tmp/tmp9g06esl3/{from.md → to.md}
RENAMED
|
@@ -31,31 +31,44 @@ namespace std {
|
|
| 31 |
template <class R1, class R2> struct ratio_less;
|
| 32 |
template <class R1, class R2> struct ratio_less_equal;
|
| 33 |
template <class R1, class R2> struct ratio_greater;
|
| 34 |
template <class R1, class R2> struct ratio_greater_equal;
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
// [ratio.si], convenience SI typedefs
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
}
|
| 58 |
```
|
| 59 |
|
| 60 |
### Class template `ratio` <a id="ratio.ratio">[[ratio.ratio]]</a>
|
| 61 |
|
|
@@ -64,21 +77,23 @@ namespace std {
|
|
| 64 |
template <intmax_t N, intmax_t D = 1>
|
| 65 |
class ratio {
|
| 66 |
public:
|
| 67 |
static constexpr intmax_t num;
|
| 68 |
static constexpr intmax_t den;
|
| 69 |
-
|
| 70 |
};
|
| 71 |
}
|
| 72 |
```
|
| 73 |
|
| 74 |
If the template argument `D` is zero or the absolute values of either of
|
| 75 |
the template arguments `N` and `D` is not representable by type
|
| 76 |
-
`intmax_t`, the program is ill-formed.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
The static data members `num` and `den` shall have the following values,
|
| 82 |
where `gcd` represents the greatest common divisor of the absolute
|
| 83 |
values of `N` and `D`:
|
| 84 |
|
|
@@ -111,10 +126,12 @@ yields correct values of `U` and `V`.
|
|
| 111 |
| | `R2::num * R1::den` | |
|
| 112 |
| `ratio_multiply<R1, R2>` | `R1::num * R2::num` | `R1::den * R2::den` |
|
| 113 |
| `ratio_divide<R1, R2>` | `R1::num * R2::den` | `R1::den * R2::num` |
|
| 114 |
|
| 115 |
|
|
|
|
|
|
|
| 116 |
``` cpp
|
| 117 |
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::num == 1, "1/3+1/6 == 1/2");
|
| 118 |
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::den == 2, "1/3+1/6 == 1/2");
|
| 119 |
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::num == 1, "1/3*3/2 == 1/2");
|
| 120 |
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::den == 2, "1/3*3/2 == 1/2");
|
|
@@ -128,55 +145,52 @@ static_assert(ratio_multiply<ratio<1,INT_MAX>, ratio<INT_MAX,2>>::num == 1,
|
|
| 128 |
"1/MAX * MAX/2 == 1/2");
|
| 129 |
static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::den == 2,
|
| 130 |
"1/MAX * MAX/2 == 1/2");
|
| 131 |
```
|
| 132 |
|
|
|
|
|
|
|
| 133 |
### Comparison of `ratio`s <a id="ratio.comparison">[[ratio.comparison]]</a>
|
| 134 |
|
| 135 |
``` cpp
|
| 136 |
-
template <class R1, class R2>
|
| 137 |
-
:
|
| 138 |
```
|
| 139 |
|
| 140 |
-
If `R1::num == R2::num` and `R1::den == R2::den`, `ratio_equal<R1, R2>`
|
| 141 |
-
shall be derived from
|
| 142 |
-
`integral_constant<bool, true>`; otherwise it shall be derived from
|
| 143 |
-
`integral_constant<bool, false>`.
|
| 144 |
-
|
| 145 |
``` cpp
|
| 146 |
-
template <class R1, class R2>
|
| 147 |
-
:
|
| 148 |
```
|
| 149 |
|
| 150 |
``` cpp
|
| 151 |
-
template <class R1, class R2>
|
| 152 |
-
:
|
| 153 |
```
|
| 154 |
|
| 155 |
-
If `R1::num
|
| 156 |
-
be derived from `
|
| 157 |
-
derived from `
|
| 158 |
-
other algorithms to compute this relationship to
|
| 159 |
-
overflow occurs, the program is ill-formed.
|
| 160 |
|
| 161 |
``` cpp
|
| 162 |
-
template <class R1, class R2>
|
| 163 |
-
:
|
| 164 |
```
|
| 165 |
|
| 166 |
``` cpp
|
| 167 |
-
template <class R1, class R2>
|
| 168 |
-
:
|
| 169 |
```
|
| 170 |
|
| 171 |
``` cpp
|
| 172 |
-
template <class R1, class R2>
|
| 173 |
-
:
|
| 174 |
```
|
| 175 |
|
| 176 |
### SI types for `ratio` <a id="ratio.si">[[ratio.si]]</a>
|
| 177 |
|
| 178 |
-
For each of the
|
| 179 |
-
of the constants used in its specification are representable by
|
| 180 |
`intmax_t`, the typedef shall be defined; if either of the constants is
|
| 181 |
not representable by `intmax_t`, the typedef shall not be defined.
|
| 182 |
|
|
|
|
| 31 |
template <class R1, class R2> struct ratio_less;
|
| 32 |
template <class R1, class R2> struct ratio_less_equal;
|
| 33 |
template <class R1, class R2> struct ratio_greater;
|
| 34 |
template <class R1, class R2> struct ratio_greater_equal;
|
| 35 |
|
| 36 |
+
template <class R1, class R2>
|
| 37 |
+
inline constexpr bool ratio_equal_v = ratio_equal<R1, R2>::value;
|
| 38 |
+
template <class R1, class R2>
|
| 39 |
+
inline constexpr bool ratio_not_equal_v = ratio_not_equal<R1, R2>::value;
|
| 40 |
+
template <class R1, class R2>
|
| 41 |
+
inline constexpr bool ratio_less_v = ratio_less<R1, R2>::value;
|
| 42 |
+
template <class R1, class R2>
|
| 43 |
+
inline constexpr bool ratio_less_equal_v = ratio_less_equal<R1, R2>::value;
|
| 44 |
+
template <class R1, class R2>
|
| 45 |
+
inline constexpr bool ratio_greater_v = ratio_greater<R1, R2>::value;
|
| 46 |
+
template <class R1, class R2>
|
| 47 |
+
inline constexpr bool ratio_greater_equal_v = ratio_greater_equal<R1, R2>::value;
|
| 48 |
+
|
| 49 |
// [ratio.si], convenience SI typedefs
|
| 50 |
+
using yocto = ratio<1, 1'000'000'000'000'000'000'000'000>; // see below
|
| 51 |
+
using zepto = ratio<1, 1'000'000'000'000'000'000'000>; // see below
|
| 52 |
+
using atto = ratio<1, 1'000'000'000'000'000'000>;
|
| 53 |
+
using femto = ratio<1, 1'000'000'000'000'000>;
|
| 54 |
+
using pico = ratio<1, 1'000'000'000'000>;
|
| 55 |
+
using nano = ratio<1, 1'000'000'000>;
|
| 56 |
+
using micro = ratio<1, 1'000'000>;
|
| 57 |
+
using milli = ratio<1, 1'000>;
|
| 58 |
+
using centi = ratio<1, 100>;
|
| 59 |
+
using deci = ratio<1, 10>;
|
| 60 |
+
using deca = ratio< 10, 1>;
|
| 61 |
+
using hecto = ratio< 100, 1>;
|
| 62 |
+
using kilo = ratio< 1'000, 1>;
|
| 63 |
+
using mega = ratio< 1'000'000, 1>;
|
| 64 |
+
using giga = ratio< 1'000'000'000, 1>;
|
| 65 |
+
using tera = ratio< 1'000'000'000'000, 1>;
|
| 66 |
+
using peta = ratio< 1'000'000'000'000'000, 1>;
|
| 67 |
+
using exa = ratio< 1'000'000'000'000'000'000, 1>;
|
| 68 |
+
using zetta = ratio< 1'000'000'000'000'000'000'000, 1>; // see below
|
| 69 |
+
using yotta = ratio<1'000'000'000'000'000'000'000'000, 1>; // see below
|
| 70 |
}
|
| 71 |
```
|
| 72 |
|
| 73 |
### Class template `ratio` <a id="ratio.ratio">[[ratio.ratio]]</a>
|
| 74 |
|
|
|
|
| 77 |
template <intmax_t N, intmax_t D = 1>
|
| 78 |
class ratio {
|
| 79 |
public:
|
| 80 |
static constexpr intmax_t num;
|
| 81 |
static constexpr intmax_t den;
|
| 82 |
+
using type = ratio<num, den>;
|
| 83 |
};
|
| 84 |
}
|
| 85 |
```
|
| 86 |
|
| 87 |
If the template argument `D` is zero or the absolute values of either of
|
| 88 |
the template arguments `N` and `D` is not representable by type
|
| 89 |
+
`intmax_t`, the program is ill-formed.
|
| 90 |
+
|
| 91 |
+
[*Note 1*: These rules ensure that infinite ratios are avoided and that
|
| 92 |
+
for any negative input, there exists a representable value of its
|
| 93 |
+
absolute value which is positive. In a two’s complement representation,
|
| 94 |
+
this excludes the most negative value. — *end note*]
|
| 95 |
|
| 96 |
The static data members `num` and `den` shall have the following values,
|
| 97 |
where `gcd` represents the greatest common divisor of the absolute
|
| 98 |
values of `N` and `D`:
|
| 99 |
|
|
|
|
| 126 |
| | `R2::num * R1::den` | |
|
| 127 |
| `ratio_multiply<R1, R2>` | `R1::num * R2::num` | `R1::den * R2::den` |
|
| 128 |
| `ratio_divide<R1, R2>` | `R1::num * R2::den` | `R1::den * R2::num` |
|
| 129 |
|
| 130 |
|
| 131 |
+
[*Example 1*:
|
| 132 |
+
|
| 133 |
``` cpp
|
| 134 |
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::num == 1, "1/3+1/6 == 1/2");
|
| 135 |
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::den == 2, "1/3+1/6 == 1/2");
|
| 136 |
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::num == 1, "1/3*3/2 == 1/2");
|
| 137 |
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::den == 2, "1/3*3/2 == 1/2");
|
|
|
|
| 145 |
"1/MAX * MAX/2 == 1/2");
|
| 146 |
static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::den == 2,
|
| 147 |
"1/MAX * MAX/2 == 1/2");
|
| 148 |
```
|
| 149 |
|
| 150 |
+
— *end example*]
|
| 151 |
+
|
| 152 |
### Comparison of `ratio`s <a id="ratio.comparison">[[ratio.comparison]]</a>
|
| 153 |
|
| 154 |
``` cpp
|
| 155 |
+
template <class R1, class R2>
|
| 156 |
+
struct ratio_equal : bool_constant<R1::num == R2::num && R1::den == R2::den> { };
|
| 157 |
```
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
``` cpp
|
| 160 |
+
template <class R1, class R2>
|
| 161 |
+
struct ratio_not_equal : bool_constant<!ratio_equal_v<R1, R2>> { };
|
| 162 |
```
|
| 163 |
|
| 164 |
``` cpp
|
| 165 |
+
template <class R1, class R2>
|
| 166 |
+
struct ratio_less : bool_constant<see below> { };
|
| 167 |
```
|
| 168 |
|
| 169 |
+
If `R1::num` × `R2::den` is less than `R2::num` × `R1::den`,
|
| 170 |
+
`ratio_less<R1, R2>` shall be derived from `bool_constant<true>`;
|
| 171 |
+
otherwise it shall be derived from `bool_constant<false>`.
|
| 172 |
+
Implementations may use other algorithms to compute this relationship to
|
| 173 |
+
avoid overflow. If overflow occurs, the program is ill-formed.
|
| 174 |
|
| 175 |
``` cpp
|
| 176 |
+
template <class R1, class R2>
|
| 177 |
+
struct ratio_less_equal : bool_constant<!ratio_less_v<R2, R1>> { };
|
| 178 |
```
|
| 179 |
|
| 180 |
``` cpp
|
| 181 |
+
template <class R1, class R2>
|
| 182 |
+
struct ratio_greater : bool_constant<ratio_less_v<R2, R1>> { };
|
| 183 |
```
|
| 184 |
|
| 185 |
``` cpp
|
| 186 |
+
template <class R1, class R2>
|
| 187 |
+
struct ratio_greater_equal : bool_constant<!ratio_less_v<R1, R2>> { };
|
| 188 |
```
|
| 189 |
|
| 190 |
### SI types for `ratio` <a id="ratio.si">[[ratio.si]]</a>
|
| 191 |
|
| 192 |
+
For each of the *typedef-name*s `yocto`, `zepto`, `zetta`, and `yotta`,
|
| 193 |
+
if both of the constants used in its specification are representable by
|
| 194 |
`intmax_t`, the typedef shall be defined; if either of the constants is
|
| 195 |
not representable by `intmax_t`, the typedef shall not be defined.
|
| 196 |
|