- tmp/tmp28tdxrb0/{from.md → to.md} +115 -86
tmp/tmp28tdxrb0/{from.md → to.md}
RENAMED
|
@@ -11,77 +11,71 @@ describes the requirements on hash function objects.
|
|
| 11 |
allocators.
|
| 12 |
|
| 13 |
#### Template argument requirements <a id="utility.arg.requirements">[[utility.arg.requirements]]</a>
|
| 14 |
|
| 15 |
The template definitions in the C++standard library refer to various
|
| 16 |
-
named requirements whose details are set out in
|
| 17 |
-
[[equalitycomparable]]– [[destructible]]. In these tables, `T`
|
| 18 |
-
object or reference type to be supplied by a C++program
|
| 19 |
-
template; `a`, `b`, and `c` are values of type (possibly
|
| 20 |
-
`s` and `t` are modifiable lvalues of type `T`; `u`
|
| 21 |
-
identifier; `rv` is an rvalue of type `T`; and `v` is an
|
| 22 |
-
(possibly `const`) `T` or an rvalue of type `const T`.
|
| 23 |
|
| 24 |
In general, a default constructor is not required. Certain container
|
| 25 |
class member function signatures specify `T()` as a default argument.
|
| 26 |
`T()` shall be a well-defined expression ([[dcl.init]]) if one of those
|
| 27 |
signatures is called using the default argument ([[dcl.fct.default]]).
|
| 28 |
|
| 29 |
**Table: `EqualityComparable` requirements** <a id="equalitycomparable">[equalitycomparable]</a>
|
| 30 |
|
| 31 |
-
|
|
| 32 |
-
| --------
|
| 33 |
| `a == b` | convertible to `bool` | `==` is an equivalence relation, that is, it has the following properties: For all `a`, `a == a`.; If `a == b`, then `b == a`.; If `a == b` and `b == c`, then `a == c`. |
|
| 34 |
|
| 35 |
**Table: `LessThanComparable` requirements** <a id="lessthancomparable">[lessthancomparable]</a>
|
| 36 |
|
| 37 |
-
|
|
| 38 |
-
| ------- | --------------------- | --------------------------------------------------------- |
|
| 39 |
| `a < b` | convertible to `bool` | `<` is a strict weak ordering relation~([[alg.sorting]]) |
|
| 40 |
|
| 41 |
**Table: `DefaultConstructible` requirements** <a id="defaultconstructible">[defaultconstructible]</a>
|
| 42 |
|
| 43 |
-
|
|
| 44 |
-
| -------- | --------------------------------------------------- |
|
| 45 |
| `T t;` | object `t` is default-initialized |
|
| 46 |
-
| `T u{};`
|
| 47 |
-
| `T()`
|
| 48 |
-
| `T{}` | |
|
| 49 |
|
| 50 |
-
**
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
| `T u = rv;` | `u` is equivalent to the value of `rv` before the construction |
|
| 55 |
-
| `T(rv)` | `T(rv)` is equivalent to the value of `rv` before the construction |
|
| 56 |
-
| *[spans 2 columns]* `rv`'s state is unspecified \enternote `rv` must still meet the requirements of the library component that is using it. The operations listed in those requirements must work as specified whether `rv` has been moved from or not. \exitnote |
|
| 57 |
|
| 58 |
**Table: `CopyConstructible` requirements (in addition to `MoveConstructible`)** <a id="copyconstructible">[copyconstructible]</a>
|
| 59 |
|
| 60 |
-
|
|
| 61 |
| ---------- | --------------------------------------------------------- |
|
| 62 |
| `T u = v;` | the value of `v` is unchanged and is equivalent to ` u` |
|
| 63 |
| `T(v)` | the value of `v` is unchanged and is equivalent to `T(v)` |
|
| 64 |
|
| 65 |
-
**
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
| `t = rv` | `T&` | `t` | `t` is equivalent to the value of `rv` before the assignment |
|
| 70 |
-
| *[spans 4 columns]* `rv`'s state is unspecified. \enternote\ `rv` must still meet the requirements of the library component that is using it. The operations listed in those requirements must work as specified whether `rv` has been moved from or not. \exitnote |
|
| 71 |
|
| 72 |
**Table: `CopyAssignable` requirements (in addition to `MoveAssignable`)** <a id="copyassignable">[copyassignable]</a>
|
| 73 |
|
| 74 |
-
|
|
| 75 |
-
| ------- | ---- | --- | ------------------------------------------------------- |
|
| 76 |
| `t = v` | `T&` | `t` | `t` is equivalent to `v`, the value of `v` is unchanged |
|
| 77 |
|
| 78 |
|
| 79 |
**Table: `Destructible` requirements** <a id="destructible">[destructible]</a>
|
| 80 |
|
| 81 |
-
|
|
| 82 |
-
| -------- | --------------------------------------------------------------------- |
|
| 83 |
| `u.~T()` | All resources owned by `u` are reclaimed, no exception is propagated. |
|
| 84 |
|
| 85 |
|
| 86 |
#### `Swappable` requirements <a id="swappable.requirements">[[swappable.requirements]]</a>
|
| 87 |
|
|
@@ -105,28 +99,30 @@ overload resolution ([[over.match]]) on a candidate set that includes:
|
|
| 105 |
- the two `swap` function templates defined in `<utility>` (
|
| 106 |
[[utility]]) and
|
| 107 |
- the lookup set produced by argument-dependent lookup (
|
| 108 |
[[basic.lookup.argdep]]).
|
| 109 |
|
| 110 |
-
If `T` and `U` are both fundamental types or arrays of
|
| 111 |
-
and the declarations from the header `<utility>` are
|
| 112 |
-
overall lookup set described above is equivalent to that
|
| 113 |
-
qualified name lookup applied to the expression `std::swap(t, u)`
|
| 114 |
-
`std::swap(u, t)` as appropriate.
|
| 115 |
|
| 116 |
-
It is unspecified whether a library component that has a
|
| 117 |
-
requirement includes the header `<utility>` to ensure an
|
| 118 |
-
evaluation context.
|
| 119 |
|
| 120 |
An rvalue or lvalue `t` is *swappable* if and only if `t` is swappable
|
| 121 |
with any rvalue or lvalue, respectively, of type `T`.
|
| 122 |
|
| 123 |
A type `X` satisfying any of the iterator requirements (
|
| 124 |
[[iterator.requirements]]) satisfies the requirements of
|
| 125 |
`ValueSwappable` if, for any dereferenceable object `x` of type `X`,
|
| 126 |
`*x` is swappable.
|
| 127 |
|
|
|
|
|
|
|
| 128 |
User code can ensure that the evaluation of `swap` calls is performed in
|
| 129 |
an appropriate context under the various conditions as follows:
|
| 130 |
|
| 131 |
``` cpp
|
| 132 |
#include <utility>
|
|
@@ -139,11 +135,11 @@ void value_swap(T&& t, U&& u) {
|
|
| 139 |
// for rvalues and lvalues
|
| 140 |
}
|
| 141 |
|
| 142 |
// Requires: lvalues of T shall be swappable.
|
| 143 |
template <class T>
|
| 144 |
-
void lv_swap(T& t1 T& t2) {
|
| 145 |
using std::swap;
|
| 146 |
swap(t1, t2); // OK: uses swappable conditions for
|
| 147 |
} // lvalues of type T
|
| 148 |
|
| 149 |
namespace N {
|
|
@@ -167,48 +163,52 @@ int main() {
|
|
| 167 |
value_swap(a1, proxy(a2));
|
| 168 |
assert(a1.m == -5 && a2.m == 5);
|
| 169 |
}
|
| 170 |
```
|
| 171 |
|
|
|
|
|
|
|
| 172 |
#### `NullablePointer` requirements <a id="nullablepointer.requirements">[[nullablepointer.requirements]]</a>
|
| 173 |
|
| 174 |
A `NullablePointer` type is a pointer-like type that supports null
|
| 175 |
values. A type `P` meets the requirements of `NullablePointer` if:
|
| 176 |
|
| 177 |
- `P` satisfies the requirements of `EqualityComparable`,
|
| 178 |
`DefaultConstructible`, `CopyConstructible`, `CopyAssignable`, and
|
| 179 |
`Destructible`,
|
| 180 |
- lvalues of type `P` are swappable ([[swappable.requirements]]),
|
| 181 |
-
- the expressions shown in Table [[nullablepointer]] are valid and
|
| 182 |
-
the indicated semantics, and
|
| 183 |
- `P` satisfies all the other requirements of this subclause.
|
| 184 |
|
| 185 |
A value-initialized object of type `P` produces the null value of the
|
| 186 |
type. The null value shall be equivalent only to itself. A
|
| 187 |
default-initialized object of type `P` may have an indeterminate value.
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
|
| 190 |
An object `p` of type `P` can be contextually converted to `bool`
|
| 191 |
(Clause [[conv]]). The effect shall be as if `p != nullptr` had been
|
| 192 |
evaluated in place of `p`.
|
| 193 |
|
| 194 |
No operation which is part of the `NullablePointer` requirements shall
|
| 195 |
exit via an exception.
|
| 196 |
|
| 197 |
-
In Table [[nullablepointer]], `u` denotes an identifier, `t`
|
| 198 |
-
non-`const` lvalue of type `P`, `a` and `b` denote values of
|
| 199 |
-
(possibly `const`) `P`, and `np` denotes a value of type (possibly
|
| 200 |
`const`) `std::nullptr_t`.
|
| 201 |
|
| 202 |
**Table: `NullablePointer` requirements** <a id="nullablepointer">[nullablepointer]</a>
|
| 203 |
|
| 204 |
| | | |
|
| 205 |
-
| -------------- | ---------------------------------- | ------------------------ |
|
| 206 |
-
| `P u(np);`<br> | |
|
| 207 |
| `P u = np;` | | |
|
| 208 |
-
| `P(np)` | |
|
| 209 |
-
| `t = np` | `P&` |
|
| 210 |
| `a != b` | contextually convertible to `bool` | `!(a == b)` |
|
| 211 |
| `a == np` | contextually convertible to `bool` | `a == P()` |
|
| 212 |
| `np == a` | | |
|
| 213 |
| `a != np` | contextually convertible to `bool` | `!(a == np)` |
|
| 214 |
| `np != a` | | |
|
|
@@ -219,25 +219,21 @@ non-`const` lvalue of type `P`, `a` and `b` denote values of type
|
|
| 219 |
A type `H` meets the `Hash` requirements if:
|
| 220 |
|
| 221 |
- it is a function object type ([[function.objects]]),
|
| 222 |
- it satisfies the requirements of `CopyConstructible` and
|
| 223 |
`Destructible` ([[utility.arg.requirements]]), and
|
| 224 |
-
- the expressions shown in Table [[hash]] are valid and have the
|
| 225 |
indicated semantics.
|
| 226 |
|
| 227 |
Given `Key` is an argument type for function objects of type `H`, in
|
| 228 |
-
Table [[hash]] `h` is a value of type (possibly `const`) `H`, `u`
|
| 229 |
-
lvalue of type `Key`, and `k` is a value of a type convertible to
|
| 230 |
(possibly `const`) `Key`.
|
| 231 |
|
| 232 |
-
**
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
| ------ | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| 236 |
-
| `h(k)` | `size_t` | The value returned shall depend only on the argument `k` for the duration of the program. \enternote Thus all evaluations of the expression `h(k)` with the same value for `k` yield the same result for a given execution of the program. \exitnote \enternote For two different values `t1` and `t2`, the probability that `h(t1)` and `h(t2)` compare equal should be very small, approaching `1.0 / numeric_limits<size_t>::max()`. \exitnote |
|
| 237 |
-
| `h(u)` | `size_t` | Shall not modify `u`. |
|
| 238 |
-
|
| 239 |
|
| 240 |
#### Allocator requirements <a id="allocator.requirements">[[allocator.requirements]]</a>
|
| 241 |
|
| 242 |
The library describes a standard set of requirements for *allocators*,
|
| 243 |
which are class-type objects that encapsulate the information about an
|
|
@@ -247,12 +243,12 @@ this allocation model, as well as the memory allocation and deallocation
|
|
| 247 |
primitives for it. All of the string types (Clause [[strings]]),
|
| 248 |
containers (Clause [[containers]]) (except array), string buffers and
|
| 249 |
string streams (Clause [[input.output]]), and `match_results` (Clause
|
| 250 |
[[re]]) are parameterized in terms of allocators.
|
| 251 |
|
| 252 |
-
The template
|
| 253 |
-
|
| 254 |
describes the types manipulated through allocators. Table
|
| 255 |
[[tab:utilities.allocator.requirements]] describes the requirements on
|
| 256 |
allocator types and thus on types used to instantiate
|
| 257 |
`allocator_traits`. A requirement is optional if the last column of
|
| 258 |
Table [[tab:utilities.allocator.requirements]] specifies a default for
|
|
@@ -263,31 +259,47 @@ of `allocator_traits` may provide different defaults and may provide
|
|
| 263 |
defaults for different requirements than the primary template. Within
|
| 264 |
Tables [[tab:desc.var.def]] and
|
| 265 |
[[tab:utilities.allocator.requirements]], the use of `move` and
|
| 266 |
`forward` always refers to `std::move` and `std::forward`, respectively.
|
| 267 |
|
|
|
|
|
|
|
| 268 |
Note A: The member class template `rebind` in the table above is
|
| 269 |
-
effectively a typedef template.
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
`T`
|
| 273 |
-
|
| 274 |
-
`
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
An allocator type `X` shall satisfy the requirements of
|
| 281 |
`CopyConstructible` ([[utility.arg.requirements]]). The `X::pointer`,
|
| 282 |
`X::const_pointer`, `X::void_pointer`, and `X::const_void_pointer` types
|
| 283 |
shall satisfy the requirements of `NullablePointer` (
|
| 284 |
-
[[nullablepointer.requirements]]). No constructor, comparison
|
| 285 |
-
copy operation, move operation, or swap operation on these
|
| 286 |
-
exit via an exception. `X::pointer` and `X::const_pointer` shall
|
| 287 |
-
satisfy the requirements for a random access iterator (
|
| 288 |
-
[[
|
|
|
|
| 289 |
|
| 290 |
Let `x1` and `x2` denote objects of (possibly different) types
|
| 291 |
`X::void_pointer`, `X::const_void_pointer`, `X::pointer`, or
|
| 292 |
`X::const_pointer`. Then, `x1` and `x2` are *equivalently-valued*
|
| 293 |
pointer values, if and only if both `x1` and `x2` can be explicitly
|
|
@@ -321,15 +333,18 @@ p1 - p2
|
|
| 321 |
|
| 322 |
either or both objects may be replaced by an equivalently-valued object
|
| 323 |
of type `X::const_pointer` with no change in semantics.
|
| 324 |
|
| 325 |
An allocator may constrain the types on which it can be instantiated and
|
| 326 |
-
the arguments for which its `construct`
|
| 327 |
-
cannot be used with a particular allocator, the
|
| 328 |
-
call to `construct` may fail to
|
|
|
|
| 329 |
|
| 330 |
-
|
|
|
|
|
|
|
| 331 |
interface that satisfies the requirements of Table
|
| 332 |
[[tab:utilities.allocator.requirements]]:
|
| 333 |
|
| 334 |
``` cpp
|
| 335 |
template <class Tp>
|
|
@@ -347,11 +362,25 @@ template <class T, class U>
|
|
| 347 |
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
|
| 348 |
template <class T, class U>
|
| 349 |
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
|
| 350 |
```
|
| 351 |
|
|
|
|
|
|
|
| 352 |
If the alignment associated with a specific over-aligned type is not
|
| 353 |
supported by an allocator, instantiation of the allocator for that type
|
| 354 |
may fail. The allocator also may silently ignore the requested
|
| 355 |
-
alignment.
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
|
|
|
| 11 |
allocators.
|
| 12 |
|
| 13 |
#### Template argument requirements <a id="utility.arg.requirements">[[utility.arg.requirements]]</a>
|
| 14 |
|
| 15 |
The template definitions in the C++standard library refer to various
|
| 16 |
+
named requirements whose details are set out in Tables
|
| 17 |
+
[[tab:equalitycomparable]]– [[tab:destructible]]. In these tables, `T`
|
| 18 |
+
is an object or reference type to be supplied by a C++program
|
| 19 |
+
instantiating a template; `a`, `b`, and `c` are values of type (possibly
|
| 20 |
+
`const`) `T`; `s` and `t` are modifiable lvalues of type `T`; `u`
|
| 21 |
+
denotes an identifier; `rv` is an rvalue of type `T`; and `v` is an
|
| 22 |
+
lvalue of type (possibly `const`) `T` or an rvalue of type `const T`.
|
| 23 |
|
| 24 |
In general, a default constructor is not required. Certain container
|
| 25 |
class member function signatures specify `T()` as a default argument.
|
| 26 |
`T()` shall be a well-defined expression ([[dcl.init]]) if one of those
|
| 27 |
signatures is called using the default argument ([[dcl.fct.default]]).
|
| 28 |
|
| 29 |
**Table: `EqualityComparable` requirements** <a id="equalitycomparable">[equalitycomparable]</a>
|
| 30 |
|
| 31 |
+
| Expression | Return type |
|
| 32 |
+
| ---------- | ----------- |
|
| 33 |
| `a == b` | convertible to `bool` | `==` is an equivalence relation, that is, it has the following properties: For all `a`, `a == a`.; If `a == b`, then `b == a`.; If `a == b` and `b == c`, then `a == c`. |
|
| 34 |
|
| 35 |
**Table: `LessThanComparable` requirements** <a id="lessthancomparable">[lessthancomparable]</a>
|
| 36 |
|
| 37 |
+
| Expression | Return type | Requirement |
|
| 38 |
+
| ---------- | --------------------- | --------------------------------------------------------- |
|
| 39 |
| `a < b` | convertible to `bool` | `<` is a strict weak ordering relation~([[alg.sorting]]) |
|
| 40 |
|
| 41 |
**Table: `DefaultConstructible` requirements** <a id="defaultconstructible">[defaultconstructible]</a>
|
| 42 |
|
| 43 |
+
| Expression | Post-condition |
|
| 44 |
+
| -------------- | ------------------------------------------------------------------- |
|
| 45 |
| `T t;` | object `t` is default-initialized |
|
| 46 |
+
| `T u{};` | object `u` is value-initialized or aggregate-initialized |
|
| 47 |
+
| `T()`<br>`T{}` | an object of type `T` is value-initialized or aggregate-initialized |
|
|
|
|
| 48 |
|
| 49 |
+
[*Note 1*: `rv` must still meet the requirements of the library
|
| 50 |
+
component that is using it. The operations listed in those requirements
|
| 51 |
+
must work as specified whether `rv` has been moved from or
|
| 52 |
+
not. — *end note*]
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
**Table: `CopyConstructible` requirements (in addition to `MoveConstructible`)** <a id="copyconstructible">[copyconstructible]</a>
|
| 55 |
|
| 56 |
+
| Expression | Post-condition |
|
| 57 |
| ---------- | --------------------------------------------------------- |
|
| 58 |
| `T u = v;` | the value of `v` is unchanged and is equivalent to ` u` |
|
| 59 |
| `T(v)` | the value of `v` is unchanged and is equivalent to `T(v)` |
|
| 60 |
|
| 61 |
+
[*Note 2*: `rv` must still meet the requirements of the library
|
| 62 |
+
component that is using it, whether or not `t` and `rv` refer to the
|
| 63 |
+
same object. The operations listed in those requirements must work as
|
| 64 |
+
specified whether `rv` has been moved from or not. — *end note*]
|
|
|
|
|
|
|
| 65 |
|
| 66 |
**Table: `CopyAssignable` requirements (in addition to `MoveAssignable`)** <a id="copyassignable">[copyassignable]</a>
|
| 67 |
|
| 68 |
+
| Expression | Return type | Return value | Post-condition |
|
| 69 |
+
| ---------- | ----------- | ------------ | ------------------------------------------------------- |
|
| 70 |
| `t = v` | `T&` | `t` | `t` is equivalent to `v`, the value of `v` is unchanged |
|
| 71 |
|
| 72 |
|
| 73 |
**Table: `Destructible` requirements** <a id="destructible">[destructible]</a>
|
| 74 |
|
| 75 |
+
| Expression | Post-condition |
|
| 76 |
+
| ---------- | --------------------------------------------------------------------- |
|
| 77 |
| `u.~T()` | All resources owned by `u` are reclaimed, no exception is propagated. |
|
| 78 |
|
| 79 |
|
| 80 |
#### `Swappable` requirements <a id="swappable.requirements">[[swappable.requirements]]</a>
|
| 81 |
|
|
|
|
| 99 |
- the two `swap` function templates defined in `<utility>` (
|
| 100 |
[[utility]]) and
|
| 101 |
- the lookup set produced by argument-dependent lookup (
|
| 102 |
[[basic.lookup.argdep]]).
|
| 103 |
|
| 104 |
+
[*Note 1*: If `T` and `U` are both fundamental types or arrays of
|
| 105 |
+
fundamental types and the declarations from the header `<utility>` are
|
| 106 |
+
in scope, the overall lookup set described above is equivalent to that
|
| 107 |
+
of the qualified name lookup applied to the expression `std::swap(t, u)`
|
| 108 |
+
or `std::swap(u, t)` as appropriate. — *end note*]
|
| 109 |
|
| 110 |
+
[*Note 2*: It is unspecified whether a library component that has a
|
| 111 |
+
swappable requirement includes the header `<utility>` to ensure an
|
| 112 |
+
appropriate evaluation context. — *end note*]
|
| 113 |
|
| 114 |
An rvalue or lvalue `t` is *swappable* if and only if `t` is swappable
|
| 115 |
with any rvalue or lvalue, respectively, of type `T`.
|
| 116 |
|
| 117 |
A type `X` satisfying any of the iterator requirements (
|
| 118 |
[[iterator.requirements]]) satisfies the requirements of
|
| 119 |
`ValueSwappable` if, for any dereferenceable object `x` of type `X`,
|
| 120 |
`*x` is swappable.
|
| 121 |
|
| 122 |
+
[*Example 1*:
|
| 123 |
+
|
| 124 |
User code can ensure that the evaluation of `swap` calls is performed in
|
| 125 |
an appropriate context under the various conditions as follows:
|
| 126 |
|
| 127 |
``` cpp
|
| 128 |
#include <utility>
|
|
|
|
| 135 |
// for rvalues and lvalues
|
| 136 |
}
|
| 137 |
|
| 138 |
// Requires: lvalues of T shall be swappable.
|
| 139 |
template <class T>
|
| 140 |
+
void lv_swap(T& t1, T& t2) {
|
| 141 |
using std::swap;
|
| 142 |
swap(t1, t2); // OK: uses swappable conditions for
|
| 143 |
} // lvalues of type T
|
| 144 |
|
| 145 |
namespace N {
|
|
|
|
| 163 |
value_swap(a1, proxy(a2));
|
| 164 |
assert(a1.m == -5 && a2.m == 5);
|
| 165 |
}
|
| 166 |
```
|
| 167 |
|
| 168 |
+
— *end example*]
|
| 169 |
+
|
| 170 |
#### `NullablePointer` requirements <a id="nullablepointer.requirements">[[nullablepointer.requirements]]</a>
|
| 171 |
|
| 172 |
A `NullablePointer` type is a pointer-like type that supports null
|
| 173 |
values. A type `P` meets the requirements of `NullablePointer` if:
|
| 174 |
|
| 175 |
- `P` satisfies the requirements of `EqualityComparable`,
|
| 176 |
`DefaultConstructible`, `CopyConstructible`, `CopyAssignable`, and
|
| 177 |
`Destructible`,
|
| 178 |
- lvalues of type `P` are swappable ([[swappable.requirements]]),
|
| 179 |
+
- the expressions shown in Table [[tab:nullablepointer]] are valid and
|
| 180 |
+
have the indicated semantics, and
|
| 181 |
- `P` satisfies all the other requirements of this subclause.
|
| 182 |
|
| 183 |
A value-initialized object of type `P` produces the null value of the
|
| 184 |
type. The null value shall be equivalent only to itself. A
|
| 185 |
default-initialized object of type `P` may have an indeterminate value.
|
| 186 |
+
|
| 187 |
+
[*Note 1*: Operations involving indeterminate values may cause
|
| 188 |
+
undefined behavior. — *end note*]
|
| 189 |
|
| 190 |
An object `p` of type `P` can be contextually converted to `bool`
|
| 191 |
(Clause [[conv]]). The effect shall be as if `p != nullptr` had been
|
| 192 |
evaluated in place of `p`.
|
| 193 |
|
| 194 |
No operation which is part of the `NullablePointer` requirements shall
|
| 195 |
exit via an exception.
|
| 196 |
|
| 197 |
+
In Table [[tab:nullablepointer]], `u` denotes an identifier, `t`
|
| 198 |
+
denotes a non-`const` lvalue of type `P`, `a` and `b` denote values of
|
| 199 |
+
type (possibly `const`) `P`, and `np` denotes a value of type (possibly
|
| 200 |
`const`) `std::nullptr_t`.
|
| 201 |
|
| 202 |
**Table: `NullablePointer` requirements** <a id="nullablepointer">[nullablepointer]</a>
|
| 203 |
|
| 204 |
| | | |
|
| 205 |
+
| -------------- | ---------------------------------- | ---------------------------------- |
|
| 206 |
+
| `P u(np);`<br> | | Postconditions: `u == nullptr` |
|
| 207 |
| `P u = np;` | | |
|
| 208 |
+
| `P(np)` | | Postconditions: `P(np) == nullptr` |
|
| 209 |
+
| `t = np` | `P&` | Postconditions: `t == nullptr` |
|
| 210 |
| `a != b` | contextually convertible to `bool` | `!(a == b)` |
|
| 211 |
| `a == np` | contextually convertible to `bool` | `a == P()` |
|
| 212 |
| `np == a` | | |
|
| 213 |
| `a != np` | contextually convertible to `bool` | `!(a == np)` |
|
| 214 |
| `np != a` | | |
|
|
|
|
| 219 |
A type `H` meets the `Hash` requirements if:
|
| 220 |
|
| 221 |
- it is a function object type ([[function.objects]]),
|
| 222 |
- it satisfies the requirements of `CopyConstructible` and
|
| 223 |
`Destructible` ([[utility.arg.requirements]]), and
|
| 224 |
+
- the expressions shown in Table [[tab:hash]] are valid and have the
|
| 225 |
indicated semantics.
|
| 226 |
|
| 227 |
Given `Key` is an argument type for function objects of type `H`, in
|
| 228 |
+
Table [[tab:hash]] `h` is a value of type (possibly `const`) `H`, `u`
|
| 229 |
+
is an lvalue of type `Key`, and `k` is a value of a type convertible to
|
| 230 |
(possibly `const`) `Key`.
|
| 231 |
|
| 232 |
+
[*Note 1*: Thus all evaluations of the expression `h(k)` with the same
|
| 233 |
+
value for `k` yield the same result for a given execution of the
|
| 234 |
+
program. — *end note*]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
#### Allocator requirements <a id="allocator.requirements">[[allocator.requirements]]</a>
|
| 237 |
|
| 238 |
The library describes a standard set of requirements for *allocators*,
|
| 239 |
which are class-type objects that encapsulate the information about an
|
|
|
|
| 243 |
primitives for it. All of the string types (Clause [[strings]]),
|
| 244 |
containers (Clause [[containers]]) (except array), string buffers and
|
| 245 |
string streams (Clause [[input.output]]), and `match_results` (Clause
|
| 246 |
[[re]]) are parameterized in terms of allocators.
|
| 247 |
|
| 248 |
+
The class template `allocator_traits` ([[allocator.traits]]) supplies a
|
| 249 |
+
uniform interface to all allocator types. Table [[tab:desc.var.def]]
|
| 250 |
describes the types manipulated through allocators. Table
|
| 251 |
[[tab:utilities.allocator.requirements]] describes the requirements on
|
| 252 |
allocator types and thus on types used to instantiate
|
| 253 |
`allocator_traits`. A requirement is optional if the last column of
|
| 254 |
Table [[tab:utilities.allocator.requirements]] specifies a default for
|
|
|
|
| 259 |
defaults for different requirements than the primary template. Within
|
| 260 |
Tables [[tab:desc.var.def]] and
|
| 261 |
[[tab:utilities.allocator.requirements]], the use of `move` and
|
| 262 |
`forward` always refers to `std::move` and `std::forward`, respectively.
|
| 263 |
|
| 264 |
+
[*Note 1*: If `n == 0`, the return value is unspecified. — *end note*]
|
| 265 |
+
|
| 266 |
Note A: The member class template `rebind` in the table above is
|
| 267 |
+
effectively a typedef template.
|
| 268 |
+
|
| 269 |
+
[*Note 2*: In general, if the name `Allocator` is bound to
|
| 270 |
+
`SomeAllocator<T>`, then `Allocator::rebind<U>::other` is the same type
|
| 271 |
+
as `SomeAllocator<U>`, where `SomeAllocator<T>::value_type` is `T` and
|
| 272 |
+
`SomeAllocator<U>::{}value_type` is `U`. — *end note*]
|
| 273 |
+
|
| 274 |
+
If `Allocator` is a class template instantiation of the form
|
| 275 |
+
`SomeAllocator<T, Args>`, where `Args` is zero or more type arguments,
|
| 276 |
+
and `Allocator` does not supply a `rebind` member template, the standard
|
| 277 |
+
`allocator_traits` template uses `SomeAllocator<U, Args>` in place of
|
| 278 |
+
`Allocator::{}rebind<U>::other` by default. For allocator types that are
|
| 279 |
+
not template instantiations of the above form, no default is provided.
|
| 280 |
+
|
| 281 |
+
Note B: If `X::propagate_on_container_copy_assignment::value` is `true`,
|
| 282 |
+
`X` shall satisfy the `CopyAssignable` requirements (Table
|
| 283 |
+
[[tab:copyassignable]]) and the copy operation shall not throw
|
| 284 |
+
exceptions. If `X::propagate_on_container_move_assignment::value` is
|
| 285 |
+
`true`, `X` shall satisfy the `MoveAssignable` requirements (Table
|
| 286 |
+
[[tab:moveassignable]]) and the move operation shall not throw
|
| 287 |
+
exceptions. If `X::propagate_on_container_swap::value` is `true`,
|
| 288 |
+
lvalues of type `X` shall be swappable ([[swappable.requirements]]) and
|
| 289 |
+
the `swap` operation shall not throw exceptions.
|
| 290 |
|
| 291 |
An allocator type `X` shall satisfy the requirements of
|
| 292 |
`CopyConstructible` ([[utility.arg.requirements]]). The `X::pointer`,
|
| 293 |
`X::const_pointer`, `X::void_pointer`, and `X::const_void_pointer` types
|
| 294 |
shall satisfy the requirements of `NullablePointer` (
|
| 295 |
+
[[nullablepointer.requirements]]). No constructor, comparison function,
|
| 296 |
+
copy operation, move operation, or swap operation on these pointer types
|
| 297 |
+
shall exit via an exception. `X::pointer` and `X::const_pointer` shall
|
| 298 |
+
also satisfy the requirements for a random access iterator (
|
| 299 |
+
[[random.access.iterators]]) and of a contiguous iterator (
|
| 300 |
+
[[iterator.requirements.general]]).
|
| 301 |
|
| 302 |
Let `x1` and `x2` denote objects of (possibly different) types
|
| 303 |
`X::void_pointer`, `X::const_void_pointer`, `X::pointer`, or
|
| 304 |
`X::const_pointer`. Then, `x1` and `x2` are *equivalently-valued*
|
| 305 |
pointer values, if and only if both `x1` and `x2` can be explicitly
|
|
|
|
| 333 |
|
| 334 |
either or both objects may be replaced by an equivalently-valued object
|
| 335 |
of type `X::const_pointer` with no change in semantics.
|
| 336 |
|
| 337 |
An allocator may constrain the types on which it can be instantiated and
|
| 338 |
+
the arguments for which its `construct` or `destroy` members may be
|
| 339 |
+
called. If a type cannot be used with a particular allocator, the
|
| 340 |
+
allocator class or the call to `construct` or `destroy` may fail to
|
| 341 |
+
instantiate.
|
| 342 |
|
| 343 |
+
[*Example 1*:
|
| 344 |
+
|
| 345 |
+
The following is an allocator class template supporting the minimal
|
| 346 |
interface that satisfies the requirements of Table
|
| 347 |
[[tab:utilities.allocator.requirements]]:
|
| 348 |
|
| 349 |
``` cpp
|
| 350 |
template <class Tp>
|
|
|
|
| 362 |
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
|
| 363 |
template <class T, class U>
|
| 364 |
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&);
|
| 365 |
```
|
| 366 |
|
| 367 |
+
— *end example*]
|
| 368 |
+
|
| 369 |
If the alignment associated with a specific over-aligned type is not
|
| 370 |
supported by an allocator, instantiation of the allocator for that type
|
| 371 |
may fail. The allocator also may silently ignore the requested
|
| 372 |
+
alignment.
|
| 373 |
+
|
| 374 |
+
[*Note 3*: Additionally, the member function `allocate` for that type
|
| 375 |
+
may fail by throwing an object of type `bad_alloc`. — *end note*]
|
| 376 |
+
|
| 377 |
+
##### Allocator completeness requirements <a id="allocator.requirements.completeness">[[allocator.requirements.completeness]]</a>
|
| 378 |
+
|
| 379 |
+
If `X` is an allocator class for type `T`, `X` additionally satisfies
|
| 380 |
+
the allocator completeness requirements if, whether or not `T` is a
|
| 381 |
+
complete type:
|
| 382 |
+
|
| 383 |
+
- `X` is a complete type, and
|
| 384 |
+
- all the member types of `allocator_traits<X>` ([[allocator.traits]])
|
| 385 |
+
other than `value_type` are complete types.
|
| 386 |
|