- tmp/tmppvd3j7tt/{from.md → to.md} +129 -103
tmp/tmppvd3j7tt/{from.md → to.md}
RENAMED
|
@@ -1,54 +1,53 @@
|
|
| 1 |
-
####
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
The placeholder type can appear with a function declarator in the
|
| 12 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 13 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 14 |
-
If the function declarator includes a *trailing-return-type*
|
| 15 |
-
[[dcl.fct]]
|
| 16 |
type of the function. Otherwise, the function declarator shall declare a
|
| 17 |
function. If the declared return type of the function contains a
|
| 18 |
placeholder type, the return type of the function is deduced from
|
| 19 |
-
non-discarded `return` statements, if any, in the body of the function
|
| 20 |
-
[[stmt.if]]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
``` cpp
|
| 30 |
-
auto glambda = [](int i, auto a) { return i; }; // OK: a generic lambda
|
| 31 |
-
```
|
| 32 |
-
|
| 33 |
-
— *end example*]
|
| 34 |
-
|
| 35 |
-
The type of a variable declared using `auto` or `decltype(auto)` is
|
| 36 |
-
deduced from its initializer. This use is allowed in an initializing
|
| 37 |
-
declaration ([[dcl.init]]) of a variable. `auto` or `decltype(auto)`
|
| 38 |
-
shall appear as one of the *decl-specifier*s in the *decl-specifier-seq*
|
| 39 |
-
and the *decl-specifier-seq* shall be followed by one or more
|
| 40 |
-
*declarator*s, each of which shall be followed by a non-empty
|
| 41 |
-
*initializer*. In an *initializer* of the form
|
| 42 |
|
| 43 |
``` cpp
|
| 44 |
( expression-list )
|
| 45 |
```
|
| 46 |
|
| 47 |
the *expression-list* shall be a single *assignment-expression*.
|
| 48 |
|
| 49 |
-
[*Example
|
| 50 |
|
| 51 |
``` cpp
|
| 52 |
auto x = 5; // OK: x has type int
|
| 53 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 54 |
static auto y = 0.0; // OK: y has type double
|
|
@@ -58,25 +57,28 @@ auto g() { return 0.0; } // OK: g returns double
|
|
| 58 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 59 |
```
|
| 60 |
|
| 61 |
— *end example*]
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 64 |
-
*new-type-id* or *type-id* of a *new-expression*
|
| 65 |
-
|
| 66 |
-
in a *template-parameter*
|
| 67 |
|
| 68 |
-
A program that uses
|
| 69 |
-
|
| 70 |
|
| 71 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 72 |
they shall all form declarations of variables. The type of each declared
|
| 73 |
-
variable is determined by placeholder type deduction
|
| 74 |
-
[[dcl.type.auto.deduct]]
|
| 75 |
type is not the same in each deduction, the program is ill-formed.
|
| 76 |
|
| 77 |
-
[*Example
|
| 78 |
|
| 79 |
``` cpp
|
| 80 |
auto x = 5, *y = &x; // OK: auto is int
|
| 81 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 82 |
```
|
|
@@ -91,53 +93,60 @@ same in each deduction, the program is ill-formed.
|
|
| 91 |
If a function with a declared return type that uses a placeholder type
|
| 92 |
has no non-discarded `return` statements, the return type is deduced as
|
| 93 |
though from a `return` statement with no operand at the closing brace of
|
| 94 |
the function body.
|
| 95 |
|
| 96 |
-
[*Example
|
| 97 |
|
| 98 |
``` cpp
|
| 99 |
auto f() { } // OK, return type is void
|
| 100 |
-
auto* g() { } // error
|
| 101 |
```
|
| 102 |
|
| 103 |
— *end example*]
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
the return type deduced from that statement can be used in the rest of
|
| 109 |
-
the function, including in other `return` statements.
|
| 110 |
|
| 111 |
-
[*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
``` cpp
|
| 114 |
-
auto n = n; // error
|
| 115 |
auto f();
|
| 116 |
-
void g() { &f; } // error
|
| 117 |
auto sum(int i) {
|
| 118 |
if (i == 1)
|
| 119 |
return i; // sum's return type is int
|
| 120 |
else
|
| 121 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 122 |
}
|
| 123 |
```
|
| 124 |
|
| 125 |
— *end example*]
|
| 126 |
|
| 127 |
-
Return type deduction for a
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
operand.
|
| 131 |
|
| 132 |
-
[*Note
|
| 133 |
template will cause an implicit instantiation. Any errors that arise
|
| 134 |
from this instantiation are not in the immediate context of the function
|
| 135 |
-
type and can result in the program being ill-formed
|
| 136 |
-
[[temp.deduct]]
|
| 137 |
|
| 138 |
-
[*Example
|
| 139 |
|
| 140 |
``` cpp
|
| 141 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 142 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 143 |
template<class T> auto f(T* t) { return *t; }
|
|
@@ -147,49 +156,61 @@ void g() { int (*p)(int*) = &f; } // instantiates both fs to deter
|
|
| 147 |
|
| 148 |
— *end example*]
|
| 149 |
|
| 150 |
Redeclarations or specializations of a function or function template
|
| 151 |
with a declared return type that uses a placeholder type shall also use
|
| 152 |
-
that placeholder, not a deduced type.
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
[*Example
|
| 155 |
|
| 156 |
``` cpp
|
| 157 |
auto f();
|
| 158 |
auto f() { return 42; } // return type is int
|
| 159 |
auto f(); // OK
|
| 160 |
-
int f(); // error
|
| 161 |
-
decltype(auto) f(); // error
|
| 162 |
|
| 163 |
template <typename T> auto g(T t) { return t; } // #1
|
| 164 |
template auto g(int); // OK, return type is int
|
| 165 |
-
template char g(char); // error
|
| 166 |
template<> auto g(double); // OK, forward declaration with unknown return type
|
| 167 |
|
| 168 |
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
|
| 169 |
template char g(char); // OK, now there is a matching template
|
| 170 |
template auto g(float); // still matches #1
|
| 171 |
|
| 172 |
-
void h() { return g(42); } // error
|
| 173 |
|
| 174 |
template <typename T> struct A {
|
| 175 |
friend T frf(T);
|
| 176 |
};
|
| 177 |
auto frf(int i) { return i; } // not a friend of A<int>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
```
|
| 179 |
|
| 180 |
— *end example*]
|
| 181 |
|
| 182 |
A function declared with a return type that uses a placeholder type
|
| 183 |
-
shall not be `virtual`
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
but it also does not prevent that entity from being instantiated as
|
| 188 |
-
needed to determine its type.
|
| 189 |
|
| 190 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
``` cpp
|
| 193 |
template <typename T> auto f(T t) { return t; }
|
| 194 |
extern template auto f(int); // does not instantiate f<int>
|
| 195 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
|
@@ -202,45 +223,46 @@ int (*p)(int) = f; // instantiates f<int> to determine its return t
|
|
| 202 |
|
| 203 |
*Placeholder type deduction* is the process by which a type containing a
|
| 204 |
placeholder type is replaced by a deduced type.
|
| 205 |
|
| 206 |
A type `T` containing a placeholder type, and a corresponding
|
| 207 |
-
initializer
|
| 208 |
|
| 209 |
- for a non-discarded `return` statement that occurs in a function
|
| 210 |
declared with a return type that contains a placeholder type, `T` is
|
| 211 |
-
the declared return type and
|
| 212 |
-
statement. If the `return` statement has no operand, then
|
| 213 |
`void()`;
|
| 214 |
- for a variable declared with a type that contains a placeholder type,
|
| 215 |
-
`T` is the declared type of the variable and
|
| 216 |
-
|
| 217 |
shall be a *braced-init-list* containing only a single
|
| 218 |
-
*assignment-expression* and
|
| 219 |
- for a non-type template parameter declared with a type that contains a
|
| 220 |
placeholder type, `T` is the declared type of the non-type template
|
| 221 |
-
parameter and
|
| 222 |
|
| 223 |
In the case of a `return` statement with no operand or with an operand
|
| 224 |
-
of type `void`, `T` shall be either
|
|
|
|
| 225 |
|
| 226 |
-
If the deduction is for a `return` statement and
|
| 227 |
-
*braced-init-list*
|
| 228 |
|
| 229 |
-
If the placeholder is the
|
| 230 |
-
replacing `T` is determined using the rules
|
| 231 |
-
deduction. Obtain `P` from `T` by replacing the
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
`std::initializer_list<U>`. Deduce a
|
| 235 |
-
template argument deduction from a
|
| 236 |
-
[[temp.deduct.call]]
|
| 237 |
-
and the corresponding argument is
|
| 238 |
-
declaration is ill-formed. Otherwise, T' is obtained by
|
| 239 |
-
deduced `U` into `P`.
|
| 240 |
|
| 241 |
-
[*Example
|
| 242 |
|
| 243 |
``` cpp
|
| 244 |
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 245 |
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 246 |
auto x3{ 1, 2 }; // error: not a single element
|
|
@@ -248,11 +270,11 @@ auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
|
|
| 248 |
auto x5{ 3 }; // decltype(x5) is int
|
| 249 |
```
|
| 250 |
|
| 251 |
— *end example*]
|
| 252 |
|
| 253 |
-
[*Example
|
| 254 |
|
| 255 |
``` cpp
|
| 256 |
const auto &i = expr;
|
| 257 |
```
|
| 258 |
|
|
@@ -263,16 +285,16 @@ The type of `i` is the deduced type of the parameter `u` in the call
|
|
| 263 |
template <class U> void f(const U& u);
|
| 264 |
```
|
| 265 |
|
| 266 |
— *end example*]
|
| 267 |
|
| 268 |
-
If the placeholder is the
|
| 269 |
-
be the placeholder alone. The type deduced
|
| 270 |
-
described in [[dcl.type.simple]], as though
|
| 271 |
-
the `decltype`.
|
| 272 |
|
| 273 |
-
[*Example
|
| 274 |
|
| 275 |
``` cpp
|
| 276 |
int i;
|
| 277 |
int&& f();
|
| 278 |
auto x2a(i); // decltype(x2a) is int
|
|
@@ -282,12 +304,16 @@ decltype(auto) x3d = i; // decltype(x3d) is int
|
|
| 282 |
auto x4a = (i); // decltype(x4a) is int
|
| 283 |
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 284 |
auto x5a = f(); // decltype(x5a) is int
|
| 285 |
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 286 |
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 287 |
-
decltype(auto) x6d = { 1, 2 }; // error
|
| 288 |
auto *x7a = &i; // decltype(x7a) is int*
|
| 289 |
-
decltype(auto)*x7d = &i; // error
|
| 290 |
```
|
| 291 |
|
| 292 |
— *end example*]
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Placeholder type specifiers <a id="dcl.spec.auto">[[dcl.spec.auto]]</a>
|
| 2 |
+
|
| 3 |
+
``` bnf
|
| 4 |
+
placeholder-type-specifier:
|
| 5 |
+
type-constraintₒₚₜ auto
|
| 6 |
+
type-constraintₒₚₜ decltype '(' auto ')'
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
A *placeholder-type-specifier* designates a placeholder type that will
|
| 10 |
+
be replaced later by deduction from an initializer.
|
| 11 |
+
|
| 12 |
+
A *placeholder-type-specifier* of the form *type-constraint*ₒₚₜ `auto`
|
| 13 |
+
can be used as a *decl-specifier* of the *decl-specifier-seq* of a
|
| 14 |
+
*parameter-declaration* of a function declaration or *lambda-expression*
|
| 15 |
+
and, if it is not the `auto` *type-specifier* introducing a
|
| 16 |
+
*trailing-return-type* (see below), is a *generic parameter type
|
| 17 |
+
placeholder* of the function declaration or *lambda-expression*.
|
| 18 |
+
|
| 19 |
+
[*Note 1*: Having a generic parameter type placeholder signifies that
|
| 20 |
+
the function is an abbreviated function template [[dcl.fct]] or the
|
| 21 |
+
lambda is a generic lambda [[expr.prim.lambda]]. — *end note*]
|
| 22 |
|
| 23 |
The placeholder type can appear with a function declarator in the
|
| 24 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 25 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 26 |
+
If the function declarator includes a *trailing-return-type*
|
| 27 |
+
[[dcl.fct]], that *trailing-return-type* specifies the declared return
|
| 28 |
type of the function. Otherwise, the function declarator shall declare a
|
| 29 |
function. If the declared return type of the function contains a
|
| 30 |
placeholder type, the return type of the function is deduced from
|
| 31 |
+
non-discarded `return` statements, if any, in the body of the function
|
| 32 |
+
[[stmt.if]].
|
| 33 |
+
|
| 34 |
+
The type of a variable declared using a placeholder type is deduced from
|
| 35 |
+
its initializer. This use is allowed in an initializing declaration
|
| 36 |
+
[[dcl.init]] of a variable. The placeholder type shall appear as one of
|
| 37 |
+
the *decl-specifier*s in the *decl-specifier-seq* and the
|
| 38 |
+
*decl-specifier-seq* shall be followed by one or more *declarator*s,
|
| 39 |
+
each of which shall be followed by a non-empty *initializer*. In an
|
| 40 |
+
*initializer* of the form
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
``` cpp
|
| 43 |
( expression-list )
|
| 44 |
```
|
| 45 |
|
| 46 |
the *expression-list* shall be a single *assignment-expression*.
|
| 47 |
|
| 48 |
+
[*Example 1*:
|
| 49 |
|
| 50 |
``` cpp
|
| 51 |
auto x = 5; // OK: x has type int
|
| 52 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 53 |
static auto y = 0.0; // OK: y has type double
|
|
|
|
| 57 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 58 |
```
|
| 59 |
|
| 60 |
— *end example*]
|
| 61 |
|
| 62 |
+
The `auto` *type-specifier* can also be used to introduce a structured
|
| 63 |
+
binding declaration [[dcl.struct.bind]].
|
| 64 |
+
|
| 65 |
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 66 |
+
*new-type-id* or *type-id* of a *new-expression* [[expr.new]] and as a
|
| 67 |
+
*decl-specifier* of the *parameter-declaration*'s *decl-specifier-seq*
|
| 68 |
+
in a *template-parameter* [[temp.param]].
|
| 69 |
|
| 70 |
+
A program that uses a placeholder type in a context not explicitly
|
| 71 |
+
allowed in this subclause is ill-formed.
|
| 72 |
|
| 73 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 74 |
they shall all form declarations of variables. The type of each declared
|
| 75 |
+
variable is determined by placeholder type deduction
|
| 76 |
+
[[dcl.type.auto.deduct]], and if the type that replaces the placeholder
|
| 77 |
type is not the same in each deduction, the program is ill-formed.
|
| 78 |
|
| 79 |
+
[*Example 2*:
|
| 80 |
|
| 81 |
``` cpp
|
| 82 |
auto x = 5, *y = &x; // OK: auto is int
|
| 83 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 84 |
```
|
|
|
|
| 93 |
If a function with a declared return type that uses a placeholder type
|
| 94 |
has no non-discarded `return` statements, the return type is deduced as
|
| 95 |
though from a `return` statement with no operand at the closing brace of
|
| 96 |
the function body.
|
| 97 |
|
| 98 |
+
[*Example 3*:
|
| 99 |
|
| 100 |
``` cpp
|
| 101 |
auto f() { } // OK, return type is void
|
| 102 |
+
auto* g() { } // error: cannot deduce auto* from void()
|
| 103 |
```
|
| 104 |
|
| 105 |
— *end example*]
|
| 106 |
|
| 107 |
+
An exported function with a declared return type that uses a placeholder
|
| 108 |
+
type shall be defined in the translation unit containing its exported
|
| 109 |
+
declaration, outside the *private-module-fragment* (if any).
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
[*Note 2*: The deduced return type cannot have a name with internal
|
| 112 |
+
linkage [[basic.link]]. — *end note*]
|
| 113 |
+
|
| 114 |
+
If the name of an entity with an undeduced placeholder type appears in
|
| 115 |
+
an expression, the program is ill-formed. Once a non-discarded `return`
|
| 116 |
+
statement has been seen in a function, however, the return type deduced
|
| 117 |
+
from that statement can be used in the rest of the function, including
|
| 118 |
+
in other `return` statements.
|
| 119 |
+
|
| 120 |
+
[*Example 4*:
|
| 121 |
|
| 122 |
``` cpp
|
| 123 |
+
auto n = n; // error: n's initializer refers to n
|
| 124 |
auto f();
|
| 125 |
+
void g() { &f; } // error: f's return type is unknown
|
| 126 |
auto sum(int i) {
|
| 127 |
if (i == 1)
|
| 128 |
return i; // sum's return type is int
|
| 129 |
else
|
| 130 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 131 |
}
|
| 132 |
```
|
| 133 |
|
| 134 |
— *end example*]
|
| 135 |
|
| 136 |
+
Return type deduction for a templated entity that is a function or
|
| 137 |
+
function template with a placeholder in its declared type occurs when
|
| 138 |
+
the definition is instantiated even if the function body contains a
|
| 139 |
+
`return` statement with a non-type-dependent operand.
|
| 140 |
|
| 141 |
+
[*Note 3*: Therefore, any use of a specialization of the function
|
| 142 |
template will cause an implicit instantiation. Any errors that arise
|
| 143 |
from this instantiation are not in the immediate context of the function
|
| 144 |
+
type and can result in the program being ill-formed
|
| 145 |
+
[[temp.deduct]]. — *end note*]
|
| 146 |
|
| 147 |
+
[*Example 5*:
|
| 148 |
|
| 149 |
``` cpp
|
| 150 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 151 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 152 |
template<class T> auto f(T* t) { return *t; }
|
|
|
|
| 156 |
|
| 157 |
— *end example*]
|
| 158 |
|
| 159 |
Redeclarations or specializations of a function or function template
|
| 160 |
with a declared return type that uses a placeholder type shall also use
|
| 161 |
+
that placeholder, not a deduced type. Similarly, redeclarations or
|
| 162 |
+
specializations of a function or function template with a declared
|
| 163 |
+
return type that does not use a placeholder type shall not use a
|
| 164 |
+
placeholder.
|
| 165 |
|
| 166 |
+
[*Example 6*:
|
| 167 |
|
| 168 |
``` cpp
|
| 169 |
auto f();
|
| 170 |
auto f() { return 42; } // return type is int
|
| 171 |
auto f(); // OK
|
| 172 |
+
int f(); // error: cannot be overloaded with auto f()
|
| 173 |
+
decltype(auto) f(); // error: auto and decltype(auto) don't match
|
| 174 |
|
| 175 |
template <typename T> auto g(T t) { return t; } // #1
|
| 176 |
template auto g(int); // OK, return type is int
|
| 177 |
+
template char g(char); // error: no matching template
|
| 178 |
template<> auto g(double); // OK, forward declaration with unknown return type
|
| 179 |
|
| 180 |
template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
|
| 181 |
template char g(char); // OK, now there is a matching template
|
| 182 |
template auto g(float); // still matches #1
|
| 183 |
|
| 184 |
+
void h() { return g(42); } // error: ambiguous
|
| 185 |
|
| 186 |
template <typename T> struct A {
|
| 187 |
friend T frf(T);
|
| 188 |
};
|
| 189 |
auto frf(int i) { return i; } // not a friend of A<int>
|
| 190 |
+
extern int v;
|
| 191 |
+
auto v = 17; // OK, redeclares v
|
| 192 |
+
struct S {
|
| 193 |
+
static int i;
|
| 194 |
+
};
|
| 195 |
+
auto S::i = 23; // OK
|
| 196 |
```
|
| 197 |
|
| 198 |
— *end example*]
|
| 199 |
|
| 200 |
A function declared with a return type that uses a placeholder type
|
| 201 |
+
shall not be `virtual` [[class.virtual]].
|
| 202 |
|
| 203 |
+
A function declared with a return type that uses a placeholder type
|
| 204 |
+
shall not be a coroutine [[dcl.fct.def.coroutine]].
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
An explicit instantiation declaration [[temp.explicit]] does not cause
|
| 207 |
+
the instantiation of an entity declared using a placeholder type, but it
|
| 208 |
+
also does not prevent that entity from being instantiated as needed to
|
| 209 |
+
determine its type.
|
| 210 |
+
|
| 211 |
+
[*Example 7*:
|
| 212 |
|
| 213 |
``` cpp
|
| 214 |
template <typename T> auto f(T t) { return t; }
|
| 215 |
extern template auto f(int); // does not instantiate f<int>
|
| 216 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
|
|
|
| 223 |
|
| 224 |
*Placeholder type deduction* is the process by which a type containing a
|
| 225 |
placeholder type is replaced by a deduced type.
|
| 226 |
|
| 227 |
A type `T` containing a placeholder type, and a corresponding
|
| 228 |
+
initializer E, are determined as follows:
|
| 229 |
|
| 230 |
- for a non-discarded `return` statement that occurs in a function
|
| 231 |
declared with a return type that contains a placeholder type, `T` is
|
| 232 |
+
the declared return type and E is the operand of the `return`
|
| 233 |
+
statement. If the `return` statement has no operand, then E is
|
| 234 |
`void()`;
|
| 235 |
- for a variable declared with a type that contains a placeholder type,
|
| 236 |
+
`T` is the declared type of the variable and E is the initializer. If
|
| 237 |
+
the initialization is direct-list-initialization, the initializer
|
| 238 |
shall be a *braced-init-list* containing only a single
|
| 239 |
+
*assignment-expression* and E is the *assignment-expression*;
|
| 240 |
- for a non-type template parameter declared with a type that contains a
|
| 241 |
placeholder type, `T` is the declared type of the non-type template
|
| 242 |
+
parameter and E is the corresponding template argument.
|
| 243 |
|
| 244 |
In the case of a `return` statement with no operand or with an operand
|
| 245 |
+
of type `void`, `T` shall be either *type-constraint*ₒₚₜ
|
| 246 |
+
`decltype(auto)` or cv *type-constraint*ₒₚₜ `auto`.
|
| 247 |
|
| 248 |
+
If the deduction is for a `return` statement and E is a
|
| 249 |
+
*braced-init-list* [[dcl.init.list]], the program is ill-formed.
|
| 250 |
|
| 251 |
+
If the *placeholder-type-specifier* is of the form *type-constraint*ₒₚₜ
|
| 252 |
+
`auto`, the deduced type T' replacing `T` is determined using the rules
|
| 253 |
+
for template argument deduction. Obtain `P` from `T` by replacing the
|
| 254 |
+
occurrences of *type-constraint*ₒₚₜ `auto` either with a new invented
|
| 255 |
+
type template parameter `U` or, if the initialization is
|
| 256 |
+
copy-list-initialization, with `std::initializer_list<U>`. Deduce a
|
| 257 |
+
value for `U` using the rules of template argument deduction from a
|
| 258 |
+
function call [[temp.deduct.call]], where `P` is a function template
|
| 259 |
+
parameter type and the corresponding argument is E. If the deduction
|
| 260 |
+
fails, the declaration is ill-formed. Otherwise, T' is obtained by
|
| 261 |
+
substituting the deduced `U` into `P`.
|
| 262 |
|
| 263 |
+
[*Example 8*:
|
| 264 |
|
| 265 |
``` cpp
|
| 266 |
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 267 |
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 268 |
auto x3{ 1, 2 }; // error: not a single element
|
|
|
|
| 270 |
auto x5{ 3 }; // decltype(x5) is int
|
| 271 |
```
|
| 272 |
|
| 273 |
— *end example*]
|
| 274 |
|
| 275 |
+
[*Example 9*:
|
| 276 |
|
| 277 |
``` cpp
|
| 278 |
const auto &i = expr;
|
| 279 |
```
|
| 280 |
|
|
|
|
| 285 |
template <class U> void f(const U& u);
|
| 286 |
```
|
| 287 |
|
| 288 |
— *end example*]
|
| 289 |
|
| 290 |
+
If the *placeholder-type-specifier* is of the form *type-constraint*ₒₚₜ
|
| 291 |
+
`decltype(auto)`, `T` shall be the placeholder alone. The type deduced
|
| 292 |
+
for `T` is determined as described in [[dcl.type.simple]], as though E
|
| 293 |
+
had been the operand of the `decltype`.
|
| 294 |
|
| 295 |
+
[*Example 10*:
|
| 296 |
|
| 297 |
``` cpp
|
| 298 |
int i;
|
| 299 |
int&& f();
|
| 300 |
auto x2a(i); // decltype(x2a) is int
|
|
|
|
| 304 |
auto x4a = (i); // decltype(x4a) is int
|
| 305 |
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 306 |
auto x5a = f(); // decltype(x5a) is int
|
| 307 |
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 308 |
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 309 |
+
decltype(auto) x6d = { 1, 2 }; // error: { 1, 2 } is not an expression
|
| 310 |
auto *x7a = &i; // decltype(x7a) is int*
|
| 311 |
+
decltype(auto)*x7d = &i; // error: declared type is not plain decltype(auto)
|
| 312 |
```
|
| 313 |
|
| 314 |
— *end example*]
|
| 315 |
|
| 316 |
+
For a *placeholder-type-specifier* with a *type-constraint*, the
|
| 317 |
+
immediately-declared constraint [[temp.param]] of the *type-constraint*
|
| 318 |
+
for the type deduced for the placeholder shall be satisfied.
|
| 319 |
+
|