- tmp/tmpbs9l08t_/{from.md → to.md} +174 -443
tmp/tmpbs9l08t_/{from.md → to.md}
RENAMED
|
@@ -211,11 +211,11 @@ namespace std {
|
|
| 211 |
float fabsf(float x);
|
| 212 |
long double fabsl(long double x);
|
| 213 |
|
| 214 |
float hypot(float x, float y); // see [library.c]
|
| 215 |
double hypot(double x, double y);
|
| 216 |
-
long double hypot(double x, double y); // see [library.c]
|
| 217 |
float hypotf(float x, float y);
|
| 218 |
long double hypotl(long double x, long double y);
|
| 219 |
|
| 220 |
// [c.math.hypot3], three-dimensional hypotenuse
|
| 221 |
float hypot(float x, float y, float z);
|
|
@@ -380,123 +380,128 @@ namespace std {
|
|
| 380 |
double fma(double x, double y, double z);
|
| 381 |
long double fma(long double x, long double y, long double z); // see [library.c]
|
| 382 |
float fmaf(float x, float y, float z);
|
| 383 |
long double fmal(long double x, long double y, long double z);
|
| 384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
// [c.math.fpclass], classification / comparison functions
|
| 386 |
int fpclassify(float x);
|
| 387 |
int fpclassify(double x);
|
| 388 |
int fpclassify(long double x);
|
| 389 |
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
|
| 434 |
// [sf.cmath], mathematical special functions
|
| 435 |
|
| 436 |
-
// [sf.cmath.
|
| 437 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 438 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 439 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 440 |
|
| 441 |
-
// [sf.cmath.
|
| 442 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 443 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 444 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 445 |
|
| 446 |
// [sf.cmath.beta], beta function
|
| 447 |
double beta(double x, double y);
|
| 448 |
float betaf(float x, float y);
|
| 449 |
long double betal(long double x, long double y);
|
| 450 |
|
| 451 |
-
// [sf.cmath.
|
| 452 |
double comp_ellint_1(double k);
|
| 453 |
float comp_ellint_1f(float k);
|
| 454 |
long double comp_ellint_1l(long double k);
|
| 455 |
|
| 456 |
-
// [sf.cmath.
|
| 457 |
double comp_ellint_2(double k);
|
| 458 |
float comp_ellint_2f(float k);
|
| 459 |
long double comp_ellint_2l(long double k);
|
| 460 |
|
| 461 |
-
// [sf.cmath.
|
| 462 |
double comp_ellint_3(double k, double nu);
|
| 463 |
float comp_ellint_3f(float k, float nu);
|
| 464 |
long double comp_ellint_3l(long double k, long double nu);
|
| 465 |
|
| 466 |
-
// [sf.cmath.
|
| 467 |
double cyl_bessel_i(double nu, double x);
|
| 468 |
float cyl_bessel_if(float nu, float x);
|
| 469 |
long double cyl_bessel_il(long double nu, long double x);
|
| 470 |
|
| 471 |
-
// [sf.cmath.
|
| 472 |
double cyl_bessel_j(double nu, double x);
|
| 473 |
float cyl_bessel_jf(float nu, float x);
|
| 474 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 475 |
|
| 476 |
-
// [sf.cmath.
|
| 477 |
double cyl_bessel_k(double nu, double x);
|
| 478 |
float cyl_bessel_kf(float nu, float x);
|
| 479 |
long double cyl_bessel_kl(long double nu, long double x);
|
| 480 |
|
| 481 |
-
// [sf.cmath.
|
| 482 |
// cylindrical Bessel functions of the second kind
|
| 483 |
double cyl_neumann(double nu, double x);
|
| 484 |
float cyl_neumannf(float nu, float x);
|
| 485 |
long double cyl_neumannl(long double nu, long double x);
|
| 486 |
|
| 487 |
-
// [sf.cmath.
|
| 488 |
double ellint_1(double k, double phi);
|
| 489 |
float ellint_1f(float k, float phi);
|
| 490 |
long double ellint_1l(long double k, long double phi);
|
| 491 |
|
| 492 |
-
// [sf.cmath.
|
| 493 |
double ellint_2(double k, double phi);
|
| 494 |
float ellint_2f(float k, float phi);
|
| 495 |
long double ellint_2l(long double k, long double phi);
|
| 496 |
|
| 497 |
-
// [sf.cmath.
|
| 498 |
double ellint_3(double k, double nu, double phi);
|
| 499 |
float ellint_3f(float k, float nu, float phi);
|
| 500 |
long double ellint_3l(long double k, long double nu, long double phi);
|
| 501 |
|
| 502 |
// [sf.cmath.expint], exponential integral
|
|
@@ -517,27 +522,27 @@ namespace std {
|
|
| 517 |
// [sf.cmath.legendre], Legendre polynomials
|
| 518 |
double legendre(unsigned l, double x);
|
| 519 |
float legendref(unsigned l, float x);
|
| 520 |
long double legendrel(unsigned l, long double x);
|
| 521 |
|
| 522 |
-
// [sf.cmath.
|
| 523 |
double riemann_zeta(double x);
|
| 524 |
float riemann_zetaf(float x);
|
| 525 |
long double riemann_zetal(long double x);
|
| 526 |
|
| 527 |
-
// [sf.cmath.
|
| 528 |
double sph_bessel(unsigned n, double x);
|
| 529 |
float sph_besself(unsigned n, float x);
|
| 530 |
long double sph_bessell(unsigned n, long double x);
|
| 531 |
|
| 532 |
-
// [sf.cmath.
|
| 533 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 534 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 535 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
| 536 |
|
| 537 |
-
// [sf.cmath.
|
| 538 |
-
// spherical Bessel functions of the second kind
|
| 539 |
double sph_neumann(unsigned n, double x);
|
| 540 |
float sph_neumannf(unsigned n, float x);
|
| 541 |
long double sph_neumannl(unsigned n, long double x);
|
| 542 |
}
|
| 543 |
```
|
|
@@ -546,38 +551,37 @@ The contents and meaning of the header `<cmath>` are the same as the C
|
|
| 546 |
standard library header `<math.h>`, with the addition of a
|
| 547 |
three-dimensional hypotenuse function ([[c.math.hypot3]]) and the
|
| 548 |
mathematical special functions described in [[sf.cmath]].
|
| 549 |
|
| 550 |
[*Note 1*: Several functions have additional overloads in this
|
| 551 |
-
|
| 552 |
-
|
| 553 |
|
| 554 |
For each set of overloaded functions within `<cmath>`, with the
|
| 555 |
exception of `abs`, there shall be additional overloads sufficient to
|
| 556 |
ensure:
|
| 557 |
|
| 558 |
-
|
| 559 |
parameter has type `long double`, then all arguments of arithmetic
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
`double` parameter has type `double` or an integer type, then all
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
|
| 569 |
-
[*Note
|
| 570 |
compatible with C. — *end note*]
|
| 571 |
|
| 572 |
ISO C 7.12
|
| 573 |
|
| 574 |
### Absolute values <a id="c.math.abs">[[c.math.abs]]</a>
|
| 575 |
|
| 576 |
-
[*Note 1*: The headers `<cstdlib>`
|
| 577 |
-
|
| 578 |
-
subclause. — *end note*]
|
| 579 |
|
| 580 |
``` cpp
|
| 581 |
int abs(int j);
|
| 582 |
long int abs(long int j);
|
| 583 |
long long int abs(long long int j);
|
|
@@ -590,16 +594,16 @@ long double abs(long double j);
|
|
| 590 |
standard library for the functions `abs`, `labs`, `llabs`, `fabsf`,
|
| 591 |
`fabs`, and `fabsl`.
|
| 592 |
|
| 593 |
*Remarks:* If `abs()` is called with an argument of type `X` for which
|
| 594 |
`is_unsigned_v<X>` is `true` and if `X` cannot be converted to `int` by
|
| 595 |
-
integral promotion
|
| 596 |
|
| 597 |
[*Note 1*: Arguments that can be promoted to `int` are permitted for
|
| 598 |
compatibility with C. — *end note*]
|
| 599 |
|
| 600 |
-
ISO C 7.12.7.2, 7.22.6.1
|
| 601 |
|
| 602 |
### Three-dimensional hypotenuse <a id="c.math.hypot3">[[c.math.hypot3]]</a>
|
| 603 |
|
| 604 |
``` cpp
|
| 605 |
float hypot(float x, float y, float z);
|
|
@@ -607,10 +611,34 @@ double hypot(double x, double y, double z);
|
|
| 607 |
long double hypot(long double x, long double y, long double z);
|
| 608 |
```
|
| 609 |
|
| 610 |
*Returns:* $\sqrt{x^2+y^2+z^2}$.
|
| 611 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
### Classification / comparison functions <a id="c.math.fpclass">[[c.math.fpclass]]</a>
|
| 613 |
|
| 614 |
The classification / comparison functions behave the same as the C
|
| 615 |
macros with the corresponding names defined in the C standard library.
|
| 616 |
Each function is overloaded for the three floating-point types.
|
|
@@ -627,54 +655,48 @@ a domain error for just those argument values for which:
|
|
| 627 |
- the function description’s *Returns:* clause explicitly specifies a
|
| 628 |
domain and those argument values fall outside the specified domain, or
|
| 629 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 630 |
component, or
|
| 631 |
- the corresponding mathematical function is not mathematically
|
| 632 |
-
defined.[^
|
| 633 |
|
| 634 |
Unless otherwise specified, each function is defined for all finite
|
| 635 |
values, for negative infinity, and for positive infinity.
|
| 636 |
|
| 637 |
-
#### Associated Laguerre polynomials <a id="sf.cmath.
|
| 638 |
|
| 639 |
``` cpp
|
| 640 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 641 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 642 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 643 |
```
|
| 644 |
|
| 645 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 646 |
of their respective arguments `n`, `m`, and `x`.
|
| 647 |
|
| 648 |
-
*Returns:* $$
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
{\mathsf{d}x ^ m} \, \mathsf{L}_{n+m}(x),
|
| 652 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n`, m is `m`, and x is
|
| 653 |
`x`.
|
| 654 |
|
| 655 |
*Remarks:* The effect of calling each of these functions is
|
| 656 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 657 |
|
| 658 |
-
#### Associated Legendre functions <a id="sf.cmath.
|
| 659 |
|
| 660 |
``` cpp
|
| 661 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 662 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 663 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 664 |
```
|
| 665 |
|
| 666 |
*Effects:* These functions compute the associated Legendre functions of
|
| 667 |
their respective arguments `l`, `m`, and `x`.
|
| 668 |
|
| 669 |
-
*Returns:* $$
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
\:
|
| 673 |
-
\frac{ \mathsf{d} ^ m}
|
| 674 |
-
{ \mathsf{d}x ^ m} \, \mathsf{P}_\ell(x),
|
| 675 |
-
\quad \mbox{for $|x| \le 1$}$$ where l is `l`, m is `m`, and x is
|
| 676 |
`x`.
|
| 677 |
|
| 678 |
*Remarks:* The effect of calling each of these functions is
|
| 679 |
*implementation-defined* if `l >= 128`.
|
| 680 |
|
|
@@ -687,115 +709,105 @@ long double betal(long double x, long double y);
|
|
| 687 |
```
|
| 688 |
|
| 689 |
*Effects:* These functions compute the beta function of their respective
|
| 690 |
arguments `x` and `y`.
|
| 691 |
|
| 692 |
-
*Returns:*
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
{ \Gamma(x+y) },
|
| 696 |
-
\quad \mbox{for $x > 0$,\, $y > 0$}$$ where x is `x` and y is
|
| 697 |
-
`y`.
|
| 698 |
|
| 699 |
-
#### Complete elliptic integral of the first kind <a id="sf.cmath.
|
| 700 |
|
| 701 |
``` cpp
|
| 702 |
double comp_ellint_1(double k);
|
| 703 |
float comp_ellint_1f(float k);
|
| 704 |
long double comp_ellint_1l(long double k);
|
| 705 |
```
|
| 706 |
|
| 707 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 708 |
first kind of their respective arguments `k`.
|
| 709 |
|
| 710 |
-
*Returns:*
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k`.
|
| 714 |
|
| 715 |
-
See also [[sf.cmath.
|
| 716 |
|
| 717 |
-
#### Complete elliptic integral of the second kind <a id="sf.cmath.
|
| 718 |
|
| 719 |
``` cpp
|
| 720 |
double comp_ellint_2(double k);
|
| 721 |
float comp_ellint_2f(float k);
|
| 722 |
long double comp_ellint_2l(long double k);
|
| 723 |
```
|
| 724 |
|
| 725 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 726 |
second kind of their respective arguments `k`.
|
| 727 |
|
| 728 |
-
*Returns:*
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k`.
|
| 732 |
|
| 733 |
-
See also [[sf.cmath.
|
| 734 |
|
| 735 |
-
#### Complete elliptic integral of the third kind <a id="sf.cmath.
|
| 736 |
|
| 737 |
``` cpp
|
| 738 |
double comp_ellint_3(double k, double nu);
|
| 739 |
float comp_ellint_3f(float k, float nu);
|
| 740 |
long double comp_ellint_3l(long double k, long double nu);
|
| 741 |
```
|
| 742 |
|
| 743 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 744 |
third kind of their respective arguments `k` and `nu`.
|
| 745 |
|
| 746 |
-
*Returns:*
|
| 747 |
-
|
| 748 |
-
|
| 749 |
|
| 750 |
-
See also [[sf.cmath.
|
| 751 |
|
| 752 |
-
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.
|
| 753 |
|
| 754 |
``` cpp
|
| 755 |
double cyl_bessel_i(double nu, double x);
|
| 756 |
float cyl_bessel_if(float nu, float x);
|
| 757 |
long double cyl_bessel_il(long double nu, long double x);
|
| 758 |
```
|
| 759 |
|
| 760 |
*Effects:* These functions compute the regular modified cylindrical
|
| 761 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 762 |
|
| 763 |
-
*Returns:* $$
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}
|
| 768 |
-
{k! \: \Gamma(\nu+k+1)},
|
| 769 |
-
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 770 |
|
| 771 |
*Remarks:* The effect of calling each of these functions is
|
| 772 |
*implementation-defined* if `nu >= 128`.
|
| 773 |
|
| 774 |
-
See also [[sf.cmath.
|
| 775 |
|
| 776 |
-
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.
|
| 777 |
|
| 778 |
``` cpp
|
| 779 |
double cyl_bessel_j(double nu, double x);
|
| 780 |
float cyl_bessel_jf(float nu, float x);
|
| 781 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 782 |
```
|
| 783 |
|
| 784 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 785 |
the first kind of their respective arguments `nu` and `x`.
|
| 786 |
|
| 787 |
-
*Returns:* $$
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
{k! \: \Gamma(\nu+k+1)},
|
| 791 |
-
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 792 |
|
| 793 |
*Remarks:* The effect of calling each of these functions is
|
| 794 |
*implementation-defined* if `nu >= 128`.
|
| 795 |
|
| 796 |
-
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.
|
| 797 |
|
| 798 |
``` cpp
|
| 799 |
double cyl_bessel_k(double nu, double x);
|
| 800 |
float cyl_bessel_kf(float nu, float x);
|
| 801 |
long double cyl_bessel_kl(long double nu, long double x);
|
|
@@ -828,14 +840,14 @@ Bessel functions of their respective arguments `nu` and `x`.
|
|
| 828 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 829 |
|
| 830 |
*Remarks:* The effect of calling each of these functions is
|
| 831 |
*implementation-defined* if `nu >= 128`.
|
| 832 |
|
| 833 |
-
See also [[sf.cmath.
|
| 834 |
-
[[sf.cmath.
|
| 835 |
|
| 836 |
-
#### Cylindrical Neumann functions <a id="sf.cmath.
|
| 837 |
|
| 838 |
``` cpp
|
| 839 |
double cyl_neumann(double nu, double x);
|
| 840 |
float cyl_neumannf(float nu, float x);
|
| 841 |
long double cyl_neumannl(long double nu, long double x);
|
|
@@ -863,13 +875,13 @@ their respective arguments `nu` and `x`.
|
|
| 863 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 864 |
|
| 865 |
*Remarks:* The effect of calling each of these functions is
|
| 866 |
*implementation-defined* if `nu >= 128`.
|
| 867 |
|
| 868 |
-
See also [[sf.cmath.
|
| 869 |
|
| 870 |
-
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.
|
| 871 |
|
| 872 |
``` cpp
|
| 873 |
double ellint_1(double k, double phi);
|
| 874 |
float ellint_1f(float k, float phi);
|
| 875 |
long double ellint_1l(long double k, long double phi);
|
|
@@ -877,17 +889,15 @@ long double ellint_1l(long double k, long double phi);
|
|
| 877 |
|
| 878 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 879 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 880 |
measured in radians).
|
| 881 |
|
| 882 |
-
*Returns:* $$
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
{\sqrt{1 - k^2 \sin^2 \theta}},
|
| 886 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k` and φ is `phi`.
|
| 887 |
|
| 888 |
-
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.
|
| 889 |
|
| 890 |
``` cpp
|
| 891 |
double ellint_2(double k, double phi);
|
| 892 |
float ellint_2f(float k, float phi);
|
| 893 |
long double ellint_2l(long double k, long double phi);
|
|
@@ -895,16 +905,15 @@ long double ellint_2l(long double k, long double phi);
|
|
| 895 |
|
| 896 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 897 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 898 |
measured in radians).
|
| 899 |
|
| 900 |
-
*Returns:*
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
\quad \mbox{for $|k| \le 1$}$$ where k is `k` and φ is `phi`.
|
| 904 |
|
| 905 |
-
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.
|
| 906 |
|
| 907 |
``` cpp
|
| 908 |
double ellint_3(double k, double nu, double phi);
|
| 909 |
float ellint_3f(float k, float nu, float phi);
|
| 910 |
long double ellint_3l(long double k, long double nu, long double phi);
|
|
@@ -912,16 +921,13 @@ long double ellint_3l(long double k, long double nu, long double phi);
|
|
| 912 |
|
| 913 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 914 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 915 |
measured in radians).
|
| 916 |
|
| 917 |
-
*Returns:* $$
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} },
|
| 921 |
-
\quad \mbox{for $|k| \le 1$}$$ where $\nu$ is `nu`, k is `k`, and
|
| 922 |
-
φ is `phi`.
|
| 923 |
|
| 924 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 925 |
|
| 926 |
``` cpp
|
| 927 |
double expint(double x);
|
|
@@ -967,15 +973,13 @@ long double laguerrel(unsigned n, long double x);
|
|
| 967 |
```
|
| 968 |
|
| 969 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 970 |
respective arguments `n` and `x`.
|
| 971 |
|
| 972 |
-
*Returns:* $$
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
{ \mathsf{d}x ^ n} \, (x^n e^{-x}),
|
| 976 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 977 |
|
| 978 |
*Remarks:* The effect of calling each of these functions is
|
| 979 |
*implementation-defined* if `n >= 128`.
|
| 980 |
|
| 981 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
@@ -987,22 +991,19 @@ long double legendrel(unsigned l, long double x);
|
|
| 987 |
```
|
| 988 |
|
| 989 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 990 |
respective arguments `l` and `x`.
|
| 991 |
|
| 992 |
-
*Returns:* $$
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
\frac{ \mathsf{d} ^ \ell}
|
| 997 |
-
{ \mathsf{d}x ^ \ell} \, (x^2 - 1) ^ \ell,
|
| 998 |
-
\quad \mbox{for $|x| \le 1$}$$ where l is `l` and x is `x`.
|
| 999 |
|
| 1000 |
*Remarks:* The effect of calling each of these functions is
|
| 1001 |
*implementation-defined* if `l >= 128`.
|
| 1002 |
|
| 1003 |
-
#### Riemann zeta function <a id="sf.cmath.
|
| 1004 |
|
| 1005 |
``` cpp
|
| 1006 |
double riemann_zeta(double x);
|
| 1007 |
float riemann_zetaf(float x);
|
| 1008 |
long double riemann_zetal(long double x);
|
|
@@ -1032,32 +1033,31 @@ respective arguments `x`.
|
|
| 1032 |
& \mbox{for $x < 0$}
|
| 1033 |
\end{array}
|
| 1034 |
\right.
|
| 1035 |
\;$$ where x is `x`.
|
| 1036 |
|
| 1037 |
-
#### Spherical Bessel functions of the first kind <a id="sf.cmath.
|
| 1038 |
|
| 1039 |
``` cpp
|
| 1040 |
double sph_bessel(unsigned n, double x);
|
| 1041 |
float sph_besself(unsigned n, float x);
|
| 1042 |
long double sph_bessell(unsigned n, long double x);
|
| 1043 |
```
|
| 1044 |
|
| 1045 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 1046 |
first kind of their respective arguments `n` and `x`.
|
| 1047 |
|
| 1048 |
-
*Returns:*
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 1052 |
|
| 1053 |
*Remarks:* The effect of calling each of these functions is
|
| 1054 |
*implementation-defined* if `n >= 128`.
|
| 1055 |
|
| 1056 |
-
See also [[sf.cmath.
|
| 1057 |
|
| 1058 |
-
#### Spherical associated Legendre functions <a id="sf.cmath.
|
| 1059 |
|
| 1060 |
``` cpp
|
| 1061 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 1062 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 1063 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
@@ -1065,30 +1065,23 @@ long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
| 1065 |
|
| 1066 |
*Effects:* These functions compute the spherical associated Legendre
|
| 1067 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 1068 |
measured in radians).
|
| 1069 |
|
| 1070 |
-
*Returns:* $$
|
| 1071 |
-
|
| 1072 |
-
\
|
| 1073 |
-
|
| 1074 |
-
|
| 1075 |
-
{4 \pi}
|
| 1076 |
-
\frac{(\ell - m)!}
|
| 1077 |
-
{(\ell + m)!}
|
| 1078 |
-
\right]^{1/2}
|
| 1079 |
-
\mathsf{P}_\ell^m
|
| 1080 |
-
( \cos\theta ) e ^ {i m \phi},
|
| 1081 |
-
\quad \mbox{for $|m| \le \ell$}$$ and l is `l`, m is `m`, and θ
|
| 1082 |
is `theta`.
|
| 1083 |
|
| 1084 |
*Remarks:* The effect of calling each of these functions is
|
| 1085 |
*implementation-defined* if `l >= 128`.
|
| 1086 |
|
| 1087 |
-
See also [[sf.cmath.
|
| 1088 |
|
| 1089 |
-
#### Spherical Neumann functions <a id="sf.cmath.
|
| 1090 |
|
| 1091 |
``` cpp
|
| 1092 |
double sph_neumann(unsigned n, double x);
|
| 1093 |
float sph_neumannf(unsigned n, float x);
|
| 1094 |
long double sph_neumannl(unsigned n, long double x);
|
|
@@ -1096,276 +1089,14 @@ long double sph_neumannl(unsigned n, long double x);
|
|
| 1096 |
|
| 1097 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 1098 |
known as the spherical Bessel functions of the second kind, of their
|
| 1099 |
respective arguments `n` and `x`.
|
| 1100 |
|
| 1101 |
-
*Returns:*
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
\quad \mbox{for $x \ge 0$}$$ where n is `n` and x is `x`.
|
| 1105 |
|
| 1106 |
*Remarks:* The effect of calling each of these functions is
|
| 1107 |
*implementation-defined* if `n >= 128`.
|
| 1108 |
|
| 1109 |
-
See also [[sf.cmath.
|
| 1110 |
|
| 1111 |
-
<!-- Link reference definitions -->
|
| 1112 |
-
[accumulate]: #accumulate
|
| 1113 |
-
[adjacent.difference]: #adjacent.difference
|
| 1114 |
-
[algorithms]: algorithms.md#algorithms
|
| 1115 |
-
[bad.alloc]: language.md#bad.alloc
|
| 1116 |
-
[basic.fundamental]: basic.md#basic.fundamental
|
| 1117 |
-
[basic.stc.thread]: basic.md#basic.stc.thread
|
| 1118 |
-
[basic.types]: basic.md#basic.types
|
| 1119 |
-
[c.math]: #c.math
|
| 1120 |
-
[c.math.abs]: #c.math.abs
|
| 1121 |
-
[c.math.fpclass]: #c.math.fpclass
|
| 1122 |
-
[c.math.hypot3]: #c.math.hypot3
|
| 1123 |
-
[c.math.rand]: #c.math.rand
|
| 1124 |
-
[cfenv]: #cfenv
|
| 1125 |
-
[cfenv.syn]: #cfenv.syn
|
| 1126 |
-
[class.gslice]: #class.gslice
|
| 1127 |
-
[class.gslice.overview]: #class.gslice.overview
|
| 1128 |
-
[class.slice]: #class.slice
|
| 1129 |
-
[class.slice.overview]: #class.slice.overview
|
| 1130 |
-
[cmath.syn]: #cmath.syn
|
| 1131 |
-
[cmplx.over]: #cmplx.over
|
| 1132 |
-
[complex]: #complex
|
| 1133 |
-
[complex.literals]: #complex.literals
|
| 1134 |
-
[complex.member.ops]: #complex.member.ops
|
| 1135 |
-
[complex.members]: #complex.members
|
| 1136 |
-
[complex.numbers]: #complex.numbers
|
| 1137 |
-
[complex.ops]: #complex.ops
|
| 1138 |
-
[complex.special]: #complex.special
|
| 1139 |
-
[complex.syn]: #complex.syn
|
| 1140 |
-
[complex.transcendentals]: #complex.transcendentals
|
| 1141 |
-
[complex.value.ops]: #complex.value.ops
|
| 1142 |
-
[cons.slice]: #cons.slice
|
| 1143 |
-
[conv.prom]: conv.md#conv.prom
|
| 1144 |
-
[cpp.pragma]: cpp.md#cpp.pragma
|
| 1145 |
-
[cstdlib.syn]: language.md#cstdlib.syn
|
| 1146 |
-
[dcl.array]: dcl.md#dcl.array
|
| 1147 |
-
[dcl.init]: dcl.md#dcl.init
|
| 1148 |
-
[exclusive.scan]: #exclusive.scan
|
| 1149 |
-
[function.objects]: utilities.md#function.objects
|
| 1150 |
-
[gslice.access]: #gslice.access
|
| 1151 |
-
[gslice.array.assign]: #gslice.array.assign
|
| 1152 |
-
[gslice.array.comp.assign]: #gslice.array.comp.assign
|
| 1153 |
-
[gslice.array.fill]: #gslice.array.fill
|
| 1154 |
-
[gslice.cons]: #gslice.cons
|
| 1155 |
-
[implimits]: limits.md#implimits
|
| 1156 |
-
[inclusive.scan]: #inclusive.scan
|
| 1157 |
-
[indirect.array.assign]: #indirect.array.assign
|
| 1158 |
-
[indirect.array.comp.assign]: #indirect.array.comp.assign
|
| 1159 |
-
[indirect.array.fill]: #indirect.array.fill
|
| 1160 |
-
[inner.product]: #inner.product
|
| 1161 |
-
[input.iterators]: iterators.md#input.iterators
|
| 1162 |
-
[input.output]: input.md#input.output
|
| 1163 |
-
[iostate.flags]: input.md#iostate.flags
|
| 1164 |
-
[istream.formatted]: input.md#istream.formatted
|
| 1165 |
-
[iterator.requirements.general]: iterators.md#iterator.requirements.general
|
| 1166 |
-
[library.c]: library.md#library.c
|
| 1167 |
-
[mask.array.assign]: #mask.array.assign
|
| 1168 |
-
[mask.array.comp.assign]: #mask.array.comp.assign
|
| 1169 |
-
[mask.array.fill]: #mask.array.fill
|
| 1170 |
-
[numarray]: #numarray
|
| 1171 |
-
[numeric.iota]: #numeric.iota
|
| 1172 |
-
[numeric.ops]: #numeric.ops
|
| 1173 |
-
[numeric.ops.gcd]: #numeric.ops.gcd
|
| 1174 |
-
[numeric.ops.lcm]: #numeric.ops.lcm
|
| 1175 |
-
[numeric.ops.overview]: #numeric.ops.overview
|
| 1176 |
-
[numeric.requirements]: #numeric.requirements
|
| 1177 |
-
[numerics]: #numerics
|
| 1178 |
-
[numerics.defns]: #numerics.defns
|
| 1179 |
-
[numerics.general]: #numerics.general
|
| 1180 |
-
[output.iterators]: iterators.md#output.iterators
|
| 1181 |
-
[partial.sum]: #partial.sum
|
| 1182 |
-
[rand]: #rand
|
| 1183 |
-
[rand.adapt]: #rand.adapt
|
| 1184 |
-
[rand.adapt.disc]: #rand.adapt.disc
|
| 1185 |
-
[rand.adapt.general]: #rand.adapt.general
|
| 1186 |
-
[rand.adapt.ibits]: #rand.adapt.ibits
|
| 1187 |
-
[rand.adapt.shuf]: #rand.adapt.shuf
|
| 1188 |
-
[rand.device]: #rand.device
|
| 1189 |
-
[rand.dist]: #rand.dist
|
| 1190 |
-
[rand.dist.bern]: #rand.dist.bern
|
| 1191 |
-
[rand.dist.bern.bernoulli]: #rand.dist.bern.bernoulli
|
| 1192 |
-
[rand.dist.bern.bin]: #rand.dist.bern.bin
|
| 1193 |
-
[rand.dist.bern.geo]: #rand.dist.bern.geo
|
| 1194 |
-
[rand.dist.bern.negbin]: #rand.dist.bern.negbin
|
| 1195 |
-
[rand.dist.general]: #rand.dist.general
|
| 1196 |
-
[rand.dist.norm]: #rand.dist.norm
|
| 1197 |
-
[rand.dist.norm.cauchy]: #rand.dist.norm.cauchy
|
| 1198 |
-
[rand.dist.norm.chisq]: #rand.dist.norm.chisq
|
| 1199 |
-
[rand.dist.norm.f]: #rand.dist.norm.f
|
| 1200 |
-
[rand.dist.norm.lognormal]: #rand.dist.norm.lognormal
|
| 1201 |
-
[rand.dist.norm.normal]: #rand.dist.norm.normal
|
| 1202 |
-
[rand.dist.norm.t]: #rand.dist.norm.t
|
| 1203 |
-
[rand.dist.pois]: #rand.dist.pois
|
| 1204 |
-
[rand.dist.pois.exp]: #rand.dist.pois.exp
|
| 1205 |
-
[rand.dist.pois.extreme]: #rand.dist.pois.extreme
|
| 1206 |
-
[rand.dist.pois.gamma]: #rand.dist.pois.gamma
|
| 1207 |
-
[rand.dist.pois.poisson]: #rand.dist.pois.poisson
|
| 1208 |
-
[rand.dist.pois.weibull]: #rand.dist.pois.weibull
|
| 1209 |
-
[rand.dist.samp]: #rand.dist.samp
|
| 1210 |
-
[rand.dist.samp.discrete]: #rand.dist.samp.discrete
|
| 1211 |
-
[rand.dist.samp.pconst]: #rand.dist.samp.pconst
|
| 1212 |
-
[rand.dist.samp.plinear]: #rand.dist.samp.plinear
|
| 1213 |
-
[rand.dist.uni]: #rand.dist.uni
|
| 1214 |
-
[rand.dist.uni.int]: #rand.dist.uni.int
|
| 1215 |
-
[rand.dist.uni.real]: #rand.dist.uni.real
|
| 1216 |
-
[rand.eng]: #rand.eng
|
| 1217 |
-
[rand.eng.lcong]: #rand.eng.lcong
|
| 1218 |
-
[rand.eng.mers]: #rand.eng.mers
|
| 1219 |
-
[rand.eng.sub]: #rand.eng.sub
|
| 1220 |
-
[rand.predef]: #rand.predef
|
| 1221 |
-
[rand.req]: #rand.req
|
| 1222 |
-
[rand.req.adapt]: #rand.req.adapt
|
| 1223 |
-
[rand.req.dist]: #rand.req.dist
|
| 1224 |
-
[rand.req.eng]: #rand.req.eng
|
| 1225 |
-
[rand.req.genl]: #rand.req.genl
|
| 1226 |
-
[rand.req.seedseq]: #rand.req.seedseq
|
| 1227 |
-
[rand.req.urng]: #rand.req.urng
|
| 1228 |
-
[rand.synopsis]: #rand.synopsis
|
| 1229 |
-
[rand.util]: #rand.util
|
| 1230 |
-
[rand.util.canonical]: #rand.util.canonical
|
| 1231 |
-
[rand.util.seedseq]: #rand.util.seedseq
|
| 1232 |
-
[random.access.iterators]: iterators.md#random.access.iterators
|
| 1233 |
-
[reduce]: #reduce
|
| 1234 |
-
[res.on.data.races]: library.md#res.on.data.races
|
| 1235 |
-
[sf.cmath]: #sf.cmath
|
| 1236 |
-
[sf.cmath.assoc_laguerre]: #sf.cmath.assoc_laguerre
|
| 1237 |
-
[sf.cmath.assoc_legendre]: #sf.cmath.assoc_legendre
|
| 1238 |
-
[sf.cmath.beta]: #sf.cmath.beta
|
| 1239 |
-
[sf.cmath.comp_ellint_1]: #sf.cmath.comp_ellint_1
|
| 1240 |
-
[sf.cmath.comp_ellint_2]: #sf.cmath.comp_ellint_2
|
| 1241 |
-
[sf.cmath.comp_ellint_3]: #sf.cmath.comp_ellint_3
|
| 1242 |
-
[sf.cmath.cyl_bessel_i]: #sf.cmath.cyl_bessel_i
|
| 1243 |
-
[sf.cmath.cyl_bessel_j]: #sf.cmath.cyl_bessel_j
|
| 1244 |
-
[sf.cmath.cyl_bessel_k]: #sf.cmath.cyl_bessel_k
|
| 1245 |
-
[sf.cmath.cyl_neumann]: #sf.cmath.cyl_neumann
|
| 1246 |
-
[sf.cmath.ellint_1]: #sf.cmath.ellint_1
|
| 1247 |
-
[sf.cmath.ellint_2]: #sf.cmath.ellint_2
|
| 1248 |
-
[sf.cmath.ellint_3]: #sf.cmath.ellint_3
|
| 1249 |
-
[sf.cmath.expint]: #sf.cmath.expint
|
| 1250 |
-
[sf.cmath.hermite]: #sf.cmath.hermite
|
| 1251 |
-
[sf.cmath.laguerre]: #sf.cmath.laguerre
|
| 1252 |
-
[sf.cmath.legendre]: #sf.cmath.legendre
|
| 1253 |
-
[sf.cmath.riemann_zeta]: #sf.cmath.riemann_zeta
|
| 1254 |
-
[sf.cmath.sph_bessel]: #sf.cmath.sph_bessel
|
| 1255 |
-
[sf.cmath.sph_legendre]: #sf.cmath.sph_legendre
|
| 1256 |
-
[sf.cmath.sph_neumann]: #sf.cmath.sph_neumann
|
| 1257 |
-
[slice.access]: #slice.access
|
| 1258 |
-
[slice.arr.assign]: #slice.arr.assign
|
| 1259 |
-
[slice.arr.comp.assign]: #slice.arr.comp.assign
|
| 1260 |
-
[slice.arr.fill]: #slice.arr.fill
|
| 1261 |
-
[strings]: strings.md#strings
|
| 1262 |
-
[tab:RandomDistribution]: #tab:RandomDistribution
|
| 1263 |
-
[tab:RandomEngine]: #tab:RandomEngine
|
| 1264 |
-
[tab:SeedSequence]: #tab:SeedSequence
|
| 1265 |
-
[tab:UniformRandomBitGenerator]: #tab:UniformRandomBitGenerator
|
| 1266 |
-
[tab:copyassignable]: #tab:copyassignable
|
| 1267 |
-
[tab:copyconstructible]: #tab:copyconstructible
|
| 1268 |
-
[tab:equalitycomparable]: #tab:equalitycomparable
|
| 1269 |
-
[tab:iterator.input.requirements]: iterators.md#tab:iterator.input.requirements
|
| 1270 |
-
[tab:moveassignable]: #tab:moveassignable
|
| 1271 |
-
[tab:moveconstructible]: #tab:moveconstructible
|
| 1272 |
-
[tab:numerics.lib.summary]: #tab:numerics.lib.summary
|
| 1273 |
-
[template.gslice.array]: #template.gslice.array
|
| 1274 |
-
[template.gslice.array.overview]: #template.gslice.array.overview
|
| 1275 |
-
[template.indirect.array]: #template.indirect.array
|
| 1276 |
-
[template.indirect.array.overview]: #template.indirect.array.overview
|
| 1277 |
-
[template.mask.array]: #template.mask.array
|
| 1278 |
-
[template.mask.array.overview]: #template.mask.array.overview
|
| 1279 |
-
[template.slice.array]: #template.slice.array
|
| 1280 |
-
[template.slice.array.overview]: #template.slice.array.overview
|
| 1281 |
-
[template.valarray]: #template.valarray
|
| 1282 |
-
[template.valarray.overview]: #template.valarray.overview
|
| 1283 |
-
[thread.thread.class]: thread.md#thread.thread.class
|
| 1284 |
-
[transform.exclusive.scan]: #transform.exclusive.scan
|
| 1285 |
-
[transform.inclusive.scan]: #transform.inclusive.scan
|
| 1286 |
-
[transform.reduce]: #transform.reduce
|
| 1287 |
-
[valarray.access]: #valarray.access
|
| 1288 |
-
[valarray.assign]: #valarray.assign
|
| 1289 |
-
[valarray.binary]: #valarray.binary
|
| 1290 |
-
[valarray.cassign]: #valarray.cassign
|
| 1291 |
-
[valarray.comparison]: #valarray.comparison
|
| 1292 |
-
[valarray.cons]: #valarray.cons
|
| 1293 |
-
[valarray.members]: #valarray.members
|
| 1294 |
-
[valarray.nonmembers]: #valarray.nonmembers
|
| 1295 |
-
[valarray.range]: #valarray.range
|
| 1296 |
-
[valarray.special]: #valarray.special
|
| 1297 |
-
[valarray.sub]: #valarray.sub
|
| 1298 |
-
[valarray.syn]: #valarray.syn
|
| 1299 |
-
[valarray.transcend]: #valarray.transcend
|
| 1300 |
-
[valarray.unary]: #valarray.unary
|
| 1301 |
-
[vector]: containers.md#vector
|
| 1302 |
-
|
| 1303 |
-
[^1]: In other words, value types. These include arithmetic types,
|
| 1304 |
-
pointers, the library class `complex`, and instantiations of
|
| 1305 |
-
`valarray` for value types.
|
| 1306 |
-
|
| 1307 |
-
[^2]: The name of this engine refers, in part, to a property of its
|
| 1308 |
-
period: For properly-selected values of the parameters, the period
|
| 1309 |
-
is closely related to a large Mersenne prime number.
|
| 1310 |
-
|
| 1311 |
-
[^3]: The parameter is intended to allow an implementation to
|
| 1312 |
-
differentiate between different sources of randomness.
|
| 1313 |
-
|
| 1314 |
-
[^4]: If a device has n states whose respective probabilities are
|
| 1315 |
-
P₀, …, Pₙ₋₁, the device entropy S is defined as
|
| 1316 |
-
$S = - \sum_{i=0}^{n-1} P_i \cdot \log P_i$.
|
| 1317 |
-
|
| 1318 |
-
[^5]: b is introduced to avoid any attempt to produce more bits of
|
| 1319 |
-
randomness than can be held in `RealType`.
|
| 1320 |
-
|
| 1321 |
-
[^6]: The distribution corresponding to this probability density
|
| 1322 |
-
function is also known (with a possible change of variable) as the
|
| 1323 |
-
Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I
|
| 1324 |
-
distribution.
|
| 1325 |
-
|
| 1326 |
-
[^7]: Annex [[implimits]] recommends a minimum number of recursively
|
| 1327 |
-
nested template instantiations. This requirement thus indirectly
|
| 1328 |
-
suggests a minimum allowable complexity for valarray expressions.
|
| 1329 |
-
|
| 1330 |
-
[^8]: The intent is to specify an array template that has the minimum
|
| 1331 |
-
functionality necessary to address aliasing ambiguities and the
|
| 1332 |
-
proliferation of temporaries. Thus, the `valarray` template is
|
| 1333 |
-
neither a matrix class nor a field class. However, it is a very
|
| 1334 |
-
useful building block for designing such classes.
|
| 1335 |
-
|
| 1336 |
-
[^9]: This default constructor is essential, since arrays of `valarray`
|
| 1337 |
-
may be useful. After initialization, the length of an empty array
|
| 1338 |
-
can be increased with the `resize` member function.
|
| 1339 |
-
|
| 1340 |
-
[^10]: This constructor is the preferred method for converting a C array
|
| 1341 |
-
to a `valarray` object.
|
| 1342 |
-
|
| 1343 |
-
[^11]: This copy constructor creates a distinct array rather than an
|
| 1344 |
-
alias. Implementations in which arrays share storage are permitted,
|
| 1345 |
-
but they shall implement a copy-on-reference mechanism to ensure
|
| 1346 |
-
that arrays are conceptually distinct.
|
| 1347 |
-
|
| 1348 |
-
[^12]: BLAS stands for *Basic Linear Algebra Subprograms.* C++programs
|
| 1349 |
-
may instantiate this class. See, for example, Dongarra, Du Croz,
|
| 1350 |
-
Duff, and Hammerling: *A set of Level 3 Basic Linear Algebra
|
| 1351 |
-
Subprograms*; Technical Report MCS-P1-0888, Argonne National
|
| 1352 |
-
Laboratory (USA), Mathematics and Computer Science Division, August,
|
| 1353 |
-
1988.
|
| 1354 |
-
|
| 1355 |
-
[^13]: The use of fully closed ranges is intentional.
|
| 1356 |
-
|
| 1357 |
-
[^14]: `accumulate` is similar to the APL reduction operator and Common
|
| 1358 |
-
Lisp reduce function, but it avoids the difficulty of defining the
|
| 1359 |
-
result of reduction on an empty sequence by always requiring an
|
| 1360 |
-
initial value.
|
| 1361 |
-
|
| 1362 |
-
[^15]: The use of fully closed ranges is intentional.
|
| 1363 |
-
|
| 1364 |
-
[^16]: The use of fully closed ranges is intentional.
|
| 1365 |
-
|
| 1366 |
-
[^17]: The use of fully closed ranges is intentional.
|
| 1367 |
-
|
| 1368 |
-
[^18]: A mathematical function is mathematically defined for a given set
|
| 1369 |
-
of argument values (a) if it is explicitly defined for that set of
|
| 1370 |
-
argument values, or (b) if its limiting value exists and does not
|
| 1371 |
-
depend on the direction of approach.
|
|
|
|
| 211 |
float fabsf(float x);
|
| 212 |
long double fabsl(long double x);
|
| 213 |
|
| 214 |
float hypot(float x, float y); // see [library.c]
|
| 215 |
double hypot(double x, double y);
|
| 216 |
+
long double hypot(long double x, long double y); // see [library.c]
|
| 217 |
float hypotf(float x, float y);
|
| 218 |
long double hypotl(long double x, long double y);
|
| 219 |
|
| 220 |
// [c.math.hypot3], three-dimensional hypotenuse
|
| 221 |
float hypot(float x, float y, float z);
|
|
|
|
| 380 |
double fma(double x, double y, double z);
|
| 381 |
long double fma(long double x, long double y, long double z); // see [library.c]
|
| 382 |
float fmaf(float x, float y, float z);
|
| 383 |
long double fmal(long double x, long double y, long double z);
|
| 384 |
|
| 385 |
+
// [c.math.lerp], linear interpolation
|
| 386 |
+
constexpr float lerp(float a, float b, float t) noexcept;
|
| 387 |
+
constexpr double lerp(double a, double b, double t) noexcept;
|
| 388 |
+
constexpr long double lerp(long double a, long double b, long double t) noexcept;
|
| 389 |
+
|
| 390 |
// [c.math.fpclass], classification / comparison functions
|
| 391 |
int fpclassify(float x);
|
| 392 |
int fpclassify(double x);
|
| 393 |
int fpclassify(long double x);
|
| 394 |
|
| 395 |
+
bool isfinite(float x);
|
| 396 |
+
bool isfinite(double x);
|
| 397 |
+
bool isfinite(long double x);
|
| 398 |
|
| 399 |
+
bool isinf(float x);
|
| 400 |
+
bool isinf(double x);
|
| 401 |
+
bool isinf(long double x);
|
| 402 |
|
| 403 |
+
bool isnan(float x);
|
| 404 |
+
bool isnan(double x);
|
| 405 |
+
bool isnan(long double x);
|
| 406 |
|
| 407 |
+
bool isnormal(float x);
|
| 408 |
+
bool isnormal(double x);
|
| 409 |
+
bool isnormal(long double x);
|
| 410 |
|
| 411 |
+
bool signbit(float x);
|
| 412 |
+
bool signbit(double x);
|
| 413 |
+
bool signbit(long double x);
|
| 414 |
|
| 415 |
+
bool isgreater(float x, float y);
|
| 416 |
+
bool isgreater(double x, double y);
|
| 417 |
+
bool isgreater(long double x, long double y);
|
| 418 |
|
| 419 |
+
bool isgreaterequal(float x, float y);
|
| 420 |
+
bool isgreaterequal(double x, double y);
|
| 421 |
+
bool isgreaterequal(long double x, long double y);
|
| 422 |
|
| 423 |
+
bool isless(float x, float y);
|
| 424 |
+
bool isless(double x, double y);
|
| 425 |
+
bool isless(long double x, long double y);
|
| 426 |
|
| 427 |
+
bool islessequal(float x, float y);
|
| 428 |
+
bool islessequal(double x, double y);
|
| 429 |
+
bool islessequal(long double x, long double y);
|
| 430 |
|
| 431 |
+
bool islessgreater(float x, float y);
|
| 432 |
+
bool islessgreater(double x, double y);
|
| 433 |
+
bool islessgreater(long double x, long double y);
|
| 434 |
|
| 435 |
+
bool isunordered(float x, float y);
|
| 436 |
+
bool isunordered(double x, double y);
|
| 437 |
+
bool isunordered(long double x, long double y);
|
| 438 |
|
| 439 |
// [sf.cmath], mathematical special functions
|
| 440 |
|
| 441 |
+
// [sf.cmath.assoc.laguerre], associated Laguerre polynomials
|
| 442 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 443 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 444 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 445 |
|
| 446 |
+
// [sf.cmath.assoc.legendre], associated Legendre functions
|
| 447 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 448 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 449 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 450 |
|
| 451 |
// [sf.cmath.beta], beta function
|
| 452 |
double beta(double x, double y);
|
| 453 |
float betaf(float x, float y);
|
| 454 |
long double betal(long double x, long double y);
|
| 455 |
|
| 456 |
+
// [sf.cmath.comp.ellint.1], complete elliptic integral of the first kind
|
| 457 |
double comp_ellint_1(double k);
|
| 458 |
float comp_ellint_1f(float k);
|
| 459 |
long double comp_ellint_1l(long double k);
|
| 460 |
|
| 461 |
+
// [sf.cmath.comp.ellint.2], complete elliptic integral of the second kind
|
| 462 |
double comp_ellint_2(double k);
|
| 463 |
float comp_ellint_2f(float k);
|
| 464 |
long double comp_ellint_2l(long double k);
|
| 465 |
|
| 466 |
+
// [sf.cmath.comp.ellint.3], complete elliptic integral of the third kind
|
| 467 |
double comp_ellint_3(double k, double nu);
|
| 468 |
float comp_ellint_3f(float k, float nu);
|
| 469 |
long double comp_ellint_3l(long double k, long double nu);
|
| 470 |
|
| 471 |
+
// [sf.cmath.cyl.bessel.i], regular modified cylindrical Bessel functions
|
| 472 |
double cyl_bessel_i(double nu, double x);
|
| 473 |
float cyl_bessel_if(float nu, float x);
|
| 474 |
long double cyl_bessel_il(long double nu, long double x);
|
| 475 |
|
| 476 |
+
// [sf.cmath.cyl.bessel.j], cylindrical Bessel functions of the first kind
|
| 477 |
double cyl_bessel_j(double nu, double x);
|
| 478 |
float cyl_bessel_jf(float nu, float x);
|
| 479 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 480 |
|
| 481 |
+
// [sf.cmath.cyl.bessel.k], irregular modified cylindrical Bessel functions
|
| 482 |
double cyl_bessel_k(double nu, double x);
|
| 483 |
float cyl_bessel_kf(float nu, float x);
|
| 484 |
long double cyl_bessel_kl(long double nu, long double x);
|
| 485 |
|
| 486 |
+
// [sf.cmath.cyl.neumann], cylindrical Neumann functions;
|
| 487 |
// cylindrical Bessel functions of the second kind
|
| 488 |
double cyl_neumann(double nu, double x);
|
| 489 |
float cyl_neumannf(float nu, float x);
|
| 490 |
long double cyl_neumannl(long double nu, long double x);
|
| 491 |
|
| 492 |
+
// [sf.cmath.ellint.1], incomplete elliptic integral of the first kind
|
| 493 |
double ellint_1(double k, double phi);
|
| 494 |
float ellint_1f(float k, float phi);
|
| 495 |
long double ellint_1l(long double k, long double phi);
|
| 496 |
|
| 497 |
+
// [sf.cmath.ellint.2], incomplete elliptic integral of the second kind
|
| 498 |
double ellint_2(double k, double phi);
|
| 499 |
float ellint_2f(float k, float phi);
|
| 500 |
long double ellint_2l(long double k, long double phi);
|
| 501 |
|
| 502 |
+
// [sf.cmath.ellint.3], incomplete elliptic integral of the third kind
|
| 503 |
double ellint_3(double k, double nu, double phi);
|
| 504 |
float ellint_3f(float k, float nu, float phi);
|
| 505 |
long double ellint_3l(long double k, long double nu, long double phi);
|
| 506 |
|
| 507 |
// [sf.cmath.expint], exponential integral
|
|
|
|
| 522 |
// [sf.cmath.legendre], Legendre polynomials
|
| 523 |
double legendre(unsigned l, double x);
|
| 524 |
float legendref(unsigned l, float x);
|
| 525 |
long double legendrel(unsigned l, long double x);
|
| 526 |
|
| 527 |
+
// [sf.cmath.riemann.zeta], Riemann zeta function
|
| 528 |
double riemann_zeta(double x);
|
| 529 |
float riemann_zetaf(float x);
|
| 530 |
long double riemann_zetal(long double x);
|
| 531 |
|
| 532 |
+
// [sf.cmath.sph.bessel], spherical Bessel functions of the first kind
|
| 533 |
double sph_bessel(unsigned n, double x);
|
| 534 |
float sph_besself(unsigned n, float x);
|
| 535 |
long double sph_bessell(unsigned n, long double x);
|
| 536 |
|
| 537 |
+
// [sf.cmath.sph.legendre], spherical associated Legendre functions
|
| 538 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 539 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 540 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
| 541 |
|
| 542 |
+
// [sf.cmath.sph.neumann], spherical Neumann functions;
|
| 543 |
+
// spherical Bessel functions of the second kind
|
| 544 |
double sph_neumann(unsigned n, double x);
|
| 545 |
float sph_neumannf(unsigned n, float x);
|
| 546 |
long double sph_neumannl(unsigned n, long double x);
|
| 547 |
}
|
| 548 |
```
|
|
|
|
| 551 |
standard library header `<math.h>`, with the addition of a
|
| 552 |
three-dimensional hypotenuse function ([[c.math.hypot3]]) and the
|
| 553 |
mathematical special functions described in [[sf.cmath]].
|
| 554 |
|
| 555 |
[*Note 1*: Several functions have additional overloads in this
|
| 556 |
+
document, but they have the same behavior as in the C standard library
|
| 557 |
+
[[library.c]]. — *end note*]
|
| 558 |
|
| 559 |
For each set of overloaded functions within `<cmath>`, with the
|
| 560 |
exception of `abs`, there shall be additional overloads sufficient to
|
| 561 |
ensure:
|
| 562 |
|
| 563 |
+
- If any argument of arithmetic type corresponding to a `double`
|
| 564 |
parameter has type `long double`, then all arguments of arithmetic
|
| 565 |
+
type [[basic.fundamental]] corresponding to `double` parameters are
|
| 566 |
+
effectively cast to `long double`.
|
| 567 |
+
- Otherwise, if any argument of arithmetic type corresponding to a
|
| 568 |
`double` parameter has type `double` or an integer type, then all
|
| 569 |
+
arguments of arithmetic type corresponding to `double` parameters are
|
| 570 |
+
effectively cast to `double`.
|
| 571 |
+
- \[*Note 2*: Otherwise, all arguments of arithmetic type corresponding
|
| 572 |
+
to `double` parameters have type `float`. — *end note*]
|
| 573 |
|
| 574 |
+
[*Note 3*: `abs` is exempted from these rules in order to stay
|
| 575 |
compatible with C. — *end note*]
|
| 576 |
|
| 577 |
ISO C 7.12
|
| 578 |
|
| 579 |
### Absolute values <a id="c.math.abs">[[c.math.abs]]</a>
|
| 580 |
|
| 581 |
+
[*Note 1*: The headers `<cstdlib>` and `<cmath>` declare the functions
|
| 582 |
+
described in this subclause. — *end note*]
|
|
|
|
| 583 |
|
| 584 |
``` cpp
|
| 585 |
int abs(int j);
|
| 586 |
long int abs(long int j);
|
| 587 |
long long int abs(long long int j);
|
|
|
|
| 594 |
standard library for the functions `abs`, `labs`, `llabs`, `fabsf`,
|
| 595 |
`fabs`, and `fabsl`.
|
| 596 |
|
| 597 |
*Remarks:* If `abs()` is called with an argument of type `X` for which
|
| 598 |
`is_unsigned_v<X>` is `true` and if `X` cannot be converted to `int` by
|
| 599 |
+
integral promotion [[conv.prom]], the program is ill-formed.
|
| 600 |
|
| 601 |
[*Note 1*: Arguments that can be promoted to `int` are permitted for
|
| 602 |
compatibility with C. — *end note*]
|
| 603 |
|
| 604 |
+
See also: ISO C 7.12.7.2, 7.22.6.1
|
| 605 |
|
| 606 |
### Three-dimensional hypotenuse <a id="c.math.hypot3">[[c.math.hypot3]]</a>
|
| 607 |
|
| 608 |
``` cpp
|
| 609 |
float hypot(float x, float y, float z);
|
|
|
|
| 611 |
long double hypot(long double x, long double y, long double z);
|
| 612 |
```
|
| 613 |
|
| 614 |
*Returns:* $\sqrt{x^2+y^2+z^2}$.
|
| 615 |
|
| 616 |
+
### Linear interpolation <a id="c.math.lerp">[[c.math.lerp]]</a>
|
| 617 |
+
|
| 618 |
+
``` cpp
|
| 619 |
+
constexpr float lerp(float a, float b, float t) noexcept;
|
| 620 |
+
constexpr double lerp(double a, double b, double t) noexcept;
|
| 621 |
+
constexpr long double lerp(long double a, long double b, long double t) noexcept;
|
| 622 |
+
```
|
| 623 |
+
|
| 624 |
+
*Returns:* a+t(b-a).
|
| 625 |
+
|
| 626 |
+
*Remarks:* Let `r` be the value returned. If
|
| 627 |
+
`isfinite(a) && isfinite(b)`, then:
|
| 628 |
+
|
| 629 |
+
- If `t == 0`, then `r == a`.
|
| 630 |
+
- If `t == 1`, then `r == b`.
|
| 631 |
+
- If `t >= 0 && t <= 1`, then `isfinite(r)`.
|
| 632 |
+
- If `isfinite(t) && a == b`, then `r == a`.
|
| 633 |
+
- If `isfinite(t) || !isnan(t) && b-a != 0`, then `!isnan(r)`.
|
| 634 |
+
|
| 635 |
+
Let *`CMP`*`(x,y)` be `1` if `x > y`, `-1` if `x < y`, and `0`
|
| 636 |
+
otherwise. For any `t1` and `t2`, the product of
|
| 637 |
+
*`CMP`*`(lerp(a, b, t2), lerp(a, b, t1))`, *`CMP`*`(t2, t1)`, and
|
| 638 |
+
*`CMP`*`(b, a)` is non-negative.
|
| 639 |
+
|
| 640 |
### Classification / comparison functions <a id="c.math.fpclass">[[c.math.fpclass]]</a>
|
| 641 |
|
| 642 |
The classification / comparison functions behave the same as the C
|
| 643 |
macros with the corresponding names defined in the C standard library.
|
| 644 |
Each function is overloaded for the three floating-point types.
|
|
|
|
| 655 |
- the function description’s *Returns:* clause explicitly specifies a
|
| 656 |
domain and those argument values fall outside the specified domain, or
|
| 657 |
- the corresponding mathematical function value has a nonzero imaginary
|
| 658 |
component, or
|
| 659 |
- the corresponding mathematical function is not mathematically
|
| 660 |
+
defined.[^13]
|
| 661 |
|
| 662 |
Unless otherwise specified, each function is defined for all finite
|
| 663 |
values, for negative infinity, and for positive infinity.
|
| 664 |
|
| 665 |
+
#### Associated Laguerre polynomials <a id="sf.cmath.assoc.laguerre">[[sf.cmath.assoc.laguerre]]</a>
|
| 666 |
|
| 667 |
``` cpp
|
| 668 |
double assoc_laguerre(unsigned n, unsigned m, double x);
|
| 669 |
float assoc_laguerref(unsigned n, unsigned m, float x);
|
| 670 |
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
| 671 |
```
|
| 672 |
|
| 673 |
*Effects:* These functions compute the associated Laguerre polynomials
|
| 674 |
of their respective arguments `n`, `m`, and `x`.
|
| 675 |
|
| 676 |
+
*Returns:* $$\mathsf{L}_n^m(x) =
|
| 677 |
+
(-1)^m \frac{\mathsf{d} ^ m}{\mathsf{d}x ^ m} \, \mathsf{L}_{n+m}(x)
|
| 678 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n`, m is `m`, and x is
|
|
|
|
|
|
|
| 679 |
`x`.
|
| 680 |
|
| 681 |
*Remarks:* The effect of calling each of these functions is
|
| 682 |
*implementation-defined* if `n >= 128` or if `m >= 128`.
|
| 683 |
|
| 684 |
+
#### Associated Legendre functions <a id="sf.cmath.assoc.legendre">[[sf.cmath.assoc.legendre]]</a>
|
| 685 |
|
| 686 |
``` cpp
|
| 687 |
double assoc_legendre(unsigned l, unsigned m, double x);
|
| 688 |
float assoc_legendref(unsigned l, unsigned m, float x);
|
| 689 |
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
| 690 |
```
|
| 691 |
|
| 692 |
*Effects:* These functions compute the associated Legendre functions of
|
| 693 |
their respective arguments `l`, `m`, and `x`.
|
| 694 |
|
| 695 |
+
*Returns:* $$\mathsf{P}_\ell^m(x) = (1 - x^2) ^ {m/2} \:
|
| 696 |
+
\frac{\mathsf{d} ^ m}{\mathsf{d}x ^ m} \, \mathsf{P}_\ell(x)
|
| 697 |
+
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l`, m is `m`, and x is
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
`x`.
|
| 699 |
|
| 700 |
*Remarks:* The effect of calling each of these functions is
|
| 701 |
*implementation-defined* if `l >= 128`.
|
| 702 |
|
|
|
|
| 709 |
```
|
| 710 |
|
| 711 |
*Effects:* These functions compute the beta function of their respective
|
| 712 |
arguments `x` and `y`.
|
| 713 |
|
| 714 |
+
*Returns:*
|
| 715 |
+
$$\mathsf{B}(x, y) = \frac{\Gamma(x) \, \Gamma(y)}{\Gamma(x + y)}
|
| 716 |
+
\text{ ,\quad for $x > 0$,\, $y > 0$,}$$ where x is `x` and y is `y`.
|
|
|
|
|
|
|
|
|
|
| 717 |
|
| 718 |
+
#### Complete elliptic integral of the first kind <a id="sf.cmath.comp.ellint.1">[[sf.cmath.comp.ellint.1]]</a>
|
| 719 |
|
| 720 |
``` cpp
|
| 721 |
double comp_ellint_1(double k);
|
| 722 |
float comp_ellint_1f(float k);
|
| 723 |
long double comp_ellint_1l(long double k);
|
| 724 |
```
|
| 725 |
|
| 726 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 727 |
first kind of their respective arguments `k`.
|
| 728 |
|
| 729 |
+
*Returns:*
|
| 730 |
+
$$\mathsf{K}(k) = \mathsf{F}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 731 |
+
where k is `k`.
|
|
|
|
| 732 |
|
| 733 |
+
See also [[sf.cmath.ellint.1]].
|
| 734 |
|
| 735 |
+
#### Complete elliptic integral of the second kind <a id="sf.cmath.comp.ellint.2">[[sf.cmath.comp.ellint.2]]</a>
|
| 736 |
|
| 737 |
``` cpp
|
| 738 |
double comp_ellint_2(double k);
|
| 739 |
float comp_ellint_2f(float k);
|
| 740 |
long double comp_ellint_2l(long double k);
|
| 741 |
```
|
| 742 |
|
| 743 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 744 |
second kind of their respective arguments `k`.
|
| 745 |
|
| 746 |
+
*Returns:*
|
| 747 |
+
$$\mathsf{E}(k) = \mathsf{E}(k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 748 |
+
where k is `k`.
|
|
|
|
| 749 |
|
| 750 |
+
See also [[sf.cmath.ellint.2]].
|
| 751 |
|
| 752 |
+
#### Complete elliptic integral of the third kind <a id="sf.cmath.comp.ellint.3">[[sf.cmath.comp.ellint.3]]</a>
|
| 753 |
|
| 754 |
``` cpp
|
| 755 |
double comp_ellint_3(double k, double nu);
|
| 756 |
float comp_ellint_3f(float k, float nu);
|
| 757 |
long double comp_ellint_3l(long double k, long double nu);
|
| 758 |
```
|
| 759 |
|
| 760 |
*Effects:* These functions compute the complete elliptic integral of the
|
| 761 |
third kind of their respective arguments `k` and `nu`.
|
| 762 |
|
| 763 |
+
*Returns:*
|
| 764 |
+
$$\mathsf{\Pi}(\nu, k) = \mathsf{\Pi}(\nu, k, \pi / 2) \text{ ,\quad for $|k| \le 1$,}$$
|
| 765 |
+
where k is `k` and $\nu$ is `nu`.
|
| 766 |
|
| 767 |
+
See also [[sf.cmath.ellint.3]].
|
| 768 |
|
| 769 |
+
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.i">[[sf.cmath.cyl.bessel.i]]</a>
|
| 770 |
|
| 771 |
``` cpp
|
| 772 |
double cyl_bessel_i(double nu, double x);
|
| 773 |
float cyl_bessel_if(float nu, float x);
|
| 774 |
long double cyl_bessel_il(long double nu, long double x);
|
| 775 |
```
|
| 776 |
|
| 777 |
*Effects:* These functions compute the regular modified cylindrical
|
| 778 |
Bessel functions of their respective arguments `nu` and `x`.
|
| 779 |
|
| 780 |
+
*Returns:* $$\mathsf{I}_\nu(x) =
|
| 781 |
+
i^{-\nu} \mathsf{J}_\nu(ix) =
|
| 782 |
+
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
|
| 783 |
+
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
|
|
|
|
|
|
|
|
|
| 784 |
|
| 785 |
*Remarks:* The effect of calling each of these functions is
|
| 786 |
*implementation-defined* if `nu >= 128`.
|
| 787 |
|
| 788 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 789 |
|
| 790 |
+
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.cyl.bessel.j">[[sf.cmath.cyl.bessel.j]]</a>
|
| 791 |
|
| 792 |
``` cpp
|
| 793 |
double cyl_bessel_j(double nu, double x);
|
| 794 |
float cyl_bessel_jf(float nu, float x);
|
| 795 |
long double cyl_bessel_jl(long double nu, long double x);
|
| 796 |
```
|
| 797 |
|
| 798 |
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 799 |
the first kind of their respective arguments `nu` and `x`.
|
| 800 |
|
| 801 |
+
*Returns:* $$\mathsf{J}_\nu(x) =
|
| 802 |
+
\sum_{k=0}^\infty \frac{(-1)^k (x/2)^{\nu+2k}}{k! \: \Gamma(\nu+k+1)}
|
| 803 |
+
\text{ ,\quad for $x \ge 0$,}$$ where $\nu$ is `nu` and x is `x`.
|
|
|
|
|
|
|
| 804 |
|
| 805 |
*Remarks:* The effect of calling each of these functions is
|
| 806 |
*implementation-defined* if `nu >= 128`.
|
| 807 |
|
| 808 |
+
#### Irregular modified cylindrical Bessel functions <a id="sf.cmath.cyl.bessel.k">[[sf.cmath.cyl.bessel.k]]</a>
|
| 809 |
|
| 810 |
``` cpp
|
| 811 |
double cyl_bessel_k(double nu, double x);
|
| 812 |
float cyl_bessel_kf(float nu, float x);
|
| 813 |
long double cyl_bessel_kl(long double nu, long double x);
|
|
|
|
| 840 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 841 |
|
| 842 |
*Remarks:* The effect of calling each of these functions is
|
| 843 |
*implementation-defined* if `nu >= 128`.
|
| 844 |
|
| 845 |
+
See also [[sf.cmath.cyl.bessel.i]], [[sf.cmath.cyl.bessel.j]],
|
| 846 |
+
[[sf.cmath.cyl.neumann]].
|
| 847 |
|
| 848 |
+
#### Cylindrical Neumann functions <a id="sf.cmath.cyl.neumann">[[sf.cmath.cyl.neumann]]</a>
|
| 849 |
|
| 850 |
``` cpp
|
| 851 |
double cyl_neumann(double nu, double x);
|
| 852 |
float cyl_neumannf(float nu, float x);
|
| 853 |
long double cyl_neumannl(long double nu, long double x);
|
|
|
|
| 875 |
\right.$$ where $\nu$ is `nu` and x is `x`.
|
| 876 |
|
| 877 |
*Remarks:* The effect of calling each of these functions is
|
| 878 |
*implementation-defined* if `nu >= 128`.
|
| 879 |
|
| 880 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 881 |
|
| 882 |
+
#### Incomplete elliptic integral of the first kind <a id="sf.cmath.ellint.1">[[sf.cmath.ellint.1]]</a>
|
| 883 |
|
| 884 |
``` cpp
|
| 885 |
double ellint_1(double k, double phi);
|
| 886 |
float ellint_1f(float k, float phi);
|
| 887 |
long double ellint_1l(long double k, long double phi);
|
|
|
|
| 889 |
|
| 890 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 891 |
the first kind of their respective arguments `k` and `phi` (`phi`
|
| 892 |
measured in radians).
|
| 893 |
|
| 894 |
+
*Returns:* $$\mathsf{F}(k, \phi) =
|
| 895 |
+
\int_0^\phi \! \frac{\mathsf{d}\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
|
| 896 |
+
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
|
|
|
|
|
|
| 897 |
|
| 898 |
+
#### Incomplete elliptic integral of the second kind <a id="sf.cmath.ellint.2">[[sf.cmath.ellint.2]]</a>
|
| 899 |
|
| 900 |
``` cpp
|
| 901 |
double ellint_2(double k, double phi);
|
| 902 |
float ellint_2f(float k, float phi);
|
| 903 |
long double ellint_2l(long double k, long double phi);
|
|
|
|
| 905 |
|
| 906 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 907 |
the second kind of their respective arguments `k` and `phi` (`phi`
|
| 908 |
measured in radians).
|
| 909 |
|
| 910 |
+
*Returns:*
|
| 911 |
+
$$\mathsf{E}(k, \phi) = \int_0^\phi \! \sqrt{1 - k^2 \sin^2 \theta} \, \mathsf{d}\theta
|
| 912 |
+
\text{ ,\quad for $|k| \le 1$,}$$ where k is `k` and φ is `phi`.
|
|
|
|
| 913 |
|
| 914 |
+
#### Incomplete elliptic integral of the third kind <a id="sf.cmath.ellint.3">[[sf.cmath.ellint.3]]</a>
|
| 915 |
|
| 916 |
``` cpp
|
| 917 |
double ellint_3(double k, double nu, double phi);
|
| 918 |
float ellint_3f(float k, float nu, float phi);
|
| 919 |
long double ellint_3l(long double k, long double nu, long double phi);
|
|
|
|
| 921 |
|
| 922 |
*Effects:* These functions compute the incomplete elliptic integral of
|
| 923 |
the third kind of their respective arguments `k`, `nu`, and `phi` (`phi`
|
| 924 |
measured in radians).
|
| 925 |
|
| 926 |
+
*Returns:* $$\mathsf{\Pi}(\nu, k, \phi) = \int_0^\phi \!
|
| 927 |
+
\frac{ \mathsf{d}\theta }{ (1 - \nu \, \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta} } \text{ ,\quad for $|k| \le 1$,}$$
|
| 928 |
+
where $\nu$ is `nu`, k is `k`, and φ is `phi`.
|
|
|
|
|
|
|
|
|
|
| 929 |
|
| 930 |
#### Exponential integral <a id="sf.cmath.expint">[[sf.cmath.expint]]</a>
|
| 931 |
|
| 932 |
``` cpp
|
| 933 |
double expint(double x);
|
|
|
|
| 973 |
```
|
| 974 |
|
| 975 |
*Effects:* These functions compute the Laguerre polynomials of their
|
| 976 |
respective arguments `n` and `x`.
|
| 977 |
|
| 978 |
+
*Returns:* $$\mathsf{L}_n(x) =
|
| 979 |
+
\frac{e^x}{n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} \, (x^n e^{-x})
|
| 980 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
|
|
|
|
|
|
| 981 |
|
| 982 |
*Remarks:* The effect of calling each of these functions is
|
| 983 |
*implementation-defined* if `n >= 128`.
|
| 984 |
|
| 985 |
#### Legendre polynomials <a id="sf.cmath.legendre">[[sf.cmath.legendre]]</a>
|
|
|
|
| 991 |
```
|
| 992 |
|
| 993 |
*Effects:* These functions compute the Legendre polynomials of their
|
| 994 |
respective arguments `l` and `x`.
|
| 995 |
|
| 996 |
+
*Returns:* $$\mathsf{P}_\ell(x) =
|
| 997 |
+
\frac{1}{2^\ell \, \ell!}
|
| 998 |
+
\frac{\mathsf{d}^\ell}{\mathsf{d}x^\ell} \, (x^2 - 1) ^ \ell
|
| 999 |
+
\text{ ,\quad for $|x| \le 1$,}$$ where l is `l` and x is `x`.
|
|
|
|
|
|
|
|
|
|
| 1000 |
|
| 1001 |
*Remarks:* The effect of calling each of these functions is
|
| 1002 |
*implementation-defined* if `l >= 128`.
|
| 1003 |
|
| 1004 |
+
#### Riemann zeta function <a id="sf.cmath.riemann.zeta">[[sf.cmath.riemann.zeta]]</a>
|
| 1005 |
|
| 1006 |
``` cpp
|
| 1007 |
double riemann_zeta(double x);
|
| 1008 |
float riemann_zetaf(float x);
|
| 1009 |
long double riemann_zetal(long double x);
|
|
|
|
| 1033 |
& \mbox{for $x < 0$}
|
| 1034 |
\end{array}
|
| 1035 |
\right.
|
| 1036 |
\;$$ where x is `x`.
|
| 1037 |
|
| 1038 |
+
#### Spherical Bessel functions of the first kind <a id="sf.cmath.sph.bessel">[[sf.cmath.sph.bessel]]</a>
|
| 1039 |
|
| 1040 |
``` cpp
|
| 1041 |
double sph_bessel(unsigned n, double x);
|
| 1042 |
float sph_besself(unsigned n, float x);
|
| 1043 |
long double sph_bessell(unsigned n, long double x);
|
| 1044 |
```
|
| 1045 |
|
| 1046 |
*Effects:* These functions compute the spherical Bessel functions of the
|
| 1047 |
first kind of their respective arguments `n` and `x`.
|
| 1048 |
|
| 1049 |
+
*Returns:*
|
| 1050 |
+
$$\mathsf{j}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{J}_{n + 1\!/\!2}(x) \text{ ,\quad for $x \ge 0$,}$$
|
| 1051 |
+
where n is `n` and x is `x`.
|
|
|
|
| 1052 |
|
| 1053 |
*Remarks:* The effect of calling each of these functions is
|
| 1054 |
*implementation-defined* if `n >= 128`.
|
| 1055 |
|
| 1056 |
+
See also [[sf.cmath.cyl.bessel.j]].
|
| 1057 |
|
| 1058 |
+
#### Spherical associated Legendre functions <a id="sf.cmath.sph.legendre">[[sf.cmath.sph.legendre]]</a>
|
| 1059 |
|
| 1060 |
``` cpp
|
| 1061 |
double sph_legendre(unsigned l, unsigned m, double theta);
|
| 1062 |
float sph_legendref(unsigned l, unsigned m, float theta);
|
| 1063 |
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
|
|
|
| 1065 |
|
| 1066 |
*Effects:* These functions compute the spherical associated Legendre
|
| 1067 |
functions of their respective arguments `l`, `m`, and `theta` (`theta`
|
| 1068 |
measured in radians).
|
| 1069 |
|
| 1070 |
+
*Returns:* $$\mathsf{Y}_\ell^m(\theta, 0)$$ where
|
| 1071 |
+
$$\mathsf{Y}_\ell^m(\theta, \phi) =
|
| 1072 |
+
(-1)^m \left[\frac{(2 \ell + 1)}{4 \pi} \frac{(\ell - m)!}{(\ell + m)!}\right]^{1/2}
|
| 1073 |
+
\mathsf{P}_\ell^m (\cos\theta) e^{i m \phi}
|
| 1074 |
+
\text{ ,\quad for $|m| \le \ell$,}$$ and l is `l`, m is `m`, and θ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1075 |
is `theta`.
|
| 1076 |
|
| 1077 |
*Remarks:* The effect of calling each of these functions is
|
| 1078 |
*implementation-defined* if `l >= 128`.
|
| 1079 |
|
| 1080 |
+
See also [[sf.cmath.assoc.legendre]].
|
| 1081 |
|
| 1082 |
+
#### Spherical Neumann functions <a id="sf.cmath.sph.neumann">[[sf.cmath.sph.neumann]]</a>
|
| 1083 |
|
| 1084 |
``` cpp
|
| 1085 |
double sph_neumann(unsigned n, double x);
|
| 1086 |
float sph_neumannf(unsigned n, float x);
|
| 1087 |
long double sph_neumannl(unsigned n, long double x);
|
|
|
|
| 1089 |
|
| 1090 |
*Effects:* These functions compute the spherical Neumann functions, also
|
| 1091 |
known as the spherical Bessel functions of the second kind, of their
|
| 1092 |
respective arguments `n` and `x`.
|
| 1093 |
|
| 1094 |
+
*Returns:*
|
| 1095 |
+
$$\mathsf{n}_n(x) = (\pi/2x)^{1\!/\!2} \mathsf{N}_{n + 1\!/\!2}(x)
|
| 1096 |
+
\text{ ,\quad for $x \ge 0$,}$$ where n is `n` and x is `x`.
|
|
|
|
| 1097 |
|
| 1098 |
*Remarks:* The effect of calling each of these functions is
|
| 1099 |
*implementation-defined* if `n >= 128`.
|
| 1100 |
|
| 1101 |
+
See also [[sf.cmath.cyl.neumann]].
|
| 1102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|