| 589 |
+
iterators.
|
| 590 |
+
|
| 591 |
+
``` cpp
|
| 592 |
+
template<class In>
|
| 593 |
+
concept indirectly-readable-impl =
|
| 594 |
+
requires(const In in) {
|
| 595 |
+
typename iter_value_t<In>;
|
| 596 |
+
typename iter_reference_t<In>;
|
| 597 |
+
typename iter_rvalue_reference_t<In>;
|
| 598 |
+
{ *in } -> same_as<iter_reference_t<In>>;
|
| 599 |
+
{ ranges::iter_move(in) } -> same_as<iter_rvalue_reference_t<In>>;
|
| 600 |
+
} &&
|
| 601 |
+
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
|
| 602 |
+
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
|
| 603 |
+
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;
|
| 604 |
+
```
|
| 605 |
+
|
| 606 |
+
``` cpp
|
| 607 |
+
template<class In>
|
| 608 |
+
concept indirectly_readable =
|
| 609 |
+
indirectly-readable-impl<remove_cvref_t<In>>;
|
| 610 |
+
```
|
| 611 |
+
|
| 612 |
+
Given a value `i` of type `I`, `I` models `indirectly_readable` only if
|
| 613 |
+
the expression `*i` is equality-preserving.
|
| 614 |
+
|
| 615 |
+
[*Note 1*: The expression `*i` is indirectly required to be valid via
|
| 616 |
+
the exposition-only `dereferenceable` concept
|
| 617 |
+
[[iterator.synopsis]]. — *end note*]
|
| 618 |
+
|
| 619 |
+
#### Concept <a id="iterator.concept.writable">[[iterator.concept.writable]]</a>
|
| 620 |
+
|
| 621 |
+
The `indirectly_writable` concept specifies the requirements for writing
|
| 622 |
+
a value into an iterator’s referenced object.
|
| 623 |
+
|
| 624 |
+
``` cpp
|
| 625 |
+
template<class Out, class T>
|
| 626 |
+
concept indirectly_writable =
|
| 627 |
+
requires(Out&& o, T&& t) {
|
| 628 |
+
*o = std::forward<T>(t); // not required to be equality-preserving
|
| 629 |
+
*std::forward<Out>(o) = std::forward<T>(t); // not required to be equality-preserving
|
| 630 |
+
const_cast<const iter_reference_t<Out>&&>(*o) =
|
| 631 |
+
std::forward<T>(t); // not required to be equality-preserving
|
| 632 |
+
const_cast<const iter_reference_t<Out>&&>(*std::forward<Out>(o)) =
|
| 633 |
+
std::forward<T>(t); // not required to be equality-preserving
|
| 634 |
+
};
|
| 635 |
+
```
|
| 636 |
+
|
| 637 |
+
Let `E` be an expression such that `decltype((E))` is `T`, and let `o`
|
| 638 |
+
be a dereferenceable object of type `Out`. `Out` and `T` model
|
| 639 |
+
`indirectly_writable<Out, T>` only if
|
| 640 |
+
|
| 641 |
+
- If `Out` and `T` model
|
| 642 |
+
`indirectly_readable<Out> && same_as<iter_value_t<Out>, decay_t<T>{>}`,
|
| 643 |
+
then `*o` after any above assignment is equal to the value of `E`
|
| 644 |
+
before the assignment.
|
| 645 |
+
|
| 646 |
+
After evaluating any above assignment expression, `o` is not required to
|
| 647 |
+
be dereferenceable.
|
| 648 |
+
|
| 649 |
+
If `E` is an xvalue [[basic.lval]], the resulting state of the object it
|
| 650 |
+
denotes is valid but unspecified [[lib.types.movedfrom]].
|
| 651 |
+
|
| 652 |
+
[*Note 1*: The only valid use of an `operator*` is on the left side of
|
| 653 |
+
the assignment statement. Assignment through the same value of the
|
| 654 |
+
indirectly writable type happens only once. — *end note*]
|
| 655 |
+
|
| 656 |
+
[*Note 2*: `indirectly_writable` has the awkward `const_cast`
|
| 657 |
+
expressions to reject iterators with prvalue non-proxy reference types
|
| 658 |
+
that permit rvalue assignment but do not also permit `const` rvalue
|
| 659 |
+
assignment. Consequently, an iterator type `I` that returns
|
| 660 |
+
`std::string` by value does not model
|
| 661 |
+
`indirectly_writable<I, std::string>`. — *end note*]
|
| 662 |
+
|
| 663 |
+
#### Concept <a id="iterator.concept.winc">[[iterator.concept.winc]]</a>
|
| 664 |
+
|
| 665 |
+
The `weakly_incrementable` concept specifies the requirements on types
|
| 666 |
+
that can be incremented with the pre- and post-increment operators. The
|
| 667 |
+
increment operations are not required to be equality-preserving, nor is
|
| 668 |
+
the type required to be `equality_comparable`.
|
| 669 |
+
|
| 670 |
+
``` cpp
|
| 671 |
+
template<class T>
|
| 672 |
+
inline constexpr bool is-integer-like = see below; // exposition only
|
| 673 |
+
|
| 674 |
+
template<class T>
|
| 675 |
+
inline constexpr bool is-signed-integer-like = see below; // exposition only
|
| 676 |
+
|
| 677 |
+
template<class I>
|
| 678 |
+
concept weakly_incrementable =
|
| 679 |
+
default_initializable<I> && movable<I> &&
|
| 680 |
+
requires(I i) {
|
| 681 |
+
typename iter_difference_t<I>;
|
| 682 |
+
requires is-signed-integer-like<iter_difference_t<I>>;
|
| 683 |
+
{ ++i } -> same_as<I&>; // not required to be equality-preserving
|
| 684 |
+
i++; // not required to be equality-preserving
|
| 685 |
+
};
|
| 686 |
+
```
|
| 687 |
+
|
| 688 |
+
A type `I` is an *integer-class type* if it is in a set of
|
| 689 |
+
implementation-defined class types that behave as integer types do, as
|
| 690 |
+
defined in below.
|
| 691 |
+
|
| 692 |
+
The range of representable values of an integer-class type is the
|
| 693 |
+
continuous set of values over which it is defined. The values 0 and 1
|
| 694 |
+
are part of the range of every integer-class type. If any negative
|
| 695 |
+
numbers are part of the range, the type is a
|
| 696 |
+
*signed-integer-class type*; otherwise, it is an
|
| 697 |
+
*unsigned-integer-class type*.
|
| 698 |
+
|
| 699 |
+
For every integer-class type `I`, let `B(I)` be a hypothetical extended
|
| 700 |
+
integer type of the same signedness with the smallest width
|
| 701 |
+
[[basic.fundamental]] capable of representing the same range of values.
|
| 702 |
+
The width of `I` is equal to the width of `B(I)`.
|
| 703 |
+
|
| 704 |
+
Let `a` and `b` be objects of integer-class type `I`, let `x` and `y` be
|
| 705 |
+
objects of type `B(I)` as described above that represent the same values
|
| 706 |
+
as `a` and `b` respectively, and let `c` be an lvalue of any integral
|
| 707 |
+
type.
|
| 708 |
+
|
| 709 |
+
- For every unary operator `@` for which the expression `@x` is
|
| 710 |
+
well-formed, `@a` shall also be well-formed and have the same value,
|
| 711 |
+
effects, and value category as `@x` provided that value is
|
| 712 |
+
representable by `I`. If `@x` has type `bool`, so too does `@a`; if
|
| 713 |
+
`@x` has type `B(I)`, then `@a` has type `I`.
|
| 714 |
+
- For every assignment operator `@=` for which `c @= x` is well-formed,
|
| 715 |
+
`c @= a` shall also be well-formed and shall have the same value and
|
| 716 |
+
effects as `c @= x`. The expression `c @= a` shall be an lvalue
|
| 717 |
+
referring to `c`.
|
| 718 |
+
- For every binary operator `@` for which `x @ y` is well-formed,
|
| 719 |
+
`a @ b` shall also be well-formed and shall have the same value,
|
| 720 |
+
effects, and value category as `x @ y` provided that value is
|
| 721 |
+
representable by `I`. If `x @ y` has type `bool`, so too does `a @ b`;
|
| 722 |
+
if `x @ y` has type `B(I)`, then `a @ b` has type `I`.
|
| 723 |
+
|
| 724 |
+
Expressions of integer-class type are explicitly convertible to any
|
| 725 |
+
integral type. Expressions of integral type are both implicitly and
|
| 726 |
+
explicitly convertible to any integer-class type. Conversions between
|
| 727 |
+
integral and integer-class types do not exit via an exception.
|
| 728 |
+
|
| 729 |
+
An expression `E` of integer-class type `I` is contextually convertible
|
| 730 |
+
to `bool` as if by `bool(E != I(0))`.
|
| 731 |
+
|
| 732 |
+
All integer-class types model `regular` [[concepts.object]] and
|
| 733 |
+
`totally_ordered` [[concept.totallyordered]].
|
| 734 |
+
|
| 735 |
+
A value-initialized object of integer-class type has value 0.
|
| 736 |
+
|
| 737 |
+
For every (possibly cv-qualified) integer-class type `I`,
|
| 738 |
+
`numeric_limits<I>` is specialized such that:
|
| 739 |
+
|
| 740 |
+
- `numeric_limits<I>::is_specialized` is `true`,
|
| 741 |
+
- `numeric_limits<I>::is_signed` is `true` if and only if `I` is a
|
| 742 |
+
signed-integer-class type,
|
| 743 |
+
- `numeric_limits<I>::is_integer` is `true`,
|
| 744 |
+
- `numeric_limits<I>::is_exact` is `true`,
|
| 745 |
+
- `numeric_limits<I>::digits` is equal to the width of the integer-class
|
| 746 |
+
type,
|
| 747 |
+
- `numeric_limits<I>::digits10` is equal to
|
| 748 |
+
`static_cast<int>(digits * log10(2))`, and
|
| 749 |
+
- `numeric_limits<I>::min()` and `numeric_limits<I>::max()` return the
|
| 750 |
+
lowest and highest representable values of `I`, respectively, and
|
| 751 |
+
`numeric_limits<I>::lowest()` returns `numeric_limits<I>::{}min()`.
|
| 752 |
+
|
| 753 |
+
A type `I` is *integer-like* if it models `integral<I>` or if it is an
|
| 754 |
+
integer-class type. A type `I` is *signed-integer-like* if it models
|
| 755 |
+
`signed_integral<I>` or if it is a signed-integer-class type. A type `I`
|
| 756 |
+
is *unsigned-integer-like* if it models `unsigned_integral<I>` or if it
|
| 757 |
+
is an unsigned-integer-class type.
|
| 758 |
+
|
| 759 |
+
`is-integer-like<I>` is `true` if and only if `I` is an integer-like
|
| 760 |
+
type. `is-signed-integer-like<I>` is `true` if and only if I is a
|
| 761 |
+
signed-integer-like type.
|
| 762 |
+
|
| 763 |
+
Let `i` be an object of type `I`. When `i` is in the domain of both pre-
|
| 764 |
+
and post-increment, `i` is said to be *incrementable*. `I` models
|
| 765 |
+
`weakly_incrementable<I>` only if
|
| 766 |
+
|
| 767 |
+
- The expressions `++i` and `i++` have the same domain.
|
| 768 |
+
- If `i` is incrementable, then both `++i` and `i++` advance `i` to the
|
| 769 |
+
next element.
|
| 770 |
+
- If `i` is incrementable, then `addressof(++i)` is equal to
|
| 771 |
+
`addressof(i)`.
|
| 772 |
+
|
| 773 |
+
[*Note 1*: For `weakly_incrementable` types, `a` equals `b` does not
|
| 774 |
+
imply that `++a` equals `++b`. (Equality does not guarantee the
|
| 775 |
+
substitution property or referential transparency.) Algorithms on weakly
|
| 776 |
+
incrementable types should never attempt to pass through the same
|
| 777 |
+
incrementable value twice. They should be single-pass algorithms. These
|
| 778 |
+
algorithms can be used with istreams as the source of the input data
|
| 779 |
+
through the `istream_iterator` class template. — *end note*]
|
| 780 |
+
|
| 781 |
+
#### Concept <a id="iterator.concept.inc">[[iterator.concept.inc]]</a>
|
| 782 |
+
|
| 783 |
+
The `incrementable` concept specifies requirements on types that can be
|
| 784 |
+
incremented with the pre- and post-increment operators. The increment
|
| 785 |
+
operations are required to be equality-preserving, and the type is
|
| 786 |
+
required to be `equality_comparable`.
|
| 787 |
+
|
| 788 |
+
[*Note 1*: This supersedes the annotations on the increment expressions
|
| 789 |
+
in the definition of `weakly_incrementable`. — *end note*]
|
| 790 |
+
|
| 791 |
+
``` cpp
|
| 792 |
+
template<class I>
|
| 793 |
+
concept incrementable =
|
| 794 |
+
regular<I> &&
|
| 795 |
+
weakly_incrementable<I> &&
|
| 796 |
+
requires(I i) {
|
| 797 |
+
{ i++ } -> same_as<I>;
|
| 798 |
+
};
|
| 799 |
+
```
|
| 800 |
+
|
| 801 |
+
Let `a` and `b` be incrementable objects of type `I`. `I` models
|
| 802 |
+
`incrementable` only if
|
| 803 |
+
|
| 804 |
+
- If `bool(a == b)` then `bool(a++ == b)`.
|
| 805 |
+
- If `bool(a == b)` then `bool(((void)a++, a) == ++b)`.
|
| 806 |
+
|
| 807 |
+
[*Note 2*: The requirement that `a` equals `b` implies `++a` equals
|
| 808 |
+
`++b` (which is not true for weakly incrementable types) allows the use
|
| 809 |
+
of multi-pass one-directional algorithms with types that model
|
| 810 |
+
`incrementable`. — *end note*]
|
| 811 |
+
|
| 812 |
+
#### Concept <a id="iterator.concept.iterator">[[iterator.concept.iterator]]</a>
|
| 813 |
+
|
| 814 |
+
The `input_or_output_iterator` concept forms the basis of the iterator
|
| 815 |
+
concept taxonomy; every iterator models `input_or_output_iterator`. This
|
| 816 |
+
concept specifies operations for dereferencing and incrementing an
|
| 817 |
+
iterator. Most algorithms will require additional operations to compare
|
| 818 |
+
iterators with sentinels [[iterator.concept.sentinel]], to read
|
| 819 |
+
[[iterator.concept.input]] or write [[iterator.concept.output]] values,
|
| 820 |
+
or to provide a richer set of iterator movements (
|
| 821 |
+
[[iterator.concept.forward]], [[iterator.concept.bidir]],
|
| 822 |
+
[[iterator.concept.random.access]]).
|
| 823 |
+
|
| 824 |
+
``` cpp
|
| 825 |
+
template<class I>
|
| 826 |
+
concept input_or_output_iterator =
|
| 827 |
+
requires(I i) {
|
| 828 |
+
{ *i } -> can-reference;
|
| 829 |
+
} &&
|
| 830 |
+
weakly_incrementable<I>;
|
| 831 |
+
```
|
| 832 |
+
|
| 833 |
+
[*Note 1*: Unlike the *Cpp17Iterator* requirements, the
|
| 834 |
+
`input_or_output_iterator` concept does not require
|
| 835 |
+
copyability. — *end note*]
|
| 836 |
+
|
| 837 |
+
#### Concept <a id="iterator.concept.sentinel">[[iterator.concept.sentinel]]</a>
|
| 838 |
+
|
| 839 |
+
The `sentinel_for` concept specifies the relationship between an
|
| 840 |
+
`input_or_output_iterator` type and a `semiregular` type whose values
|
| 841 |
+
denote a range.
|
| 842 |
+
|
| 843 |
+
``` cpp
|
| 844 |
+
template<class S, class I>
|
| 845 |
+
concept sentinel_for =
|
| 846 |
+
semiregular<S> &&
|
| 847 |
+
input_or_output_iterator<I> &&
|
| 848 |
+
weakly-equality-comparable-with<S, I>; // See [concept.equalitycomparable]
|
| 849 |
+
```
|
| 850 |
+
|
| 851 |
+
Let `s` and `i` be values of type `S` and `I` such that \[`i`, `s`)
|
| 852 |
+
denotes a range. Types `S` and `I` model `sentinel_for<S, I>` only if
|
| 853 |
+
|
| 854 |
+
- `i == s` is well-defined.
|
| 855 |
+
- If `bool(i != s)` then `i` is dereferenceable and \[`++i`, `s`)
|
| 856 |
+
denotes a range.
|
| 857 |
+
|
| 858 |
+
The domain of `==` is not static. Given an iterator `i` and sentinel `s`
|
| 859 |
+
such that \[`i`, `s`) denotes a range and `i != s`, `i` and `s` are not
|
| 860 |
+
required to continue to denote a range after incrementing any other
|
| 861 |
+
iterator equal to `i`. Consequently, `i == s` is no longer required to
|
| 862 |
+
be well-defined.
|
| 863 |
+
|
| 864 |
+
#### Concept <a id="iterator.concept.sizedsentinel">[[iterator.concept.sizedsentinel]]</a>
|
| 865 |
+
|
| 866 |
+
The `sized_sentinel_for` concept specifies requirements on an
|
| 867 |
+
`input_or_output_iterator` type `I` and a corresponding
|
| 868 |
+
`sentinel_for<I>` that allow the use of the `-` operator to compute the
|
| 869 |
+
distance between them in constant time.
|
| 870 |
+
|
| 871 |
+
``` cpp
|
| 872 |
+
template<class S, class I>
|
| 873 |
+
concept sized_sentinel_for =
|
| 874 |
+
sentinel_for<S, I> &&
|
| 875 |
+
!disable_sized_sentinel_for<remove_cv_t<S>, remove_cv_t<I>> &&
|
| 876 |
+
requires(const I& i, const S& s) {
|
| 877 |
+
{ s - i } -> same_as<iter_difference_t<I>>;
|
| 878 |
+
{ i - s } -> same_as<iter_difference_t<I>>;
|
| 879 |
+
};
|
| 880 |
+
```
|
| 881 |
+
|
| 882 |
+
Let `i` be an iterator of type `I`, and `s` a sentinel of type `S` such
|
| 883 |
+
that \[`i`, `s`) denotes a range. Let N be the smallest number of
|
| 884 |
+
applications of `++i` necessary to make `bool(i == s)` be `true`. `S`
|
| 885 |
+
and `I` model `sized_sentinel_for<S, I>` only if
|
| 886 |
+
|
| 887 |
+
- If N is representable by `iter_difference_t<I>`, then `s - i` is
|
| 888 |
+
well-defined and equals N.
|
| 889 |
+
- If -N is representable by `iter_difference_t<I>`, then `i - s` is
|
| 890 |
+
well-defined and equals -N.
|
| 891 |
+
|
| 892 |
+
``` cpp
|
| 893 |
+
template<class S, class I>
|
| 894 |
+
inline constexpr bool disable_sized_sentinel_for = false;
|
| 895 |
+
```
|
| 896 |
+
|
| 897 |
+
*Remarks:* Pursuant to [[namespace.std]], users may specialize
|
| 898 |
+
`disable_sized_sentinel_for` for cv-unqualified non-array object types
|
| 899 |
+
`S` and `I` if `S` and/or `I` is a program-defined type. Such
|
| 900 |
+
specializations shall be usable in constant expressions [[expr.const]]
|
| 901 |
+
and have type `const bool`.
|
| 902 |
+
|
| 903 |
+
[*Note 1*: `disable_sized_sentinel_for` allows use of sentinels and
|
| 904 |
+
iterators with the library that satisfy but do not in fact model
|
| 905 |
+
`sized_sentinel_for`. — *end note*]
|
| 906 |
+
|
| 907 |
+
[*Example 1*: The `sized_sentinel_for` concept is modeled by pairs of
|
| 908 |
+
`random_access_iterator`s [[iterator.concept.random.access]] and by
|
| 909 |
+
counted iterators and their
|
| 910 |
+
sentinels [[counted.iterator]]. — *end example*]
|
| 911 |
+
|
| 912 |
+
#### Concept <a id="iterator.concept.input">[[iterator.concept.input]]</a>
|
| 913 |
+
|
| 914 |
+
The `input_iterator` concept defines requirements for a type whose
|
| 915 |
+
referenced values can be read (from the requirement for
|
| 916 |
+
`indirectly_readable` [[iterator.concept.readable]]) and which can be
|
| 917 |
+
both pre- and post-incremented.
|
| 918 |
+
|
| 919 |
+
[*Note 1*: Unlike the *Cpp17InputIterator* requirements
|
| 920 |
+
[[input.iterators]], the `input_iterator` concept does not need equality
|
| 921 |
+
comparison since iterators are typically compared to
|
| 922 |
+
sentinels. — *end note*]
|
| 923 |
+
|
| 924 |
+
``` cpp
|
| 925 |
+
template<class I>
|
| 926 |
+
concept input_iterator =
|
| 927 |
+
input_or_output_iterator<I> &&
|
| 928 |
+
indirectly_readable<I> &&
|
| 929 |
+
requires { typename ITER_CONCEPT(I); } &&
|
| 930 |
+
derived_from<ITER_CONCEPT(I), input_iterator_tag>;
|
| 931 |
+
```
|
| 932 |
+
|
| 933 |
+
#### Concept <a id="iterator.concept.output">[[iterator.concept.output]]</a>
|
| 934 |
+
|
| 935 |
+
The `output_iterator` concept defines requirements for a type that can
|
| 936 |
+
be used to write values (from the requirement for `indirectly_writable`
|
| 937 |
+
[[iterator.concept.writable]]) and which can be both pre- and
|
| 938 |
+
post-incremented.
|
| 939 |
+
|
| 940 |
+
[*Note 1*: Output iterators are not required to model
|
| 941 |
+
`equality_comparable`. — *end note*]
|
| 942 |
+
|
| 943 |
+
``` cpp
|
| 944 |
+
template<class I, class T>
|
| 945 |
+
concept output_iterator =
|
| 946 |
+
input_or_output_iterator<I> &&
|
| 947 |
+
indirectly_writable<I, T> &&
|
| 948 |
+
requires(I i, T&& t) {
|
| 949 |
+
*i++ = std::forward<T>(t); // not required to be equality-preserving
|
| 950 |
+
};
|
| 951 |
+
```
|
| 952 |
+
|
| 953 |
+
Let `E` be an expression such that `decltype((E))` is `T`, and let `i`
|
| 954 |
+
be a dereferenceable object of type `I`. `I` and `T` model
|
| 955 |
+
`output_iterator<I, T>` only if `*i++ = E;` has effects equivalent to:
|
| 956 |
+
|
| 957 |
+
``` cpp
|
| 958 |
+
*i = E;
|
| 959 |
+
++i;
|
| 960 |
+
```
|
| 961 |
+
|
| 962 |
+
[*Note 2*: Algorithms on output iterators should never attempt to pass
|
| 963 |
+
through the same iterator twice. They should be single-pass
|
| 964 |
+
algorithms. — *end note*]
|
| 965 |
+
|
| 966 |
+
#### Concept <a id="iterator.concept.forward">[[iterator.concept.forward]]</a>
|
| 967 |
+
|
| 968 |
+
The `forward_iterator` concept adds copyability, equality comparison,
|
| 969 |
+
and the multi-pass guarantee, specified below.
|
| 970 |
+
|
| 971 |
+
``` cpp
|
| 972 |
+
template<class I>
|
| 973 |
+
concept forward_iterator =
|
| 974 |
+
input_iterator<I> &&
|
| 975 |
+
derived_from<ITER_CONCEPT(I), forward_iterator_tag> &&
|
| 976 |
+
incrementable<I> &&
|
| 977 |
+
sentinel_for<I, I>;
|
| 978 |
+
```
|
| 979 |
+
|
| 980 |
+
The domain of `==` for forward iterators is that of iterators over the
|
| 981 |
+
same underlying sequence. However, value-initialized iterators of the
|
| 982 |
+
same type may be compared and shall compare equal to other
|
| 983 |
+
value-initialized iterators of the same type.
|
| 984 |
+
|
| 985 |
+
[*Note 1*: Value-initialized iterators behave as if they refer past the
|
| 986 |
+
end of the same empty sequence. — *end note*]
|
| 987 |
+
|
| 988 |
+
Pointers and references obtained from a forward iterator into a range
|
| 989 |
+
\[`i`, `s`) shall remain valid while \[`i`, `s`) continues to denote a
|
| 990 |
+
range.
|
| 991 |
+
|
| 992 |
+
Two dereferenceable iterators `a` and `b` of type `X` offer the
|
| 993 |
+
*multi-pass guarantee* if:
|
| 994 |
+
|
| 995 |
+
- `a == b` implies `++a == ++b` and
|
| 996 |
+
- The expression `((void)[](X x){++x;}(a), *a)` is equivalent to the
|
| 997 |
+
expression `*a`.
|
| 998 |
+
|
| 999 |
+
[*Note 2*: The requirement that `a == b` implies `++a == ++b` and the
|
| 1000 |
+
removal of the restrictions on the number of assignments through a
|
| 1001 |
+
mutable iterator (which applies to output iterators) allow the use of
|
| 1002 |
+
multi-pass one-directional algorithms with forward
|
| 1003 |
+
iterators. — *end note*]
|
| 1004 |
+
|
| 1005 |
+
#### Concept <a id="iterator.concept.bidir">[[iterator.concept.bidir]]</a>
|
| 1006 |
+
|
| 1007 |
+
The `bidirectional_iterator` concept adds the ability to move an
|
| 1008 |
+
iterator backward as well as forward.
|
| 1009 |
+
|
| 1010 |
+
``` cpp
|
| 1011 |
+
template<class I>
|
| 1012 |
+
concept bidirectional_iterator =
|
| 1013 |
+
forward_iterator<I> &&
|
| 1014 |
+
derived_from<ITER_CONCEPT(I), bidirectional_iterator_tag> &&
|
| 1015 |
+
requires(I i) {
|
| 1016 |
+
{ --i } -> same_as<I&>;
|
| 1017 |
+
{ i-- } -> same_as<I>;
|
| 1018 |
+
};
|
| 1019 |
+
```
|
| 1020 |
+
|
| 1021 |
+
A bidirectional iterator `r` is decrementable if and only if there
|
| 1022 |
+
exists some `q` such that `++q == r`. Decrementable iterators `r` shall
|
| 1023 |
+
be in the domain of the expressions `--r` and `r--`.
|
| 1024 |
+
|
| 1025 |
+
Let `a` and `b` be equal objects of type `I`. `I` models
|
| 1026 |
+
`bidirectional_iterator` only if:
|
| 1027 |
+
|
| 1028 |
+
- If `a` and `b` are decrementable, then all of the following are
|
| 1029 |
+
`true`:
|
| 1030 |
+
- `addressof(--a) == addressof(a)`
|
| 1031 |
+
- `bool(a-- == b)`
|
| 1032 |
+
- after evaluating both `a--` and `--b`, `bool(a == b)` is still
|
| 1033 |
+
`true`
|
| 1034 |
+
- `bool(++(--a) == b)`
|
| 1035 |
+
- If `a` and `b` are incrementable, then `bool(--(++a) == b)`.
|
| 1036 |
+
|
| 1037 |
+
#### Concept <a id="iterator.concept.random.access">[[iterator.concept.random.access]]</a>
|
| 1038 |
+
|
| 1039 |
+
The `random_access_iterator` concept adds support for constant-time
|
| 1040 |
+
advancement with `+=`, `+`, `-=`, and `-`, as well as the computation of
|
| 1041 |
+
distance in constant time with `-`. Random access iterators also support
|
| 1042 |
+
array notation via subscripting.
|
| 1043 |
+
|
| 1044 |
+
``` cpp
|
| 1045 |
+
template<class I>
|
| 1046 |
+
concept random_access_iterator =
|
| 1047 |
+
bidirectional_iterator<I> &&
|
| 1048 |
+
derived_from<ITER_CONCEPT(I), random_access_iterator_tag> &&
|
| 1049 |
+
totally_ordered<I> &&
|
| 1050 |
+
sized_sentinel_for<I, I> &&
|
| 1051 |
+
requires(I i, const I j, const iter_difference_t<I> n) {
|
| 1052 |
+
{ i += n } -> same_as<I&>;
|
| 1053 |
+
{ j + n } -> same_as<I>;
|
| 1054 |
+
{ n + j } -> same_as<I>;
|
| 1055 |
+
{ i -= n } -> same_as<I&>;
|
| 1056 |
+
{ j - n } -> same_as<I>;
|
| 1057 |
+
{ j[n] } -> same_as<iter_reference_t<I>>;
|
| 1058 |
+
};
|
| 1059 |
+
```
|
| 1060 |
+
|
| 1061 |
+
Let `a` and `b` be valid iterators of type `I` such that `b` is
|
| 1062 |
+
reachable from `a` after `n` applications of `++a`, let `D` be
|
| 1063 |
+
`iter_difference_t<I>`, and let `n` denote a value of type `D`. `I`
|
| 1064 |
+
models `random_access_iterator` only if
|
| 1065 |
+
|
| 1066 |
+
- `(a += n)` is equal to `b`.
|
| 1067 |
+
- `addressof(a += n)` is equal to `addressof(a)`.
|
| 1068 |
+
- `(a + n)` is equal to `(a += n)`.
|
| 1069 |
+
- For any two positive values `x` and `y` of type `D`, if
|
| 1070 |
+
`(a + D(x + y))` is valid, then `(a + D(x + y))` is equal to
|
| 1071 |
+
`((a + x) + y)`.
|
| 1072 |
+
- `(a + D(0))` is equal to `a`.
|
| 1073 |
+
- If `(a + D(n - 1))` is valid, then `(a + n)` is equal to
|
| 1074 |
+
`[](I c){ return ++c; }(a + D(n - 1))`.
|
| 1075 |
+
- `(b += D(-n))` is equal to `a`.
|
| 1076 |
+
- `(b -= n)` is equal to `a`.
|
| 1077 |
+
- `addressof(b -= n)` is equal to `addressof(b)`.
|
| 1078 |
+
- `(b - n)` is equal to `(b -= n)`.
|
| 1079 |
+
- If `b` is dereferenceable, then `a[n]` is valid and is equal to `*b`.
|
| 1080 |
+
- `bool(a <= b)` is `true`.
|
| 1081 |
+
|
| 1082 |
+
#### Concept <a id="iterator.concept.contiguous">[[iterator.concept.contiguous]]</a>
|
| 1083 |
+
|
| 1084 |
+
The `contiguous_iterator` concept provides a guarantee that the denoted
|
| 1085 |
+
elements are stored contiguously in memory.
|
| 1086 |
+
|
| 1087 |
+
``` cpp
|
| 1088 |
+
template<class I>
|
| 1089 |
+
concept contiguous_iterator =
|
| 1090 |
+
random_access_iterator<I> &&
|
| 1091 |
+
derived_from<ITER_CONCEPT(I), contiguous_iterator_tag> &&
|
| 1092 |
+
is_lvalue_reference_v<iter_reference_t<I>> &&
|
| 1093 |
+
same_as<iter_value_t<I>, remove_cvref_t<iter_reference_t<I>>> &&
|
| 1094 |
+
requires(const I& i) {
|
| 1095 |
+
{ to_address(i) } -> same_as<add_pointer_t<iter_reference_t<I>>>;
|
| 1096 |
+
};
|
| 1097 |
+
```
|
| 1098 |
+
|
| 1099 |
+
Let `a` and `b` be dereferenceable iterators and `c` be a
|
| 1100 |
+
non-dereferenceable iterator of type `I` such that `b` is reachable from
|
| 1101 |
+
`a` and `c` is reachable from `b`, and let `D` be
|
| 1102 |
+
`iter_difference_t<I>`. The type `I` models `contiguous_iterator` only
|
| 1103 |
+
if
|
| 1104 |
+
|
| 1105 |
+
- `to_address(a) == addressof(*a)`,
|
| 1106 |
+
- `to_address(b) == to_address(a) + D(b - a)`, and
|
| 1107 |
+
- `to_address(c) == to_address(a) + D(c - a)`.
|
| 1108 |
+
|
| 1109 |
+
### C++17 iterator requirements <a id="iterator.cpp17">[[iterator.cpp17]]</a>
|
| 1110 |
|
| 1111 |
In the following sections, `a` and `b` denote values of type `X` or
|
| 1112 |
`const X`, `difference_type` and `reference` refer to the types
|
| 1113 |
`iterator_traits<X>::difference_type` and
|
| 1114 |
`iterator_traits<X>::reference`, respectively, `n` denotes a value of
|
| 1115 |
`difference_type`, `u`, `tmp`, and `m` denote identifiers, `r` denotes a
|
| 1116 |
value of `X&`, `t` denotes a value of value type `T`, `o` denotes a
|
| 1117 |
value of some type that is writable to the output iterator.
|
| 1118 |
|
| 1119 |
+
[*Note 1*: For an iterator type `X` there must be an instantiation of
|
| 1120 |
+
`iterator_traits<X>` [[iterator.traits]]. — *end note*]
|
| 1121 |
|
| 1122 |
+
#### *Cpp17Iterator* <a id="iterator.iterators">[[iterator.iterators]]</a>
|
| 1123 |
|
| 1124 |
+
The *Cpp17Iterator* requirements form the basis of the iterator
|
| 1125 |
+
taxonomy; every iterator meets the *Cpp17Iterator* requirements. This
|
| 1126 |
+
set of requirements specifies operations for dereferencing and
|
| 1127 |
+
incrementing an iterator. Most algorithms will require additional
|
| 1128 |
+
operations to read [[input.iterators]] or write [[output.iterators]]
|
| 1129 |
+
values, or to provide a richer set of iterator movements (
|
| 1130 |
+
[[forward.iterators]], [[bidirectional.iterators]],
|
| 1131 |
+
[[random.access.iterators]]).
|
| 1132 |
|
| 1133 |
+
A type `X` meets the *Cpp17Iterator* requirements if:
|
| 1134 |
|
| 1135 |
+
- `X` meets the *Cpp17CopyConstructible*, *Cpp17CopyAssignable*, and
|
| 1136 |
+
*Cpp17Destructible* requirements [[utility.arg.requirements]] and
|
| 1137 |
+
lvalues of type `X` are swappable [[swappable.requirements]], and
|
| 1138 |
+
- `iterator_traits<X>::difference_type` is a signed integer type or
|
| 1139 |
+
`void`, and
|
| 1140 |
+
- the expressions in [[iterator]] are valid and have the indicated
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1141 |
semantics.
|
| 1142 |
|
| 1143 |
+
#### Input iterators <a id="input.iterators">[[input.iterators]]</a>
|
| 1144 |
+
|
| 1145 |
+
A class or pointer type `X` meets the requirements of an input iterator
|
| 1146 |
+
for the value type `T` if `X` meets the *Cpp17Iterator*
|
| 1147 |
+
[[iterator.iterators]] and *Cpp17EqualityComparable* (
|
| 1148 |
+
[[cpp17.equalitycomparable]]) requirements and the expressions in
|
| 1149 |
+
[[inputiterator]] are valid and have the indicated semantics.
|
| 1150 |
+
|
| 1151 |
+
In [[inputiterator]], the term *the domain of `==`* is used in the
|
| 1152 |
+
ordinary mathematical sense to denote the set of values over which `==`
|
| 1153 |
+
is (required to be) defined. This set can change over time. Each
|
| 1154 |
+
algorithm places additional requirements on the domain of `==` for the
|
| 1155 |
+
iterator values it uses. These requirements can be inferred from the
|
| 1156 |
+
uses that algorithm makes of `==` and `!=`.
|
| 1157 |
|
| 1158 |
[*Example 1*: The call `find(a,b,x)` is defined only if the value of
|
| 1159 |
`a` has the property *p* defined as follows: `b` has property *p* and a
|
| 1160 |
value `i` has property *p* if (`*i==x`) or if (`*i!=x` and `++i` has
|
| 1161 |
property *p*). — *end example*]
|
| 1162 |
|
| 1163 |
[*Note 1*: For input iterators, `a == b` does not imply `++a == ++b`.
|
| 1164 |
(Equality does not guarantee the substitution property or referential
|
| 1165 |
transparency.) Algorithms on input iterators should never attempt to
|
| 1166 |
pass through the same iterator twice. They should be *single pass*
|
| 1167 |
+
algorithms. Value type `T` is not required to be a *Cpp17CopyAssignable*
|
| 1168 |
+
type ([[cpp17.copyassignable]]). These algorithms can be used with
|
| 1169 |
istreams as the source of the input data through the `istream_iterator`
|
| 1170 |
class template. — *end note*]
|
| 1171 |
|
| 1172 |
+
#### Output iterators <a id="output.iterators">[[output.iterators]]</a>
|
| 1173 |
|
| 1174 |
+
A class or pointer type `X` meets the requirements of an output iterator
|
| 1175 |
+
if `X` meets the *Cpp17Iterator* requirements [[iterator.iterators]] and
|
| 1176 |
+
the expressions in [[outputiterator]] are valid and have the indicated
|
|
|
|
| 1177 |
semantics.
|
| 1178 |
|
| 1179 |
[*Note 1*: The only valid use of an `operator*` is on the left side of
|
| 1180 |
+
the assignment statement. Assignment through the same value of the
|
| 1181 |
+
iterator happens only once. Algorithms on output iterators should never
|
| 1182 |
+
attempt to pass through the same iterator twice. They should be
|
| 1183 |
+
single-pass algorithms. Equality and inequality might not be
|
| 1184 |
+
defined. — *end note*]
|
|
|
|
|
|
|
| 1185 |
|
| 1186 |
+
#### Forward iterators <a id="forward.iterators">[[forward.iterators]]</a>
|
| 1187 |
|
| 1188 |
+
A class or pointer type `X` meets the requirements of a forward iterator
|
| 1189 |
+
if
|
| 1190 |
|
| 1191 |
+
- `X` meets the *Cpp17InputIterator* requirements [[input.iterators]],
|
| 1192 |
+
- `X` meets the *Cpp17DefaultConstructible* requirements
|
| 1193 |
+
[[utility.arg.requirements]],
|
|
|
|
| 1194 |
- if `X` is a mutable iterator, `reference` is a reference to `T`; if
|
| 1195 |
`X` is a constant iterator, `reference` is a reference to `const T`,
|
| 1196 |
+
- the expressions in [[forwarditerator]] are valid and have the
|
| 1197 |
+
indicated semantics, and
|
| 1198 |
- objects of type `X` offer the multi-pass guarantee, described below.
|
| 1199 |
|
| 1200 |
The domain of `==` for forward iterators is that of iterators over the
|
| 1201 |
same underlying sequence. However, value-initialized iterators may be
|
| 1202 |
compared and shall compare equal to other value-initialized iterators of
|
|
|
|
| 1222 |
dereferenceable or else neither is dereferenceable.
|
| 1223 |
|
| 1224 |
If `a` and `b` are both dereferenceable, then `a == b` if and only if
|
| 1225 |
`*a` and `*b` are bound to the same object.
|
| 1226 |
|
| 1227 |
+
#### Bidirectional iterators <a id="bidirectional.iterators">[[bidirectional.iterators]]</a>
|
| 1228 |
|
| 1229 |
+
A class or pointer type `X` meets the requirements of a bidirectional
|
| 1230 |
+
iterator if, in addition to meeting the *Cpp17ForwardIterator*
|
| 1231 |
+
requirements, the following expressions are valid as shown in
|
| 1232 |
+
[[bidirectionaliterator]].
|
| 1233 |
|
| 1234 |
[*Note 1*: Bidirectional iterators allow algorithms to move iterators
|
| 1235 |
backward as well as forward. — *end note*]
|
| 1236 |
|
| 1237 |
+
#### Random access iterators <a id="random.access.iterators">[[random.access.iterators]]</a>
|
| 1238 |
|
| 1239 |
+
A class or pointer type `X` meets the requirements of a random access
|
| 1240 |
+
iterator if, in addition to meeting the *Cpp17BidirectionalIterator*
|
| 1241 |
+
requirements, the following expressions are valid as shown in
|
| 1242 |
+
[[randomaccessiterator]].
|
| 1243 |
+
|
| 1244 |
+
### Indirect callable requirements <a id="indirectcallable">[[indirectcallable]]</a>
|
| 1245 |
+
|
| 1246 |
+
#### General <a id="indirectcallable.general">[[indirectcallable.general]]</a>
|
| 1247 |
+
|
| 1248 |
+
There are several concepts that group requirements of algorithms that
|
| 1249 |
+
take callable objects ([[func.def]]) as arguments.
|
| 1250 |
+
|
| 1251 |
+
#### Indirect callables <a id="indirectcallable.indirectinvocable">[[indirectcallable.indirectinvocable]]</a>
|
| 1252 |
+
|
| 1253 |
+
The indirect callable concepts are used to constrain those algorithms
|
| 1254 |
+
that accept callable objects ([[func.def]]) as arguments.
|
| 1255 |
+
|
| 1256 |
+
``` cpp
|
| 1257 |
+
namespace std {
|
| 1258 |
+
template<class F, class I>
|
| 1259 |
+
concept indirectly_unary_invocable =
|
| 1260 |
+
indirectly_readable<I> &&
|
| 1261 |
+
copy_constructible<F> &&
|
| 1262 |
+
invocable<F&, iter_value_t<I>&> &&
|
| 1263 |
+
invocable<F&, iter_reference_t<I>> &&
|
| 1264 |
+
invocable<F&, iter_common_reference_t<I>> &&
|
| 1265 |
+
common_reference_with<
|
| 1266 |
+
invoke_result_t<F&, iter_value_t<I>&>,
|
| 1267 |
+
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 1268 |
+
|
| 1269 |
+
template<class F, class I>
|
| 1270 |
+
concept indirectly_regular_unary_invocable =
|
| 1271 |
+
indirectly_readable<I> &&
|
| 1272 |
+
copy_constructible<F> &&
|
| 1273 |
+
regular_invocable<F&, iter_value_t<I>&> &&
|
| 1274 |
+
regular_invocable<F&, iter_reference_t<I>> &&
|
| 1275 |
+
regular_invocable<F&, iter_common_reference_t<I>> &&
|
| 1276 |
+
common_reference_with<
|
| 1277 |
+
invoke_result_t<F&, iter_value_t<I>&>,
|
| 1278 |
+
invoke_result_t<F&, iter_reference_t<I>>>;
|
| 1279 |
+
|
| 1280 |
+
template<class F, class I>
|
| 1281 |
+
concept indirect_unary_predicate =
|
| 1282 |
+
indirectly_readable<I> &&
|
| 1283 |
+
copy_constructible<F> &&
|
| 1284 |
+
predicate<F&, iter_value_t<I>&> &&
|
| 1285 |
+
predicate<F&, iter_reference_t<I>> &&
|
| 1286 |
+
predicate<F&, iter_common_reference_t<I>>;
|
| 1287 |
+
|
| 1288 |
+
template<class F, class I1, class I2>
|
| 1289 |
+
concept indirect_binary_predicate =
|
| 1290 |
+
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 1291 |
+
copy_constructible<F> &&
|
| 1292 |
+
predicate<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
|
| 1293 |
+
predicate<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
|
| 1294 |
+
predicate<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
|
| 1295 |
+
predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 1296 |
+
predicate<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 1297 |
+
|
| 1298 |
+
template<class F, class I1, class I2 = I1>
|
| 1299 |
+
concept indirect_equivalence_relation =
|
| 1300 |
+
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 1301 |
+
copy_constructible<F> &&
|
| 1302 |
+
equivalence_relation<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
|
| 1303 |
+
equivalence_relation<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
|
| 1304 |
+
equivalence_relation<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
|
| 1305 |
+
equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 1306 |
+
equivalence_relation<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 1307 |
+
|
| 1308 |
+
template<class F, class I1, class I2 = I1>
|
| 1309 |
+
concept indirect_strict_weak_order =
|
| 1310 |
+
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 1311 |
+
copy_constructible<F> &&
|
| 1312 |
+
strict_weak_order<F&, iter_value_t<I1>&, iter_value_t<I2>&> &&
|
| 1313 |
+
strict_weak_order<F&, iter_value_t<I1>&, iter_reference_t<I2>> &&
|
| 1314 |
+
strict_weak_order<F&, iter_reference_t<I1>, iter_value_t<I2>&> &&
|
| 1315 |
+
strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
|
| 1316 |
+
strict_weak_order<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
|
| 1317 |
+
}
|
| 1318 |
+
```
|
| 1319 |
+
|
| 1320 |
+
#### Class template `projected` <a id="projected">[[projected]]</a>
|
| 1321 |
+
|
| 1322 |
+
Class template `projected` is used to constrain algorithms that accept
|
| 1323 |
+
callable objects and projections [[defns.projection]]. It combines a
|
| 1324 |
+
`indirectly_readable` type `I` and a callable object type `Proj` into a
|
| 1325 |
+
new `indirectly_readable` type whose `reference` type is the result of
|
| 1326 |
+
applying `Proj` to the `iter_reference_t` of `I`.
|
| 1327 |
+
|
| 1328 |
+
``` cpp
|
| 1329 |
+
namespace std {
|
| 1330 |
+
template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj>
|
| 1331 |
+
struct projected {
|
| 1332 |
+
using value_type = remove_cvref_t<indirect_result_t<Proj&, I>>;
|
| 1333 |
+
indirect_result_t<Proj&, I> operator*() const; // not defined
|
| 1334 |
+
};
|
| 1335 |
+
|
| 1336 |
+
template<weakly_incrementable I, class Proj>
|
| 1337 |
+
struct incrementable_traits<projected<I, Proj>> {
|
| 1338 |
+
using difference_type = iter_difference_t<I>;
|
| 1339 |
+
};
|
| 1340 |
+
}
|
| 1341 |
+
```
|
| 1342 |
+
|
| 1343 |
+
### Common algorithm requirements <a id="alg.req">[[alg.req]]</a>
|
| 1344 |
+
|
| 1345 |
+
#### General <a id="alg.req.general">[[alg.req.general]]</a>
|
| 1346 |
+
|
| 1347 |
+
There are several additional iterator concepts that are commonly applied
|
| 1348 |
+
to families of algorithms. These group together iterator requirements of
|
| 1349 |
+
algorithm families. There are three relational concepts that specify how
|
| 1350 |
+
element values are transferred between `indirectly_readable` and
|
| 1351 |
+
`indirectly_writable` types: `indirectly_movable`,
|
| 1352 |
+
`indirectly_copyable`, and `indirectly_swappable`. There are three
|
| 1353 |
+
relational concepts for rearrangements: `permutable`, `mergeable`, and
|
| 1354 |
+
`sortable`. There is one relational concept for comparing values from
|
| 1355 |
+
different sequences: `indirectly_comparable`.
|
| 1356 |
+
|
| 1357 |
+
[*Note 1*: The `ranges::less` function object type used in the concepts
|
| 1358 |
+
below imposes constraints on the concepts’ arguments in addition to
|
| 1359 |
+
those that appear in the concepts’ bodies [[range.cmp]]. — *end note*]
|
| 1360 |
+
|
| 1361 |
+
#### Concept <a id="alg.req.ind.move">[[alg.req.ind.move]]</a>
|
| 1362 |
+
|
| 1363 |
+
The `indirectly_movable` concept specifies the relationship between a
|
| 1364 |
+
`indirectly_readable` type and a `indirectly_writable` type between
|
| 1365 |
+
which values may be moved.
|
| 1366 |
+
|
| 1367 |
+
``` cpp
|
| 1368 |
+
template<class In, class Out>
|
| 1369 |
+
concept indirectly_movable =
|
| 1370 |
+
indirectly_readable<In> &&
|
| 1371 |
+
indirectly_writable<Out, iter_rvalue_reference_t<In>>;
|
| 1372 |
+
```
|
| 1373 |
+
|
| 1374 |
+
The `indirectly_movable_storable` concept augments `indirectly_movable`
|
| 1375 |
+
with additional requirements enabling the transfer to be performed
|
| 1376 |
+
through an intermediate object of the `indirectly_readable` type’s value
|
| 1377 |
+
type.
|
| 1378 |
+
|
| 1379 |
+
``` cpp
|
| 1380 |
+
template<class In, class Out>
|
| 1381 |
+
concept indirectly_movable_storable =
|
| 1382 |
+
indirectly_movable<In, Out> &&
|
| 1383 |
+
indirectly_writable<Out, iter_value_t<In>> &&
|
| 1384 |
+
movable<iter_value_t<In>> &&
|
| 1385 |
+
constructible_from<iter_value_t<In>, iter_rvalue_reference_t<In>> &&
|
| 1386 |
+
assignable_from<iter_value_t<In>&, iter_rvalue_reference_t<In>>;
|
| 1387 |
+
```
|
| 1388 |
+
|
| 1389 |
+
Let `i` be a dereferenceable value of type `In`. `In` and `Out` model
|
| 1390 |
+
`indirectly_movable_storable<In, Out>` only if after the initialization
|
| 1391 |
+
of the object `obj` in
|
| 1392 |
+
|
| 1393 |
+
``` cpp
|
| 1394 |
+
iter_value_t<In> obj(ranges::iter_move(i));
|
| 1395 |
+
```
|
| 1396 |
+
|
| 1397 |
+
`obj` is equal to the value previously denoted by `*i`. If
|
| 1398 |
+
`iter_rvalue_reference_t<In>` is an rvalue reference type, the resulting
|
| 1399 |
+
state of the value denoted by `*i` is valid but unspecified
|
| 1400 |
+
[[lib.types.movedfrom]].
|
| 1401 |
+
|
| 1402 |
+
#### Concept <a id="alg.req.ind.copy">[[alg.req.ind.copy]]</a>
|
| 1403 |
+
|
| 1404 |
+
The `indirectly_copyable` concept specifies the relationship between a
|
| 1405 |
+
`indirectly_readable` type and a `indirectly_writable` type between
|
| 1406 |
+
which values may be copied.
|
| 1407 |
+
|
| 1408 |
+
``` cpp
|
| 1409 |
+
template<class In, class Out>
|
| 1410 |
+
concept indirectly_copyable =
|
| 1411 |
+
indirectly_readable<In> &&
|
| 1412 |
+
indirectly_writable<Out, iter_reference_t<In>>;
|
| 1413 |
+
```
|
| 1414 |
+
|
| 1415 |
+
The `indirectly_copyable_storable` concept augments
|
| 1416 |
+
`indirectly_copyable` with additional requirements enabling the transfer
|
| 1417 |
+
to be performed through an intermediate object of the
|
| 1418 |
+
`indirectly_readable` type’s value type. It also requires the capability
|
| 1419 |
+
to make copies of values.
|
| 1420 |
+
|
| 1421 |
+
``` cpp
|
| 1422 |
+
template<class In, class Out>
|
| 1423 |
+
concept indirectly_copyable_storable =
|
| 1424 |
+
indirectly_copyable<In, Out> &&
|
| 1425 |
+
indirectly_writable<Out, iter_value_t<In>&> &&
|
| 1426 |
+
indirectly_writable<Out, const iter_value_t<In>&> &&
|
| 1427 |
+
indirectly_writable<Out, iter_value_t<In>&&> &&
|
| 1428 |
+
indirectly_writable<Out, const iter_value_t<In>&&> &&
|
| 1429 |
+
copyable<iter_value_t<In>> &&
|
| 1430 |
+
constructible_from<iter_value_t<In>, iter_reference_t<In>> &&
|
| 1431 |
+
assignable_from<iter_value_t<In>&, iter_reference_t<In>>;
|
| 1432 |
+
```
|
| 1433 |
+
|
| 1434 |
+
Let `i` be a dereferenceable value of type `In`. `In` and `Out` model
|
| 1435 |
+
`indirectly_copyable_storable<In, Out>` only if after the initialization
|
| 1436 |
+
of the object `obj` in
|
| 1437 |
+
|
| 1438 |
+
``` cpp
|
| 1439 |
+
iter_value_t<In> obj(*i);
|
| 1440 |
+
```
|
| 1441 |
+
|
| 1442 |
+
`obj` is equal to the value previously denoted by `*i`. If
|
| 1443 |
+
`iter_reference_t<In>` is an rvalue reference type, the resulting state
|
| 1444 |
+
of the value denoted by `*i` is valid but unspecified
|
| 1445 |
+
[[lib.types.movedfrom]].
|
| 1446 |
+
|
| 1447 |
+
#### Concept <a id="alg.req.ind.swap">[[alg.req.ind.swap]]</a>
|
| 1448 |
+
|
| 1449 |
+
The `indirectly_swappable` concept specifies a swappable relationship
|
| 1450 |
+
between the values referenced by two `indirectly_readable` types.
|
| 1451 |
+
|
| 1452 |
+
``` cpp
|
| 1453 |
+
template<class I1, class I2 = I1>
|
| 1454 |
+
concept indirectly_swappable =
|
| 1455 |
+
indirectly_readable<I1> && indirectly_readable<I2> &&
|
| 1456 |
+
requires(const I1 i1, const I2 i2) {
|
| 1457 |
+
ranges::iter_swap(i1, i1);
|
| 1458 |
+
ranges::iter_swap(i2, i2);
|
| 1459 |
+
ranges::iter_swap(i1, i2);
|
| 1460 |
+
ranges::iter_swap(i2, i1);
|
| 1461 |
+
};
|
| 1462 |
+
```
|
| 1463 |
+
|
| 1464 |
+
#### Concept <a id="alg.req.ind.cmp">[[alg.req.ind.cmp]]</a>
|
| 1465 |
+
|
| 1466 |
+
The `indirectly_comparable` concept specifies the common requirements of
|
| 1467 |
+
algorithms that compare values from two different sequences.
|
| 1468 |
+
|
| 1469 |
+
``` cpp
|
| 1470 |
+
template<class I1, class I2, class R, class P1 = identity,
|
| 1471 |
+
class P2 = identity>
|
| 1472 |
+
concept indirectly_comparable =
|
| 1473 |
+
indirect_binary_predicate<R, projected<I1, P1>, projected<I2, P2>>;
|
| 1474 |
+
```
|
| 1475 |
+
|
| 1476 |
+
#### Concept <a id="alg.req.permutable">[[alg.req.permutable]]</a>
|
| 1477 |
+
|
| 1478 |
+
The `permutable` concept specifies the common requirements of algorithms
|
| 1479 |
+
that reorder elements in place by moving or swapping them.
|
| 1480 |
+
|
| 1481 |
+
``` cpp
|
| 1482 |
+
template<class I>
|
| 1483 |
+
concept permutable =
|
| 1484 |
+
forward_iterator<I> &&
|
| 1485 |
+
indirectly_movable_storable<I, I> &&
|
| 1486 |
+
indirectly_swappable<I, I>;
|
| 1487 |
+
```
|
| 1488 |
+
|
| 1489 |
+
#### Concept <a id="alg.req.mergeable">[[alg.req.mergeable]]</a>
|
| 1490 |
+
|
| 1491 |
+
The `mergeable` concept specifies the requirements of algorithms that
|
| 1492 |
+
merge sorted sequences into an output sequence by copying elements.
|
| 1493 |
+
|
| 1494 |
+
``` cpp
|
| 1495 |
+
template<class I1, class I2, class Out, class R = ranges::less,
|
| 1496 |
+
class P1 = identity, class P2 = identity>
|
| 1497 |
+
concept mergeable =
|
| 1498 |
+
input_iterator<I1> &&
|
| 1499 |
+
input_iterator<I2> &&
|
| 1500 |
+
weakly_incrementable<Out> &&
|
| 1501 |
+
indirectly_copyable<I1, Out> &&
|
| 1502 |
+
indirectly_copyable<I2, Out> &&
|
| 1503 |
+
indirect_strict_weak_order<R, projected<I1, P1>, projected<I2, P2>>;
|
| 1504 |
+
```
|
| 1505 |
+
|
| 1506 |
+
#### Concept <a id="alg.req.sortable">[[alg.req.sortable]]</a>
|
| 1507 |
+
|
| 1508 |
+
The `sortable` concept specifies the common requirements of algorithms
|
| 1509 |
+
that permute sequences into ordered sequences (e.g., `sort`).
|
| 1510 |
+
|
| 1511 |
+
``` cpp
|
| 1512 |
+
template<class I, class R = ranges::less, class P = identity>
|
| 1513 |
+
concept sortable =
|
| 1514 |
+
permutable<I> &&
|
| 1515 |
+
indirect_strict_weak_order<R, projected<I, P>>;
|
| 1516 |
+
```
|
| 1517 |
|