- tmp/tmpbod9_l3r/{from.md → to.md} +372 -304
tmp/tmpbod9_l3r/{from.md → to.md}
RENAMED
|
@@ -29,14 +29,14 @@ defining-type-specifier-seq:
|
|
| 29 |
defining-type-specifier defining-type-specifier-seq
|
| 30 |
```
|
| 31 |
|
| 32 |
The optional *attribute-specifier-seq* in a *type-specifier-seq* or a
|
| 33 |
*defining-type-specifier-seq* appertains to the type denoted by the
|
| 34 |
-
preceding *type-specifier*s or *defining-type-specifier*s
|
| 35 |
-
[[dcl.meaning]]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
As a general rule, at most one *defining-type-specifier* is allowed in
|
| 40 |
the complete *decl-specifier-seq* of a *declaration* or in a
|
| 41 |
*defining-type-specifier-seq*, and at most one *type-specifier* is
|
| 42 |
allowed in a *type-specifier-seq*. The only exceptions to this rule are
|
|
@@ -51,16 +51,16 @@ the following:
|
|
| 51 |
- `long` can be combined with `long`.
|
| 52 |
|
| 53 |
Except in a declaration of a constructor, destructor, or conversion
|
| 54 |
function, at least one *defining-type-specifier* that is not a
|
| 55 |
*cv-qualifier* shall appear in a complete *type-specifier-seq* or a
|
| 56 |
-
complete *decl-specifier-seq*.[^
|
| 57 |
|
| 58 |
[*Note 1*: *enum-specifier*s, *class-specifier*s, and
|
| 59 |
-
*typename-specifier*s are discussed in [[dcl.enum]],
|
| 60 |
-
|
| 61 |
-
discussed in the rest of this
|
| 62 |
|
| 63 |
#### The *cv-qualifier*s <a id="dcl.type.cv">[[dcl.type.cv]]</a>
|
| 64 |
|
| 65 |
There are two *cv-qualifier*s, `const` and `volatile`. Each
|
| 66 |
*cv-qualifier* shall appear at most once in a *cv-qualifier-seq*. If a
|
|
@@ -74,48 +74,47 @@ cv-qualifiers affect object and function types. — *end note*]
|
|
| 74 |
Redundant cv-qualifications are ignored.
|
| 75 |
|
| 76 |
[*Note 2*: For example, these could be introduced by
|
| 77 |
typedefs. — *end note*]
|
| 78 |
|
| 79 |
-
[*Note 3*: Declaring a variable `const` can affect its linkage
|
| 80 |
-
[[dcl.stc]]
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
A pointer or reference to a cv-qualified type need not actually point or
|
| 86 |
refer to a cv-qualified object, but it is treated as if it does; a
|
| 87 |
const-qualified access path cannot be used to modify an object even if
|
| 88 |
the object referenced is a non-const object and can be modified through
|
| 89 |
some other access path.
|
| 90 |
|
| 91 |
[*Note 4*: Cv-qualifiers are supported by the type system so that they
|
| 92 |
-
cannot be subverted without casting
|
| 93 |
-
[[expr.const.cast]]). — *end note*]
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
[[basic.life]]
|
| 98 |
|
| 99 |
[*Example 1*:
|
| 100 |
|
| 101 |
``` cpp
|
| 102 |
const int ci = 3; // cv-qualified (initialized as required)
|
| 103 |
-
ci = 4; //
|
| 104 |
|
| 105 |
int i = 2; // not cv-qualified
|
| 106 |
const int* cip; // pointer to const int
|
| 107 |
cip = &i; // OK: cv-qualified access path to unqualified
|
| 108 |
-
*cip = 4; //
|
| 109 |
|
| 110 |
int* ip;
|
| 111 |
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
|
| 112 |
*ip = 4; // defined: *ip points to i, a non-const object
|
| 113 |
|
| 114 |
const int* ciq = new const int (3); // initialized as required
|
| 115 |
int* iq = const_cast<int*>(ciq); // cast required
|
| 116 |
-
*iq = 4; // undefined: modifies a const object
|
| 117 |
```
|
| 118 |
|
| 119 |
For another example,
|
| 120 |
|
| 121 |
``` cpp
|
|
@@ -128,14 +127,14 @@ struct Y {
|
|
| 128 |
Y();
|
| 129 |
};
|
| 130 |
|
| 131 |
const Y y;
|
| 132 |
y.x.i++; // well-formed: mutable member can be modified
|
| 133 |
-
y.x.j++; //
|
| 134 |
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
|
| 135 |
p->x.i = 99; // well-formed: mutable member can be modified
|
| 136 |
-
p->x.j = 99; // undefined: modifies a const
|
| 137 |
```
|
| 138 |
|
| 139 |
— *end example*]
|
| 140 |
|
| 141 |
The semantics of an access through a volatile glvalue are
|
|
@@ -157,126 +156,226 @@ C. — *end note*]
|
|
| 157 |
The simple type specifiers are
|
| 158 |
|
| 159 |
``` bnf
|
| 160 |
simple-type-specifier:
|
| 161 |
nested-name-specifierₒₚₜ type-name
|
| 162 |
-
nested-name-specifier
|
| 163 |
-
nested-name-specifierₒₚₜ template-name
|
| 164 |
-
'char'
|
| 165 |
-
'char16_t'
|
| 166 |
-
'char32_t'
|
| 167 |
-
'wchar_t'
|
| 168 |
-
'bool'
|
| 169 |
-
'short'
|
| 170 |
-
'int'
|
| 171 |
-
'long'
|
| 172 |
-
'signed'
|
| 173 |
-
'unsigned'
|
| 174 |
-
'float'
|
| 175 |
-
'double'
|
| 176 |
-
'void'
|
| 177 |
-
'auto'
|
| 178 |
decltype-specifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
```
|
| 180 |
|
| 181 |
``` bnf
|
| 182 |
type-name:
|
| 183 |
class-name
|
| 184 |
enum-name
|
| 185 |
typedef-name
|
| 186 |
-
simple-template-id
|
| 187 |
```
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
``` bnf
|
| 190 |
-
|
| 191 |
-
'decltype' '(' expression ')'
|
| 192 |
-
'decltype' '(' 'auto' ')'
|
| 193 |
```
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
`typename`ₒₚₜ *nested-name-specifier*ₒₚₜ *template-name* is a
|
| 198 |
-
placeholder for a deduced class type ([[dcl.type.class.deduct]]). The
|
| 199 |
-
*template-name* shall name a class template that is not an
|
| 200 |
-
injected-class-name. The other *simple-type-specifier*s specify either a
|
| 201 |
-
previously-declared type, a type determined from an expression, or one
|
| 202 |
-
of the fundamental types ([[basic.fundamental]]). Table
|
| 203 |
-
[[tab:simple.type.specifiers]] summarizes the valid combinations of
|
| 204 |
-
*simple-type-specifier*s and the types they specify.
|
| 205 |
|
| 206 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
| Specifier(s) | Type |
|
| 209 |
-
| ---------------------- | -------------------------------------- |
|
| 210 |
| *type-name* | the type named |
|
| 211 |
| *simple-template-id* | the type as defined in~ [[temp.names]] |
|
| 212 |
-
| *
|
| 213 |
-
|
|
| 214 |
-
|
|
| 215 |
-
|
|
| 216 |
-
|
|
| 217 |
-
|
|
| 218 |
-
|
|
| 219 |
-
|
|
| 220 |
-
|
|
| 221 |
-
|
|
| 222 |
-
|
|
| 223 |
-
| int
|
| 224 |
-
|
|
| 225 |
-
|
|
| 226 |
-
|
|
| 227 |
-
| unsigned
|
| 228 |
-
| unsigned
|
| 229 |
-
| unsigned long
|
| 230 |
-
|
|
| 231 |
-
|
|
| 232 |
-
|
|
| 233 |
-
| signed long
|
| 234 |
-
|
|
| 235 |
-
| long long
|
| 236 |
-
| long
|
| 237 |
-
| long
|
| 238 |
-
|
|
| 239 |
-
|
|
| 240 |
-
|
|
| 241 |
-
| short
|
| 242 |
-
|
|
| 243 |
-
|
|
| 244 |
-
|
|
| 245 |
-
|
|
| 246 |
-
|
|
| 247 |
-
|
|
| 248 |
-
|
|
| 249 |
-
|
|
| 250 |
|
| 251 |
|
| 252 |
When multiple *simple-type-specifier*s are allowed, they can be freely
|
| 253 |
intermixed with other *decl-specifier*s in any order.
|
| 254 |
|
| 255 |
-
[*Note
|
| 256 |
type are represented as signed or unsigned quantities. The `signed`
|
| 257 |
specifier forces `char` objects to be signed; it is redundant in other
|
| 258 |
contexts. — *end note*]
|
| 259 |
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
follows:
|
| 262 |
|
| 263 |
-
- if
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
- otherwise, if
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
- otherwise, if
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
- otherwise, `decltype(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
The operand of the `decltype` specifier is an unevaluated operand
|
| 277 |
-
|
| 278 |
|
| 279 |
[*Example 1*:
|
| 280 |
|
| 281 |
``` cpp
|
| 282 |
const int&& foo();
|
|
@@ -289,29 +388,30 @@ decltype(a->x) x3; // type is double
|
|
| 289 |
decltype((a->x)) x4 = x3; // type is const double&
|
| 290 |
```
|
| 291 |
|
| 292 |
— *end example*]
|
| 293 |
|
| 294 |
-
[*Note
|
| 295 |
are specified in [[dcl.spec.auto]]. — *end note*]
|
| 296 |
|
| 297 |
-
If the operand of a *decltype-specifier* is a prvalue
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
|
|
|
| 301 |
|
| 302 |
-
[*Note
|
| 303 |
is not destroyed. Thus, a class type is not instantiated as a result of
|
| 304 |
being the type of a function call in this context. In this context, the
|
| 305 |
common purpose of writing the expression is merely to refer to its type.
|
| 306 |
In that sense, a *decltype-specifier* is analogous to a use of a
|
| 307 |
*typedef-name*, so the usual reasons for requiring a complete type do
|
| 308 |
not apply. In particular, it is not necessary to allocate storage for a
|
| 309 |
temporary object or to enforce the semantic constraints associated with
|
| 310 |
invoking the type’s destructor. — *end note*]
|
| 311 |
|
| 312 |
-
[*Note
|
| 313 |
meaning in this context. — *end note*]
|
| 314 |
|
| 315 |
[*Example 2*:
|
| 316 |
|
| 317 |
``` cpp
|
|
@@ -326,149 +426,74 @@ template<class T> auto f(T) // #1
|
|
| 326 |
// (A temporary is not introduced as a result of the use of i().)
|
| 327 |
template<class T> auto f(T) // #2
|
| 328 |
-> void;
|
| 329 |
auto g() -> void {
|
| 330 |
f(42); // OK: calls #2. (#1 is not a viable candidate: type deduction
|
| 331 |
-
// fails
|
| 332 |
// decltype-specifier)
|
| 333 |
}
|
| 334 |
template<class T> auto q(T)
|
| 335 |
-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is not implicitly
|
| 336 |
// used within the context of this decltype-specifier
|
| 337 |
void r() {
|
| 338 |
-
q(42); //
|
| 339 |
-
// the specialization ``q(T) -> decltype((h<T>()))
|
| 340 |
-
//
|
| 341 |
-
// destructor is used, so the program is ill-formed
|
| 342 |
}
|
| 343 |
```
|
| 344 |
|
| 345 |
— *end example*]
|
| 346 |
|
| 347 |
-
####
|
| 348 |
|
| 349 |
``` bnf
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
class-key nested-name-specifier 'template'ₒₚₜ simple-template-id
|
| 354 |
-
'enum' nested-name-specifierₒₚₜ identifier
|
| 355 |
```
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
a declaration. If an *elaborated-type-specifier* is the sole constituent
|
| 360 |
-
of a declaration, the declaration is ill-formed unless it is an explicit
|
| 361 |
-
specialization ([[temp.expl.spec]]), an explicit instantiation (
|
| 362 |
-
[[temp.explicit]]) or it has one of the following forms:
|
| 363 |
|
| 364 |
-
``
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
```
|
| 371 |
-
|
| 372 |
-
In the first case, the *attribute-specifier-seq*, if any, appertains to
|
| 373 |
-
the class being declared; the attributes in the
|
| 374 |
-
*attribute-specifier-seq* are thereafter considered attributes of the
|
| 375 |
-
class whenever it is named.
|
| 376 |
-
|
| 377 |
-
[[basic.lookup.elab]] describes how name lookup proceeds for the
|
| 378 |
-
*identifier* in an *elaborated-type-specifier*. If the *identifier*
|
| 379 |
-
resolves to a *class-name* or *enum-name*, the
|
| 380 |
-
*elaborated-type-specifier* introduces it into the declaration the same
|
| 381 |
-
way a *simple-type-specifier* introduces its *type-name*. If the
|
| 382 |
-
*identifier* resolves to a *typedef-name* or the *simple-template-id*
|
| 383 |
-
resolves to an alias template specialization, the
|
| 384 |
-
*elaborated-type-specifier* is ill-formed.
|
| 385 |
-
|
| 386 |
-
[*Note 1*:
|
| 387 |
-
|
| 388 |
-
This implies that, within a class template with a template
|
| 389 |
-
*type-parameter* `T`, the declaration
|
| 390 |
-
|
| 391 |
-
``` cpp
|
| 392 |
-
friend class T;
|
| 393 |
-
```
|
| 394 |
-
|
| 395 |
-
is ill-formed. However, the similar declaration `friend T;` is allowed (
|
| 396 |
-
[[class.friend]]).
|
| 397 |
-
|
| 398 |
-
— *end note*]
|
| 399 |
-
|
| 400 |
-
The *class-key* or `enum` keyword present in the
|
| 401 |
-
*elaborated-type-specifier* shall agree in kind with the declaration to
|
| 402 |
-
which the name in the *elaborated-type-specifier* refers. This rule also
|
| 403 |
-
applies to the form of *elaborated-type-specifier* that declares a
|
| 404 |
-
*class-name* or `friend` class since it can be construed as referring to
|
| 405 |
-
the definition of the class. Thus, in any *elaborated-type-specifier*,
|
| 406 |
-
the `enum` keyword shall be used to refer to an enumeration (
|
| 407 |
-
[[dcl.enum]]), the `union` *class-key* shall be used to refer to a union
|
| 408 |
-
(Clause [[class]]), and either the `class` or `struct` *class-key*
|
| 409 |
-
shall be used to refer to a class (Clause [[class]]) declared using the
|
| 410 |
-
`class` or `struct` *class-key*.
|
| 411 |
-
|
| 412 |
-
[*Example 1*:
|
| 413 |
-
|
| 414 |
-
``` cpp
|
| 415 |
-
enum class E { a, b };
|
| 416 |
-
enum E x = E::a; // OK
|
| 417 |
-
```
|
| 418 |
-
|
| 419 |
-
— *end example*]
|
| 420 |
-
|
| 421 |
-
#### The `auto` specifier <a id="dcl.spec.auto">[[dcl.spec.auto]]</a>
|
| 422 |
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
function type having a *trailing-return-type* or to signify that a
|
| 427 |
-
lambda is a generic lambda ([[expr.prim.lambda.closure]]). The `auto`
|
| 428 |
-
*type-specifier* is also used to introduce a structured binding
|
| 429 |
-
declaration ([[dcl.struct.bind]]).
|
| 430 |
|
| 431 |
The placeholder type can appear with a function declarator in the
|
| 432 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 433 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 434 |
-
If the function declarator includes a *trailing-return-type*
|
| 435 |
-
[[dcl.fct]]
|
| 436 |
type of the function. Otherwise, the function declarator shall declare a
|
| 437 |
function. If the declared return type of the function contains a
|
| 438 |
placeholder type, the return type of the function is deduced from
|
| 439 |
-
non-discarded `return` statements, if any, in the body of the function
|
| 440 |
-
[[stmt.if]]
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
``` cpp
|
| 450 |
-
auto glambda = [](int i, auto a) { return i; }; // OK: a generic lambda
|
| 451 |
-
```
|
| 452 |
-
|
| 453 |
-
— *end example*]
|
| 454 |
-
|
| 455 |
-
The type of a variable declared using `auto` or `decltype(auto)` is
|
| 456 |
-
deduced from its initializer. This use is allowed in an initializing
|
| 457 |
-
declaration ([[dcl.init]]) of a variable. `auto` or `decltype(auto)`
|
| 458 |
-
shall appear as one of the *decl-specifier*s in the *decl-specifier-seq*
|
| 459 |
-
and the *decl-specifier-seq* shall be followed by one or more
|
| 460 |
-
*declarator*s, each of which shall be followed by a non-empty
|
| 461 |
-
*initializer*. In an *initializer* of the form
|
| 462 |
|
| 463 |
``` cpp
|
| 464 |
( expression-list )
|
| 465 |
```
|
| 466 |
|
| 467 |
the *expression-list* shall be a single *assignment-expression*.
|
| 468 |
|
| 469 |
-
[*Example
|
| 470 |
|
| 471 |
``` cpp
|
| 472 |
auto x = 5; // OK: x has type int
|
| 473 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 474 |
static auto y = 0.0; // OK: y has type double
|
|
@@ -478,25 +503,28 @@ auto g() { return 0.0; } // OK: g returns double
|
|
| 478 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 479 |
```
|
| 480 |
|
| 481 |
— *end example*]
|
| 482 |
|
|
|
|
|
|
|
|
|
|
| 483 |
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 484 |
-
*new-type-id* or *type-id* of a *new-expression*
|
| 485 |
-
|
| 486 |
-
in a *template-parameter*
|
| 487 |
|
| 488 |
-
A program that uses
|
| 489 |
-
|
| 490 |
|
| 491 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 492 |
they shall all form declarations of variables. The type of each declared
|
| 493 |
-
variable is determined by placeholder type deduction
|
| 494 |
-
[[dcl.type.auto.deduct]]
|
| 495 |
type is not the same in each deduction, the program is ill-formed.
|
| 496 |
|
| 497 |
-
[*Example
|
| 498 |
|
| 499 |
``` cpp
|
| 500 |
auto x = 5, *y = &x; // OK: auto is int
|
| 501 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 502 |
```
|
|
@@ -511,53 +539,60 @@ same in each deduction, the program is ill-formed.
|
|
| 511 |
If a function with a declared return type that uses a placeholder type
|
| 512 |
has no non-discarded `return` statements, the return type is deduced as
|
| 513 |
though from a `return` statement with no operand at the closing brace of
|
| 514 |
the function body.
|
| 515 |
|
| 516 |
-
[*Example
|
| 517 |
|
| 518 |
``` cpp
|
| 519 |
auto f() { } // OK, return type is void
|
| 520 |
-
auto* g() { } // error
|
| 521 |
```
|
| 522 |
|
| 523 |
— *end example*]
|
| 524 |
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
the return type deduced from that statement can be used in the rest of
|
| 529 |
-
the function, including in other `return` statements.
|
| 530 |
|
| 531 |
-
[*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
|
| 533 |
``` cpp
|
| 534 |
-
auto n = n; // error
|
| 535 |
auto f();
|
| 536 |
-
void g() { &f; } // error
|
| 537 |
auto sum(int i) {
|
| 538 |
if (i == 1)
|
| 539 |
return i; // sum's return type is int
|
| 540 |
else
|
| 541 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 542 |
}
|
| 543 |
```
|
| 544 |
|
| 545 |
— *end example*]
|
| 546 |
|
| 547 |
-
Return type deduction for a
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
operand.
|
| 551 |
|
| 552 |
-
[*Note
|
| 553 |
template will cause an implicit instantiation. Any errors that arise
|
| 554 |
from this instantiation are not in the immediate context of the function
|
| 555 |
-
type and can result in the program being ill-formed
|
| 556 |
-
[[temp.deduct]]
|
| 557 |
|
| 558 |
-
[*Example
|
| 559 |
|
| 560 |
``` cpp
|
| 561 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 562 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 563 |
template<class T> auto f(T* t) { return *t; }
|
|
@@ -567,49 +602,61 @@ void g() { int (*p)(int*) = &f; } // instantiates both fs to deter
|
|
| 567 |
|
| 568 |
— *end example*]
|
| 569 |
|
| 570 |
Redeclarations or specializations of a function or function template
|
| 571 |
with a declared return type that uses a placeholder type shall also use
|
| 572 |
-
that placeholder, not a deduced type.
|
|
|
|
|
|
|
|
|
|
| 573 |
|
| 574 |
-
[*Example
|
| 575 |
|
| 576 |
``` cpp
|
| 577 |
auto f();
|
| 578 |
auto f() { return 42; } // return type is int
|
| 579 |
auto f(); // OK
|
| 580 |
-
int f(); // error
|
| 581 |
-
decltype(auto) f(); // error
|
| 582 |
|
| 583 |
template <typename T> auto g(T t) { return t; } // #1
|
| 584 |
template auto g(int); // OK, return type is int
|
| 585 |
-
template char g(char); // error
|
| 586 |
template<> auto g(double); // OK, forward declaration with unknown return type
|
| 587 |
|
| 588 |
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
|
| 589 |
template char g(char); // OK, now there is a matching template
|
| 590 |
template auto g(float); // still matches #1
|
| 591 |
|
| 592 |
-
void h() { return g(42); } // error
|
| 593 |
|
| 594 |
template <typename T> struct A {
|
| 595 |
friend T frf(T);
|
| 596 |
};
|
| 597 |
auto frf(int i) { return i; } // not a friend of A<int>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
```
|
| 599 |
|
| 600 |
— *end example*]
|
| 601 |
|
| 602 |
A function declared with a return type that uses a placeholder type
|
| 603 |
-
shall not be `virtual`
|
| 604 |
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
but it also does not prevent that entity from being instantiated as
|
| 608 |
-
needed to determine its type.
|
| 609 |
|
| 610 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
|
| 612 |
``` cpp
|
| 613 |
template <typename T> auto f(T t) { return t; }
|
| 614 |
extern template auto f(int); // does not instantiate f<int>
|
| 615 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
|
@@ -622,45 +669,46 @@ int (*p)(int) = f; // instantiates f<int> to determine its return t
|
|
| 622 |
|
| 623 |
*Placeholder type deduction* is the process by which a type containing a
|
| 624 |
placeholder type is replaced by a deduced type.
|
| 625 |
|
| 626 |
A type `T` containing a placeholder type, and a corresponding
|
| 627 |
-
initializer
|
| 628 |
|
| 629 |
- for a non-discarded `return` statement that occurs in a function
|
| 630 |
declared with a return type that contains a placeholder type, `T` is
|
| 631 |
-
the declared return type and
|
| 632 |
-
statement. If the `return` statement has no operand, then
|
| 633 |
`void()`;
|
| 634 |
- for a variable declared with a type that contains a placeholder type,
|
| 635 |
-
`T` is the declared type of the variable and
|
| 636 |
-
|
| 637 |
shall be a *braced-init-list* containing only a single
|
| 638 |
-
*assignment-expression* and
|
| 639 |
- for a non-type template parameter declared with a type that contains a
|
| 640 |
placeholder type, `T` is the declared type of the non-type template
|
| 641 |
-
parameter and
|
| 642 |
|
| 643 |
In the case of a `return` statement with no operand or with an operand
|
| 644 |
-
of type `void`, `T` shall be either
|
|
|
|
| 645 |
|
| 646 |
-
If the deduction is for a `return` statement and
|
| 647 |
-
*braced-init-list*
|
| 648 |
|
| 649 |
-
If the placeholder is the
|
| 650 |
-
replacing `T` is determined using the rules
|
| 651 |
-
deduction. Obtain `P` from `T` by replacing the
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
`std::initializer_list<U>`. Deduce a
|
| 655 |
-
template argument deduction from a
|
| 656 |
-
[[temp.deduct.call]]
|
| 657 |
-
and the corresponding argument is
|
| 658 |
-
declaration is ill-formed. Otherwise, T' is obtained by
|
| 659 |
-
deduced `U` into `P`.
|
| 660 |
|
| 661 |
-
[*Example
|
| 662 |
|
| 663 |
``` cpp
|
| 664 |
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 665 |
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 666 |
auto x3{ 1, 2 }; // error: not a single element
|
|
@@ -668,11 +716,11 @@ auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
|
|
| 668 |
auto x5{ 3 }; // decltype(x5) is int
|
| 669 |
```
|
| 670 |
|
| 671 |
— *end example*]
|
| 672 |
|
| 673 |
-
[*Example
|
| 674 |
|
| 675 |
``` cpp
|
| 676 |
const auto &i = expr;
|
| 677 |
```
|
| 678 |
|
|
@@ -683,16 +731,16 @@ The type of `i` is the deduced type of the parameter `u` in the call
|
|
| 683 |
template <class U> void f(const U& u);
|
| 684 |
```
|
| 685 |
|
| 686 |
— *end example*]
|
| 687 |
|
| 688 |
-
If the placeholder is the
|
| 689 |
-
be the placeholder alone. The type deduced
|
| 690 |
-
described in [[dcl.type.simple]], as though
|
| 691 |
-
the `decltype`.
|
| 692 |
|
| 693 |
-
[*Example
|
| 694 |
|
| 695 |
``` cpp
|
| 696 |
int i;
|
| 697 |
int&& f();
|
| 698 |
auto x2a(i); // decltype(x2a) is int
|
|
@@ -702,36 +750,56 @@ decltype(auto) x3d = i; // decltype(x3d) is int
|
|
| 702 |
auto x4a = (i); // decltype(x4a) is int
|
| 703 |
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 704 |
auto x5a = f(); // decltype(x5a) is int
|
| 705 |
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 706 |
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 707 |
-
decltype(auto) x6d = { 1, 2 }; // error
|
| 708 |
auto *x7a = &i; // decltype(x7a) is int*
|
| 709 |
-
decltype(auto)*x7d = &i; // error
|
| 710 |
```
|
| 711 |
|
| 712 |
— *end example*]
|
| 713 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 714 |
#### Deduced class template specialization types <a id="dcl.type.class.deduct">[[dcl.type.class.deduct]]</a>
|
| 715 |
|
| 716 |
If a placeholder for a deduced class type appears as a *decl-specifier*
|
| 717 |
-
in the *decl-specifier-seq* of an initializing declaration
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 724 |
|
| 725 |
A placeholder for a deduced class type can also be used in the
|
| 726 |
*type-specifier-seq* in the *new-type-id* or *type-id* of a
|
| 727 |
-
*new-expression*
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
|
|
|
| 731 |
|
| 732 |
-
[*Example
|
| 733 |
|
| 734 |
``` cpp
|
| 735 |
template<class T> struct container {
|
| 736 |
container(T t) {}
|
| 737 |
template<class Iter> container(Iter beg, Iter end);
|
|
@@ -740,10 +808,10 @@ template<class Iter>
|
|
| 740 |
container(Iter b, Iter e) -> container<typename std::iterator_traits<Iter>::value_type>;
|
| 741 |
std::vector<double> v = { ... };
|
| 742 |
|
| 743 |
container c(7); // OK, deduces int for T
|
| 744 |
auto d = container(v.begin(), v.end()); // OK, deduces double for T
|
| 745 |
-
container e{5, 6}; // error
|
| 746 |
```
|
| 747 |
|
| 748 |
— *end example*]
|
| 749 |
|
|
|
|
| 29 |
defining-type-specifier defining-type-specifier-seq
|
| 30 |
```
|
| 31 |
|
| 32 |
The optional *attribute-specifier-seq* in a *type-specifier-seq* or a
|
| 33 |
*defining-type-specifier-seq* appertains to the type denoted by the
|
| 34 |
+
preceding *type-specifier*s or *defining-type-specifier*s
|
| 35 |
+
[[dcl.meaning]]. The *attribute-specifier-seq* affects the type only for
|
| 36 |
+
the declaration it appears in, not other declarations involving the same
|
| 37 |
+
type.
|
| 38 |
|
| 39 |
As a general rule, at most one *defining-type-specifier* is allowed in
|
| 40 |
the complete *decl-specifier-seq* of a *declaration* or in a
|
| 41 |
*defining-type-specifier-seq*, and at most one *type-specifier* is
|
| 42 |
allowed in a *type-specifier-seq*. The only exceptions to this rule are
|
|
|
|
| 51 |
- `long` can be combined with `long`.
|
| 52 |
|
| 53 |
Except in a declaration of a constructor, destructor, or conversion
|
| 54 |
function, at least one *defining-type-specifier* that is not a
|
| 55 |
*cv-qualifier* shall appear in a complete *type-specifier-seq* or a
|
| 56 |
+
complete *decl-specifier-seq*.[^1]
|
| 57 |
|
| 58 |
[*Note 1*: *enum-specifier*s, *class-specifier*s, and
|
| 59 |
+
*typename-specifier*s are discussed in [[dcl.enum]], [[class]], and
|
| 60 |
+
[[temp.res]], respectively. The remaining *type-specifier*s are
|
| 61 |
+
discussed in the rest of this subclause. — *end note*]
|
| 62 |
|
| 63 |
#### The *cv-qualifier*s <a id="dcl.type.cv">[[dcl.type.cv]]</a>
|
| 64 |
|
| 65 |
There are two *cv-qualifier*s, `const` and `volatile`. Each
|
| 66 |
*cv-qualifier* shall appear at most once in a *cv-qualifier-seq*. If a
|
|
|
|
| 74 |
Redundant cv-qualifications are ignored.
|
| 75 |
|
| 76 |
[*Note 2*: For example, these could be introduced by
|
| 77 |
typedefs. — *end note*]
|
| 78 |
|
| 79 |
+
[*Note 3*: Declaring a variable `const` can affect its linkage
|
| 80 |
+
[[dcl.stc]] and its usability in constant expressions [[expr.const]]. As
|
| 81 |
+
described in [[dcl.init]], the definition of an object or subobject of
|
| 82 |
+
const-qualified type must specify an initializer or be subject to
|
| 83 |
+
default-initialization. — *end note*]
|
| 84 |
|
| 85 |
A pointer or reference to a cv-qualified type need not actually point or
|
| 86 |
refer to a cv-qualified object, but it is treated as if it does; a
|
| 87 |
const-qualified access path cannot be used to modify an object even if
|
| 88 |
the object referenced is a non-const object and can be modified through
|
| 89 |
some other access path.
|
| 90 |
|
| 91 |
[*Note 4*: Cv-qualifiers are supported by the type system so that they
|
| 92 |
+
cannot be subverted without casting [[expr.const.cast]]. — *end note*]
|
|
|
|
| 93 |
|
| 94 |
+
Any attempt to modify ([[expr.ass]], [[expr.post.incr]],
|
| 95 |
+
[[expr.pre.incr]]) a const object [[basic.type.qualifier]] during its
|
| 96 |
+
lifetime [[basic.life]] results in undefined behavior.
|
| 97 |
|
| 98 |
[*Example 1*:
|
| 99 |
|
| 100 |
``` cpp
|
| 101 |
const int ci = 3; // cv-qualified (initialized as required)
|
| 102 |
+
ci = 4; // error: attempt to modify const
|
| 103 |
|
| 104 |
int i = 2; // not cv-qualified
|
| 105 |
const int* cip; // pointer to const int
|
| 106 |
cip = &i; // OK: cv-qualified access path to unqualified
|
| 107 |
+
*cip = 4; // error: attempt to modify through ptr to const
|
| 108 |
|
| 109 |
int* ip;
|
| 110 |
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
|
| 111 |
*ip = 4; // defined: *ip points to i, a non-const object
|
| 112 |
|
| 113 |
const int* ciq = new const int (3); // initialized as required
|
| 114 |
int* iq = const_cast<int*>(ciq); // cast required
|
| 115 |
+
*iq = 4; // undefined behavior: modifies a const object
|
| 116 |
```
|
| 117 |
|
| 118 |
For another example,
|
| 119 |
|
| 120 |
``` cpp
|
|
|
|
| 127 |
Y();
|
| 128 |
};
|
| 129 |
|
| 130 |
const Y y;
|
| 131 |
y.x.i++; // well-formed: mutable member can be modified
|
| 132 |
+
y.x.j++; // error: const-qualified member modified
|
| 133 |
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
|
| 134 |
p->x.i = 99; // well-formed: mutable member can be modified
|
| 135 |
+
p->x.j = 99; // undefined behavior: modifies a const subobject
|
| 136 |
```
|
| 137 |
|
| 138 |
— *end example*]
|
| 139 |
|
| 140 |
The semantics of an access through a volatile glvalue are
|
|
|
|
| 156 |
The simple type specifiers are
|
| 157 |
|
| 158 |
``` bnf
|
| 159 |
simple-type-specifier:
|
| 160 |
nested-name-specifierₒₚₜ type-name
|
| 161 |
+
nested-name-specifier template simple-template-id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
decltype-specifier
|
| 163 |
+
placeholder-type-specifier
|
| 164 |
+
nested-name-specifierₒₚₜ template-name
|
| 165 |
+
char
|
| 166 |
+
char8_t
|
| 167 |
+
char16_t
|
| 168 |
+
char32_t
|
| 169 |
+
wchar_t
|
| 170 |
+
bool
|
| 171 |
+
short
|
| 172 |
+
int
|
| 173 |
+
long
|
| 174 |
+
signed
|
| 175 |
+
unsigned
|
| 176 |
+
float
|
| 177 |
+
double
|
| 178 |
+
void
|
| 179 |
```
|
| 180 |
|
| 181 |
``` bnf
|
| 182 |
type-name:
|
| 183 |
class-name
|
| 184 |
enum-name
|
| 185 |
typedef-name
|
|
|
|
| 186 |
```
|
| 187 |
|
| 188 |
+
A *placeholder-type-specifier* is a placeholder for a type to be deduced
|
| 189 |
+
[[dcl.spec.auto]]. A *type-specifier* of the form `typename`ₒₚₜ
|
| 190 |
+
*nested-name-specifier*ₒₚₜ *template-name* is a placeholder for a
|
| 191 |
+
deduced class type [[dcl.type.class.deduct]]. The
|
| 192 |
+
*nested-name-specifier*, if any, shall be non-dependent and the
|
| 193 |
+
*template-name* shall name a deducible template. A *deducible template*
|
| 194 |
+
is either a class template or is an alias template whose
|
| 195 |
+
*defining-type-id* is of the form
|
| 196 |
+
|
| 197 |
``` bnf
|
| 198 |
+
typenameₒₚₜ nested-name-specifierₒₚₜ templateₒₚₜ simple-template-id
|
|
|
|
|
|
|
| 199 |
```
|
| 200 |
|
| 201 |
+
where the *nested-name-specifier* (if any) is non-dependent and the
|
| 202 |
+
*template-name* of the *simple-template-id* names a deducible template.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
[*Note 1*: An injected-class-name is never interpreted as a
|
| 205 |
+
*template-name* in contexts where class template argument deduction
|
| 206 |
+
would be performed [[temp.local]]. — *end note*]
|
| 207 |
+
|
| 208 |
+
The other *simple-type-specifier*s specify either a previously-declared
|
| 209 |
+
type, a type determined from an expression, or one of the fundamental
|
| 210 |
+
types [[basic.fundamental]]. [[dcl.type.simple]] summarizes the valid
|
| 211 |
+
combinations of *simple-type-specifier*s and the types they specify.
|
| 212 |
+
|
| 213 |
+
**Table: *simple-type-specifier*{s} and the types they specify** <a id="dcl.type.simple">[dcl.type.simple]</a>
|
| 214 |
|
| 215 |
| Specifier(s) | Type |
|
| 216 |
+
| ---------------------------- | ------------------------------------------------- |
|
| 217 |
| *type-name* | the type named |
|
| 218 |
| *simple-template-id* | the type as defined in~ [[temp.names]] |
|
| 219 |
+
| *decltype-specifier* | the type as defined in~ [[dcl.type.decltype]] |
|
| 220 |
+
| *placeholder-type-specifier* | the type as defined in~ [[dcl.spec.auto]] |
|
| 221 |
+
| *template-name* | the type as defined in~ [[dcl.type.class.deduct]] |
|
| 222 |
+
| `char` | ```char`'' |
|
| 223 |
+
| `unsigned char` | ```unsigned char`'' |
|
| 224 |
+
| `signed char` | ```signed char`'' |
|
| 225 |
+
| `char8_t` | ```char8_t`'' |
|
| 226 |
+
| `char16_t` | ```char16_t`'' |
|
| 227 |
+
| `char32_t` | ```char32_t`'' |
|
| 228 |
+
| `bool` | ```bool`'' |
|
| 229 |
+
| `unsigned` | ```unsigned int`'' |
|
| 230 |
+
| `unsigned int` | ```unsigned int`'' |
|
| 231 |
+
| `signed` | ```int`'' |
|
| 232 |
+
| `signed int` | ```int`'' |
|
| 233 |
+
| `int` | ```int`'' |
|
| 234 |
+
| `unsigned short int` | ```unsigned short int`'' |
|
| 235 |
+
| `unsigned short` | ```unsigned short int`'' |
|
| 236 |
+
| `unsigned long int` | ```unsigned long int`'' |
|
| 237 |
+
| `unsigned long` | ```unsigned long int`'' |
|
| 238 |
+
| `unsigned long long int` | ```unsigned long long int`'' |
|
| 239 |
+
| `unsigned long long` | ```unsigned long long int`'' |
|
| 240 |
+
| `signed long int` | ```long int`'' |
|
| 241 |
+
| `signed long` | ```long int`'' |
|
| 242 |
+
| `signed long long int` | ```long long int`'' |
|
| 243 |
+
| `signed long long` | ```long long int`'' |
|
| 244 |
+
| `long long int` | ```long long int`'' |
|
| 245 |
+
| `long long` | ```long long int`'' |
|
| 246 |
+
| `long int` | ```long int`'' |
|
| 247 |
+
| `long` | ```long int`'' |
|
| 248 |
+
| `signed short int` | ```short int`'' |
|
| 249 |
+
| `signed short` | ```short int`'' |
|
| 250 |
+
| `short int` | ```short int`'' |
|
| 251 |
+
| `short` | ```short int`'' |
|
| 252 |
+
| `wchar_t` | ```wchar_t`'' |
|
| 253 |
+
| `float` | ```float`'' |
|
| 254 |
+
| `double` | ```double`'' |
|
| 255 |
+
| `long double` | ```long double`'' |
|
| 256 |
+
| `void` | ```void`'' |
|
| 257 |
|
| 258 |
|
| 259 |
When multiple *simple-type-specifier*s are allowed, they can be freely
|
| 260 |
intermixed with other *decl-specifier*s in any order.
|
| 261 |
|
| 262 |
+
[*Note 2*: It is *implementation-defined* whether objects of `char`
|
| 263 |
type are represented as signed or unsigned quantities. The `signed`
|
| 264 |
specifier forces `char` objects to be signed; it is redundant in other
|
| 265 |
contexts. — *end note*]
|
| 266 |
|
| 267 |
+
#### Elaborated type specifiers <a id="dcl.type.elab">[[dcl.type.elab]]</a>
|
| 268 |
+
|
| 269 |
+
``` bnf
|
| 270 |
+
elaborated-type-specifier:
|
| 271 |
+
class-key attribute-specifier-seqₒₚₜ nested-name-specifierₒₚₜ identifier
|
| 272 |
+
class-key simple-template-id
|
| 273 |
+
class-key nested-name-specifier templateₒₚₜ simple-template-id
|
| 274 |
+
elaborated-enum-specifier
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
``` bnf
|
| 278 |
+
elaborated-enum-specifier:
|
| 279 |
+
enum nested-name-specifierₒₚₜ identifier
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
An *attribute-specifier-seq* shall not appear in an
|
| 283 |
+
*elaborated-type-specifier* unless the latter is the sole constituent of
|
| 284 |
+
a declaration. If an *elaborated-type-specifier* is the sole constituent
|
| 285 |
+
of a declaration, the declaration is ill-formed unless it is an explicit
|
| 286 |
+
specialization [[temp.expl.spec]], an explicit instantiation
|
| 287 |
+
[[temp.explicit]] or it has one of the following forms:
|
| 288 |
+
|
| 289 |
+
``` bnf
|
| 290 |
+
class-key attribute-specifier-seqₒₚₜ identifier ';'
|
| 291 |
+
friend class-key '::ₒₚₜ ' identifier ';'
|
| 292 |
+
friend class-key '::ₒₚₜ ' simple-template-id ';'
|
| 293 |
+
friend class-key nested-name-specifier identifier ';'
|
| 294 |
+
friend class-key nested-name-specifier templateₒₚₜ simple-template-id ';'
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
+
In the first case, the *attribute-specifier-seq*, if any, appertains to
|
| 298 |
+
the class being declared; the attributes in the
|
| 299 |
+
*attribute-specifier-seq* are thereafter considered attributes of the
|
| 300 |
+
class whenever it is named.
|
| 301 |
+
|
| 302 |
+
[*Note 1*: [[basic.lookup.elab]] describes how name lookup proceeds
|
| 303 |
+
for the *identifier* in an *elaborated-type-specifier*. — *end note*]
|
| 304 |
+
|
| 305 |
+
If the *identifier* or *simple-template-id* resolves to a *class-name*
|
| 306 |
+
or *enum-name*, the *elaborated-type-specifier* introduces it into the
|
| 307 |
+
declaration the same way a *simple-type-specifier* introduces its
|
| 308 |
+
*type-name* [[dcl.type.simple]]. If the *identifier* or
|
| 309 |
+
*simple-template-id* resolves to a *typedef-name* ([[dcl.typedef]],
|
| 310 |
+
[[temp.names]]), the *elaborated-type-specifier* is ill-formed.
|
| 311 |
+
|
| 312 |
+
[*Note 2*:
|
| 313 |
+
|
| 314 |
+
This implies that, within a class template with a template
|
| 315 |
+
*type-parameter* `T`, the declaration
|
| 316 |
+
|
| 317 |
+
``` cpp
|
| 318 |
+
friend class T;
|
| 319 |
+
```
|
| 320 |
+
|
| 321 |
+
is ill-formed. However, the similar declaration `friend T;` is allowed
|
| 322 |
+
[[class.friend]].
|
| 323 |
+
|
| 324 |
+
— *end note*]
|
| 325 |
+
|
| 326 |
+
The *class-key* or `enum` keyword present in the
|
| 327 |
+
*elaborated-type-specifier* shall agree in kind with the declaration to
|
| 328 |
+
which the name in the *elaborated-type-specifier* refers. This rule also
|
| 329 |
+
applies to the form of *elaborated-type-specifier* that declares a
|
| 330 |
+
*class-name* or friend class since it can be construed as referring to
|
| 331 |
+
the definition of the class. Thus, in any *elaborated-type-specifier*,
|
| 332 |
+
the `enum` keyword shall be used to refer to an enumeration
|
| 333 |
+
[[dcl.enum]], the `union` *class-key* shall be used to refer to a union
|
| 334 |
+
[[class.union]], and either the `class` or `struct` *class-key* shall be
|
| 335 |
+
used to refer to a non-union class [[class.pre]].
|
| 336 |
+
|
| 337 |
+
[*Example 1*:
|
| 338 |
+
|
| 339 |
+
``` cpp
|
| 340 |
+
enum class E { a, b };
|
| 341 |
+
enum E x = E::a; // OK
|
| 342 |
+
struct S { } s;
|
| 343 |
+
class S* p = &s; // OK
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
— *end example*]
|
| 347 |
+
|
| 348 |
+
#### Decltype specifiers <a id="dcl.type.decltype">[[dcl.type.decltype]]</a>
|
| 349 |
+
|
| 350 |
+
``` bnf
|
| 351 |
+
decltype-specifier:
|
| 352 |
+
decltype '(' expression ')'
|
| 353 |
+
```
|
| 354 |
+
|
| 355 |
+
For an expression E, the type denoted by `decltype(E)` is defined as
|
| 356 |
follows:
|
| 357 |
|
| 358 |
+
- if E is an unparenthesized *id-expression* naming a structured binding
|
| 359 |
+
[[dcl.struct.bind]], `decltype(E)` is the referenced type as given in
|
| 360 |
+
the specification of the structured binding declaration;
|
| 361 |
+
- otherwise, if E is an unparenthesized *id-expression* naming a
|
| 362 |
+
non-type *template-parameter* [[temp.param]], `decltype(E)` is the
|
| 363 |
+
type of the *template-parameter* after performing any necessary type
|
| 364 |
+
deduction ([[dcl.spec.auto]], [[dcl.type.class.deduct]]);
|
| 365 |
+
- otherwise, if E is an unparenthesized *id-expression* or an
|
| 366 |
+
unparenthesized class member access [[expr.ref]], `decltype(E)` is the
|
| 367 |
+
type of the entity named by E. If there is no such entity, or if E
|
| 368 |
+
names a set of overloaded functions, the program is ill-formed;
|
| 369 |
+
- otherwise, if E is an xvalue, `decltype(E)` is `T&&`, where `T` is the
|
| 370 |
+
type of E;
|
| 371 |
+
- otherwise, if E is an lvalue, `decltype(E)` is `T&`, where `T` is the
|
| 372 |
+
type of E;
|
| 373 |
+
- otherwise, `decltype(E)` is the type of E.
|
| 374 |
|
| 375 |
The operand of the `decltype` specifier is an unevaluated operand
|
| 376 |
+
[[expr.prop]].
|
| 377 |
|
| 378 |
[*Example 1*:
|
| 379 |
|
| 380 |
``` cpp
|
| 381 |
const int&& foo();
|
|
|
|
| 388 |
decltype((a->x)) x4 = x3; // type is const double&
|
| 389 |
```
|
| 390 |
|
| 391 |
— *end example*]
|
| 392 |
|
| 393 |
+
[*Note 1*: The rules for determining types involving `decltype(auto)`
|
| 394 |
are specified in [[dcl.spec.auto]]. — *end note*]
|
| 395 |
|
| 396 |
+
If the operand of a *decltype-specifier* is a prvalue and is not a
|
| 397 |
+
(possibly parenthesized) immediate invocation [[expr.const]], the
|
| 398 |
+
temporary materialization conversion is not applied [[conv.rval]] and no
|
| 399 |
+
result object is provided for the prvalue. The type of the prvalue may
|
| 400 |
+
be incomplete or an abstract class type.
|
| 401 |
|
| 402 |
+
[*Note 2*: As a result, storage is not allocated for the prvalue and it
|
| 403 |
is not destroyed. Thus, a class type is not instantiated as a result of
|
| 404 |
being the type of a function call in this context. In this context, the
|
| 405 |
common purpose of writing the expression is merely to refer to its type.
|
| 406 |
In that sense, a *decltype-specifier* is analogous to a use of a
|
| 407 |
*typedef-name*, so the usual reasons for requiring a complete type do
|
| 408 |
not apply. In particular, it is not necessary to allocate storage for a
|
| 409 |
temporary object or to enforce the semantic constraints associated with
|
| 410 |
invoking the type’s destructor. — *end note*]
|
| 411 |
|
| 412 |
+
[*Note 3*: Unlike the preceding rule, parentheses have no special
|
| 413 |
meaning in this context. — *end note*]
|
| 414 |
|
| 415 |
[*Example 2*:
|
| 416 |
|
| 417 |
``` cpp
|
|
|
|
| 426 |
// (A temporary is not introduced as a result of the use of i().)
|
| 427 |
template<class T> auto f(T) // #2
|
| 428 |
-> void;
|
| 429 |
auto g() -> void {
|
| 430 |
f(42); // OK: calls #2. (#1 is not a viable candidate: type deduction
|
| 431 |
+
// fails[temp.deduct] because A<int>::~A() is implicitly used in its
|
| 432 |
// decltype-specifier)
|
| 433 |
}
|
| 434 |
template<class T> auto q(T)
|
| 435 |
-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is not implicitly
|
| 436 |
// used within the context of this decltype-specifier
|
| 437 |
void r() {
|
| 438 |
+
q(42); // error: deduction against q succeeds, so overload resolution selects
|
| 439 |
+
// the specialization ``q(T) -> decltype((h<T>()))'' with T=int;
|
| 440 |
+
// the return type is A<int>, so a temporary is introduced and its
|
| 441 |
+
// destructor is used, so the program is ill-formed
|
| 442 |
}
|
| 443 |
```
|
| 444 |
|
| 445 |
— *end example*]
|
| 446 |
|
| 447 |
+
#### Placeholder type specifiers <a id="dcl.spec.auto">[[dcl.spec.auto]]</a>
|
| 448 |
|
| 449 |
``` bnf
|
| 450 |
+
placeholder-type-specifier:
|
| 451 |
+
type-constraintₒₚₜ auto
|
| 452 |
+
type-constraintₒₚₜ decltype '(' auto ')'
|
|
|
|
|
|
|
| 453 |
```
|
| 454 |
|
| 455 |
+
A *placeholder-type-specifier* designates a placeholder type that will
|
| 456 |
+
be replaced later by deduction from an initializer.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
+
A *placeholder-type-specifier* of the form *type-constraint*ₒₚₜ `auto`
|
| 459 |
+
can be used as a *decl-specifier* of the *decl-specifier-seq* of a
|
| 460 |
+
*parameter-declaration* of a function declaration or *lambda-expression*
|
| 461 |
+
and, if it is not the `auto` *type-specifier* introducing a
|
| 462 |
+
*trailing-return-type* (see below), is a *generic parameter type
|
| 463 |
+
placeholder* of the function declaration or *lambda-expression*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
| 465 |
+
[*Note 1*: Having a generic parameter type placeholder signifies that
|
| 466 |
+
the function is an abbreviated function template [[dcl.fct]] or the
|
| 467 |
+
lambda is a generic lambda [[expr.prim.lambda]]. — *end note*]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
The placeholder type can appear with a function declarator in the
|
| 470 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 471 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 472 |
+
If the function declarator includes a *trailing-return-type*
|
| 473 |
+
[[dcl.fct]], that *trailing-return-type* specifies the declared return
|
| 474 |
type of the function. Otherwise, the function declarator shall declare a
|
| 475 |
function. If the declared return type of the function contains a
|
| 476 |
placeholder type, the return type of the function is deduced from
|
| 477 |
+
non-discarded `return` statements, if any, in the body of the function
|
| 478 |
+
[[stmt.if]].
|
| 479 |
+
|
| 480 |
+
The type of a variable declared using a placeholder type is deduced from
|
| 481 |
+
its initializer. This use is allowed in an initializing declaration
|
| 482 |
+
[[dcl.init]] of a variable. The placeholder type shall appear as one of
|
| 483 |
+
the *decl-specifier*s in the *decl-specifier-seq* and the
|
| 484 |
+
*decl-specifier-seq* shall be followed by one or more *declarator*s,
|
| 485 |
+
each of which shall be followed by a non-empty *initializer*. In an
|
| 486 |
+
*initializer* of the form
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
``` cpp
|
| 489 |
( expression-list )
|
| 490 |
```
|
| 491 |
|
| 492 |
the *expression-list* shall be a single *assignment-expression*.
|
| 493 |
|
| 494 |
+
[*Example 1*:
|
| 495 |
|
| 496 |
``` cpp
|
| 497 |
auto x = 5; // OK: x has type int
|
| 498 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 499 |
static auto y = 0.0; // OK: y has type double
|
|
|
|
| 503 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 504 |
```
|
| 505 |
|
| 506 |
— *end example*]
|
| 507 |
|
| 508 |
+
The `auto` *type-specifier* can also be used to introduce a structured
|
| 509 |
+
binding declaration [[dcl.struct.bind]].
|
| 510 |
+
|
| 511 |
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 512 |
+
*new-type-id* or *type-id* of a *new-expression* [[expr.new]] and as a
|
| 513 |
+
*decl-specifier* of the *parameter-declaration*'s *decl-specifier-seq*
|
| 514 |
+
in a *template-parameter* [[temp.param]].
|
| 515 |
|
| 516 |
+
A program that uses a placeholder type in a context not explicitly
|
| 517 |
+
allowed in this subclause is ill-formed.
|
| 518 |
|
| 519 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 520 |
they shall all form declarations of variables. The type of each declared
|
| 521 |
+
variable is determined by placeholder type deduction
|
| 522 |
+
[[dcl.type.auto.deduct]], and if the type that replaces the placeholder
|
| 523 |
type is not the same in each deduction, the program is ill-formed.
|
| 524 |
|
| 525 |
+
[*Example 2*:
|
| 526 |
|
| 527 |
``` cpp
|
| 528 |
auto x = 5, *y = &x; // OK: auto is int
|
| 529 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 530 |
```
|
|
|
|
| 539 |
If a function with a declared return type that uses a placeholder type
|
| 540 |
has no non-discarded `return` statements, the return type is deduced as
|
| 541 |
though from a `return` statement with no operand at the closing brace of
|
| 542 |
the function body.
|
| 543 |
|
| 544 |
+
[*Example 3*:
|
| 545 |
|
| 546 |
``` cpp
|
| 547 |
auto f() { } // OK, return type is void
|
| 548 |
+
auto* g() { } // error: cannot deduce auto* from void()
|
| 549 |
```
|
| 550 |
|
| 551 |
— *end example*]
|
| 552 |
|
| 553 |
+
An exported function with a declared return type that uses a placeholder
|
| 554 |
+
type shall be defined in the translation unit containing its exported
|
| 555 |
+
declaration, outside the *private-module-fragment* (if any).
|
|
|
|
|
|
|
| 556 |
|
| 557 |
+
[*Note 2*: The deduced return type cannot have a name with internal
|
| 558 |
+
linkage [[basic.link]]. — *end note*]
|
| 559 |
+
|
| 560 |
+
If the name of an entity with an undeduced placeholder type appears in
|
| 561 |
+
an expression, the program is ill-formed. Once a non-discarded `return`
|
| 562 |
+
statement has been seen in a function, however, the return type deduced
|
| 563 |
+
from that statement can be used in the rest of the function, including
|
| 564 |
+
in other `return` statements.
|
| 565 |
+
|
| 566 |
+
[*Example 4*:
|
| 567 |
|
| 568 |
``` cpp
|
| 569 |
+
auto n = n; // error: n's initializer refers to n
|
| 570 |
auto f();
|
| 571 |
+
void g() { &f; } // error: f's return type is unknown
|
| 572 |
auto sum(int i) {
|
| 573 |
if (i == 1)
|
| 574 |
return i; // sum's return type is int
|
| 575 |
else
|
| 576 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 577 |
}
|
| 578 |
```
|
| 579 |
|
| 580 |
— *end example*]
|
| 581 |
|
| 582 |
+
Return type deduction for a templated entity that is a function or
|
| 583 |
+
function template with a placeholder in its declared type occurs when
|
| 584 |
+
the definition is instantiated even if the function body contains a
|
| 585 |
+
`return` statement with a non-type-dependent operand.
|
| 586 |
|
| 587 |
+
[*Note 3*: Therefore, any use of a specialization of the function
|
| 588 |
template will cause an implicit instantiation. Any errors that arise
|
| 589 |
from this instantiation are not in the immediate context of the function
|
| 590 |
+
type and can result in the program being ill-formed
|
| 591 |
+
[[temp.deduct]]. — *end note*]
|
| 592 |
|
| 593 |
+
[*Example 5*:
|
| 594 |
|
| 595 |
``` cpp
|
| 596 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 597 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 598 |
template<class T> auto f(T* t) { return *t; }
|
|
|
|
| 602 |
|
| 603 |
— *end example*]
|
| 604 |
|
| 605 |
Redeclarations or specializations of a function or function template
|
| 606 |
with a declared return type that uses a placeholder type shall also use
|
| 607 |
+
that placeholder, not a deduced type. Similarly, redeclarations or
|
| 608 |
+
specializations of a function or function template with a declared
|
| 609 |
+
return type that does not use a placeholder type shall not use a
|
| 610 |
+
placeholder.
|
| 611 |
|
| 612 |
+
[*Example 6*:
|
| 613 |
|
| 614 |
``` cpp
|
| 615 |
auto f();
|
| 616 |
auto f() { return 42; } // return type is int
|
| 617 |
auto f(); // OK
|
| 618 |
+
int f(); // error: cannot be overloaded with auto f()
|
| 619 |
+
decltype(auto) f(); // error: auto and decltype(auto) don't match
|
| 620 |
|
| 621 |
template <typename T> auto g(T t) { return t; } // #1
|
| 622 |
template auto g(int); // OK, return type is int
|
| 623 |
+
template char g(char); // error: no matching template
|
| 624 |
template<> auto g(double); // OK, forward declaration with unknown return type
|
| 625 |
|
| 626 |
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
|
| 627 |
template char g(char); // OK, now there is a matching template
|
| 628 |
template auto g(float); // still matches #1
|
| 629 |
|
| 630 |
+
void h() { return g(42); } // error: ambiguous
|
| 631 |
|
| 632 |
template <typename T> struct A {
|
| 633 |
friend T frf(T);
|
| 634 |
};
|
| 635 |
auto frf(int i) { return i; } // not a friend of A<int>
|
| 636 |
+
extern int v;
|
| 637 |
+
auto v = 17; // OK, redeclares v
|
| 638 |
+
struct S {
|
| 639 |
+
static int i;
|
| 640 |
+
};
|
| 641 |
+
auto S::i = 23; // OK
|
| 642 |
```
|
| 643 |
|
| 644 |
— *end example*]
|
| 645 |
|
| 646 |
A function declared with a return type that uses a placeholder type
|
| 647 |
+
shall not be `virtual` [[class.virtual]].
|
| 648 |
|
| 649 |
+
A function declared with a return type that uses a placeholder type
|
| 650 |
+
shall not be a coroutine [[dcl.fct.def.coroutine]].
|
|
|
|
|
|
|
| 651 |
|
| 652 |
+
An explicit instantiation declaration [[temp.explicit]] does not cause
|
| 653 |
+
the instantiation of an entity declared using a placeholder type, but it
|
| 654 |
+
also does not prevent that entity from being instantiated as needed to
|
| 655 |
+
determine its type.
|
| 656 |
+
|
| 657 |
+
[*Example 7*:
|
| 658 |
|
| 659 |
``` cpp
|
| 660 |
template <typename T> auto f(T t) { return t; }
|
| 661 |
extern template auto f(int); // does not instantiate f<int>
|
| 662 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
|
|
|
| 669 |
|
| 670 |
*Placeholder type deduction* is the process by which a type containing a
|
| 671 |
placeholder type is replaced by a deduced type.
|
| 672 |
|
| 673 |
A type `T` containing a placeholder type, and a corresponding
|
| 674 |
+
initializer E, are determined as follows:
|
| 675 |
|
| 676 |
- for a non-discarded `return` statement that occurs in a function
|
| 677 |
declared with a return type that contains a placeholder type, `T` is
|
| 678 |
+
the declared return type and E is the operand of the `return`
|
| 679 |
+
statement. If the `return` statement has no operand, then E is
|
| 680 |
`void()`;
|
| 681 |
- for a variable declared with a type that contains a placeholder type,
|
| 682 |
+
`T` is the declared type of the variable and E is the initializer. If
|
| 683 |
+
the initialization is direct-list-initialization, the initializer
|
| 684 |
shall be a *braced-init-list* containing only a single
|
| 685 |
+
*assignment-expression* and E is the *assignment-expression*;
|
| 686 |
- for a non-type template parameter declared with a type that contains a
|
| 687 |
placeholder type, `T` is the declared type of the non-type template
|
| 688 |
+
parameter and E is the corresponding template argument.
|
| 689 |
|
| 690 |
In the case of a `return` statement with no operand or with an operand
|
| 691 |
+
of type `void`, `T` shall be either *type-constraint*ₒₚₜ
|
| 692 |
+
`decltype(auto)` or cv *type-constraint*ₒₚₜ `auto`.
|
| 693 |
|
| 694 |
+
If the deduction is for a `return` statement and E is a
|
| 695 |
+
*braced-init-list* [[dcl.init.list]], the program is ill-formed.
|
| 696 |
|
| 697 |
+
If the *placeholder-type-specifier* is of the form *type-constraint*ₒₚₜ
|
| 698 |
+
`auto`, the deduced type T' replacing `T` is determined using the rules
|
| 699 |
+
for template argument deduction. Obtain `P` from `T` by replacing the
|
| 700 |
+
occurrences of *type-constraint*ₒₚₜ `auto` either with a new invented
|
| 701 |
+
type template parameter `U` or, if the initialization is
|
| 702 |
+
copy-list-initialization, with `std::initializer_list<U>`. Deduce a
|
| 703 |
+
value for `U` using the rules of template argument deduction from a
|
| 704 |
+
function call [[temp.deduct.call]], where `P` is a function template
|
| 705 |
+
parameter type and the corresponding argument is E. If the deduction
|
| 706 |
+
fails, the declaration is ill-formed. Otherwise, T' is obtained by
|
| 707 |
+
substituting the deduced `U` into `P`.
|
| 708 |
|
| 709 |
+
[*Example 8*:
|
| 710 |
|
| 711 |
``` cpp
|
| 712 |
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 713 |
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 714 |
auto x3{ 1, 2 }; // error: not a single element
|
|
|
|
| 716 |
auto x5{ 3 }; // decltype(x5) is int
|
| 717 |
```
|
| 718 |
|
| 719 |
— *end example*]
|
| 720 |
|
| 721 |
+
[*Example 9*:
|
| 722 |
|
| 723 |
``` cpp
|
| 724 |
const auto &i = expr;
|
| 725 |
```
|
| 726 |
|
|
|
|
| 731 |
template <class U> void f(const U& u);
|
| 732 |
```
|
| 733 |
|
| 734 |
— *end example*]
|
| 735 |
|
| 736 |
+
If the *placeholder-type-specifier* is of the form *type-constraint*ₒₚₜ
|
| 737 |
+
`decltype(auto)`, `T` shall be the placeholder alone. The type deduced
|
| 738 |
+
for `T` is determined as described in [[dcl.type.simple]], as though E
|
| 739 |
+
had been the operand of the `decltype`.
|
| 740 |
|
| 741 |
+
[*Example 10*:
|
| 742 |
|
| 743 |
``` cpp
|
| 744 |
int i;
|
| 745 |
int&& f();
|
| 746 |
auto x2a(i); // decltype(x2a) is int
|
|
|
|
| 750 |
auto x4a = (i); // decltype(x4a) is int
|
| 751 |
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 752 |
auto x5a = f(); // decltype(x5a) is int
|
| 753 |
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 754 |
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 755 |
+
decltype(auto) x6d = { 1, 2 }; // error: { 1, 2 } is not an expression
|
| 756 |
auto *x7a = &i; // decltype(x7a) is int*
|
| 757 |
+
decltype(auto)*x7d = &i; // error: declared type is not plain decltype(auto)
|
| 758 |
```
|
| 759 |
|
| 760 |
— *end example*]
|
| 761 |
|
| 762 |
+
For a *placeholder-type-specifier* with a *type-constraint*, the
|
| 763 |
+
immediately-declared constraint [[temp.param]] of the *type-constraint*
|
| 764 |
+
for the type deduced for the placeholder shall be satisfied.
|
| 765 |
+
|
| 766 |
#### Deduced class template specialization types <a id="dcl.type.class.deduct">[[dcl.type.class.deduct]]</a>
|
| 767 |
|
| 768 |
If a placeholder for a deduced class type appears as a *decl-specifier*
|
| 769 |
+
in the *decl-specifier-seq* of an initializing declaration [[dcl.init]]
|
| 770 |
+
of a variable, the declared type of the variable shall be cv `T`, where
|
| 771 |
+
`T` is the placeholder.
|
| 772 |
+
|
| 773 |
+
[*Example 1*:
|
| 774 |
+
|
| 775 |
+
``` cpp
|
| 776 |
+
template <class ...T> struct A {
|
| 777 |
+
A(T...) {}
|
| 778 |
+
};
|
| 779 |
+
A x[29]{}; // error: no declarator operators allowed
|
| 780 |
+
const A& y{}; // error: no declarator operators allowed
|
| 781 |
+
```
|
| 782 |
+
|
| 783 |
+
— *end example*]
|
| 784 |
+
|
| 785 |
+
The placeholder is replaced by the return type of the function selected
|
| 786 |
+
by overload resolution for class template deduction
|
| 787 |
+
[[over.match.class.deduct]]. If the *decl-specifier-seq* is followed by
|
| 788 |
+
an *init-declarator-list* or *member-declarator-list* containing more
|
| 789 |
+
than one *declarator*, the type that replaces the placeholder shall be
|
| 790 |
+
the same in each deduction.
|
| 791 |
|
| 792 |
A placeholder for a deduced class type can also be used in the
|
| 793 |
*type-specifier-seq* in the *new-type-id* or *type-id* of a
|
| 794 |
+
*new-expression* [[expr.new]], as the *simple-type-specifier* in an
|
| 795 |
+
explicit type conversion (functional notation) [[expr.type.conv]], or as
|
| 796 |
+
the *type-specifier* in the *parameter-declaration* of a
|
| 797 |
+
*template-parameter* [[temp.param]]. A placeholder for a deduced class
|
| 798 |
+
type shall not appear in any other context.
|
| 799 |
|
| 800 |
+
[*Example 2*:
|
| 801 |
|
| 802 |
``` cpp
|
| 803 |
template<class T> struct container {
|
| 804 |
container(T t) {}
|
| 805 |
template<class Iter> container(Iter beg, Iter end);
|
|
|
|
| 808 |
container(Iter b, Iter e) -> container<typename std::iterator_traits<Iter>::value_type>;
|
| 809 |
std::vector<double> v = { ... };
|
| 810 |
|
| 811 |
container c(7); // OK, deduces int for T
|
| 812 |
auto d = container(v.begin(), v.end()); // OK, deduces double for T
|
| 813 |
+
container e{5, 6}; // error: int is not an iterator
|
| 814 |
```
|
| 815 |
|
| 816 |
— *end example*]
|
| 817 |
|