tmp/tmpscnq4zx1/{from.md → to.md}
RENAMED
|
@@ -1,553 +0,0 @@
|
|
| 1 |
-
### Numeric limits <a id="limits">[[limits]]</a>
|
| 2 |
-
|
| 3 |
-
#### Class template `numeric_limits` <a id="limits.numeric">[[limits.numeric]]</a>
|
| 4 |
-
|
| 5 |
-
The `numeric_limits` class template provides a C++program with
|
| 6 |
-
information about various properties of the implementation’s
|
| 7 |
-
representation of the arithmetic types.
|
| 8 |
-
|
| 9 |
-
Specializations shall be provided for each arithmetic type, both
|
| 10 |
-
floating point and integer, including `bool`. The member
|
| 11 |
-
`is_specialized` shall be `true` for all such specializations of
|
| 12 |
-
`numeric_limits`.
|
| 13 |
-
|
| 14 |
-
For all members declared `static` `constexpr` in the `numeric_limits`
|
| 15 |
-
template, specializations shall define these values in such a way that
|
| 16 |
-
they are usable as constant expressions.
|
| 17 |
-
|
| 18 |
-
Non-arithmetic standard types, such as `complex<T>` ([[complex]]),
|
| 19 |
-
shall not have specializations.
|
| 20 |
-
|
| 21 |
-
#### Header `<limits>` synopsis <a id="limits.syn">[[limits.syn]]</a>
|
| 22 |
-
|
| 23 |
-
``` cpp
|
| 24 |
-
namespace std {
|
| 25 |
-
template<class T> class numeric_limits;
|
| 26 |
-
enum float_round_style;
|
| 27 |
-
enum float_denorm_style;
|
| 28 |
-
|
| 29 |
-
template<> class numeric_limits<bool>;
|
| 30 |
-
|
| 31 |
-
template<> class numeric_limits<char>;
|
| 32 |
-
template<> class numeric_limits<signed char>;
|
| 33 |
-
template<> class numeric_limits<unsigned char>;
|
| 34 |
-
template<> class numeric_limits<char16_t>;
|
| 35 |
-
template<> class numeric_limits<char32_t>;
|
| 36 |
-
template<> class numeric_limits<wchar_t>;
|
| 37 |
-
|
| 38 |
-
template<> class numeric_limits<short>;
|
| 39 |
-
template<> class numeric_limits<int>;
|
| 40 |
-
template<> class numeric_limits<long>;
|
| 41 |
-
template<> class numeric_limits<long long>;
|
| 42 |
-
template<> class numeric_limits<unsigned short>;
|
| 43 |
-
template<> class numeric_limits<unsigned int>;
|
| 44 |
-
template<> class numeric_limits<unsigned long>;
|
| 45 |
-
template<> class numeric_limits<unsigned long long>;
|
| 46 |
-
|
| 47 |
-
template<> class numeric_limits<float>;
|
| 48 |
-
template<> class numeric_limits<double>;
|
| 49 |
-
template<> class numeric_limits<long double>;
|
| 50 |
-
}
|
| 51 |
-
```
|
| 52 |
-
|
| 53 |
-
#### Class template `numeric_limits` <a id="numeric.limits">[[numeric.limits]]</a>
|
| 54 |
-
|
| 55 |
-
``` cpp
|
| 56 |
-
namespace std {
|
| 57 |
-
template<class T> class numeric_limits {
|
| 58 |
-
public:
|
| 59 |
-
static constexpr bool is_specialized = false;
|
| 60 |
-
static constexpr T min() noexcept { return T(); }
|
| 61 |
-
static constexpr T max() noexcept { return T(); }
|
| 62 |
-
static constexpr T lowest() noexcept { return T(); }
|
| 63 |
-
|
| 64 |
-
static constexpr int digits = 0;
|
| 65 |
-
static constexpr int digits10 = 0;
|
| 66 |
-
static constexpr int max_digits10 = 0;
|
| 67 |
-
static constexpr bool is_signed = false;
|
| 68 |
-
static constexpr bool is_integer = false;
|
| 69 |
-
static constexpr bool is_exact = false;
|
| 70 |
-
static constexpr int radix = 0;
|
| 71 |
-
static constexpr T epsilon() noexcept { return T(); }
|
| 72 |
-
static constexpr T round_error() noexcept { return T(); }
|
| 73 |
-
|
| 74 |
-
static constexpr int min_exponent = 0;
|
| 75 |
-
static constexpr int min_exponent10 = 0;
|
| 76 |
-
static constexpr int max_exponent = 0;
|
| 77 |
-
static constexpr int max_exponent10 = 0;
|
| 78 |
-
|
| 79 |
-
static constexpr bool has_infinity = false;
|
| 80 |
-
static constexpr bool has_quiet_NaN = false;
|
| 81 |
-
static constexpr bool has_signaling_NaN = false;
|
| 82 |
-
static constexpr float_denorm_style has_denorm = denorm_absent;
|
| 83 |
-
static constexpr bool has_denorm_loss = false;
|
| 84 |
-
static constexpr T infinity() noexcept { return T(); }
|
| 85 |
-
static constexpr T quiet_NaN() noexcept { return T(); }
|
| 86 |
-
static constexpr T signaling_NaN() noexcept { return T(); }
|
| 87 |
-
static constexpr T denorm_min() noexcept { return T(); }
|
| 88 |
-
|
| 89 |
-
static constexpr bool is_iec559 = false;
|
| 90 |
-
static constexpr bool is_bounded = false;
|
| 91 |
-
static constexpr bool is_modulo = false;
|
| 92 |
-
|
| 93 |
-
static constexpr bool traps = false;
|
| 94 |
-
static constexpr bool tinyness_before = false;
|
| 95 |
-
static constexpr float_round_style round_style = round_toward_zero;
|
| 96 |
-
};
|
| 97 |
-
|
| 98 |
-
template<class T> class numeric_limits<const T>;
|
| 99 |
-
template<class T> class numeric_limits<volatile T>;
|
| 100 |
-
template<class T> class numeric_limits<const volatile T>;
|
| 101 |
-
}
|
| 102 |
-
```
|
| 103 |
-
|
| 104 |
-
The default `numeric_limits<T>` template shall have all members, but
|
| 105 |
-
with 0 or `false` values.
|
| 106 |
-
|
| 107 |
-
The value of each member of a specialization of `numeric_limits` on a
|
| 108 |
-
*cv*-qualified type `cv T` shall be equal to the value of the
|
| 109 |
-
corresponding member of the specialization on the unqualified type `T`.
|
| 110 |
-
|
| 111 |
-
#### `numeric_limits` members <a id="numeric.limits.members">[[numeric.limits.members]]</a>
|
| 112 |
-
|
| 113 |
-
``` cpp
|
| 114 |
-
static constexpr T min() noexcept;
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
Minimum finite value.[^3]
|
| 118 |
-
|
| 119 |
-
For floating types with denormalization, returns the minimum positive
|
| 120 |
-
normalized value.
|
| 121 |
-
|
| 122 |
-
Meaningful for all specializations in which `is_bounded != false`, or
|
| 123 |
-
`is_bounded == false && is_signed == false`.
|
| 124 |
-
|
| 125 |
-
``` cpp
|
| 126 |
-
static constexpr T max() noexcept;
|
| 127 |
-
```
|
| 128 |
-
|
| 129 |
-
Maximum finite value.[^4]
|
| 130 |
-
|
| 131 |
-
Meaningful for all specializations in which `is_bounded != false`.
|
| 132 |
-
|
| 133 |
-
``` cpp
|
| 134 |
-
static constexpr T lowest() noexcept;
|
| 135 |
-
```
|
| 136 |
-
|
| 137 |
-
A finite value `x` such that there is no other finite value `y` where
|
| 138 |
-
`y < x`.[^5]
|
| 139 |
-
|
| 140 |
-
Meaningful for all specializations in which `is_bounded != false`.
|
| 141 |
-
|
| 142 |
-
``` cpp
|
| 143 |
-
static constexpr int digits;
|
| 144 |
-
```
|
| 145 |
-
|
| 146 |
-
Number of `radix` digits that can be represented without change.
|
| 147 |
-
|
| 148 |
-
For integer types, the number of non-sign bits in the representation.
|
| 149 |
-
|
| 150 |
-
For floating point types, the number of `radix` digits in the
|
| 151 |
-
mantissa.[^6]
|
| 152 |
-
|
| 153 |
-
``` cpp
|
| 154 |
-
static constexpr int digits10;
|
| 155 |
-
```
|
| 156 |
-
|
| 157 |
-
Number of base 10 digits that can be represented without change.[^7]
|
| 158 |
-
|
| 159 |
-
Meaningful for all specializations in which `is_bounded != false`.
|
| 160 |
-
|
| 161 |
-
``` cpp
|
| 162 |
-
static constexpr int max_digits10;
|
| 163 |
-
```
|
| 164 |
-
|
| 165 |
-
Number of base 10 digits required to ensure that values which differ are
|
| 166 |
-
always differentiated.
|
| 167 |
-
|
| 168 |
-
Meaningful for all floating point types.
|
| 169 |
-
|
| 170 |
-
``` cpp
|
| 171 |
-
static constexpr bool is_signed;
|
| 172 |
-
```
|
| 173 |
-
|
| 174 |
-
True if the type is signed.
|
| 175 |
-
|
| 176 |
-
Meaningful for all specializations.
|
| 177 |
-
|
| 178 |
-
``` cpp
|
| 179 |
-
static constexpr bool is_integer;
|
| 180 |
-
```
|
| 181 |
-
|
| 182 |
-
True if the type is integer.
|
| 183 |
-
|
| 184 |
-
Meaningful for all specializations.
|
| 185 |
-
|
| 186 |
-
``` cpp
|
| 187 |
-
static constexpr bool is_exact;
|
| 188 |
-
```
|
| 189 |
-
|
| 190 |
-
True if the type uses an exact representation. All integer types are
|
| 191 |
-
exact, but not all exact types are integer. For example, rational and
|
| 192 |
-
fixed-exponent representations are exact but not integer.
|
| 193 |
-
|
| 194 |
-
Meaningful for all specializations.
|
| 195 |
-
|
| 196 |
-
``` cpp
|
| 197 |
-
static constexpr int radix;
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-
For floating types, specifies the base or radix of the exponent
|
| 201 |
-
representation (often 2).[^8]
|
| 202 |
-
|
| 203 |
-
For integer types, specifies the base of the representation.[^9]
|
| 204 |
-
|
| 205 |
-
Meaningful for all specializations.
|
| 206 |
-
|
| 207 |
-
``` cpp
|
| 208 |
-
static constexpr T epsilon() noexcept;
|
| 209 |
-
```
|
| 210 |
-
|
| 211 |
-
Machine epsilon: the difference between 1 and the least value greater
|
| 212 |
-
than 1 that is representable.[^10]
|
| 213 |
-
|
| 214 |
-
Meaningful for all floating point types.
|
| 215 |
-
|
| 216 |
-
``` cpp
|
| 217 |
-
static constexpr T round_error() noexcept;
|
| 218 |
-
```
|
| 219 |
-
|
| 220 |
-
Measure of the maximum rounding error.[^11]
|
| 221 |
-
|
| 222 |
-
``` cpp
|
| 223 |
-
static constexpr int min_exponent;
|
| 224 |
-
```
|
| 225 |
-
|
| 226 |
-
Minimum negative integer such that `radix` raised to the power of one
|
| 227 |
-
less than that integer is a normalized floating point number.[^12]
|
| 228 |
-
|
| 229 |
-
Meaningful for all floating point types.
|
| 230 |
-
|
| 231 |
-
``` cpp
|
| 232 |
-
static constexpr int min_exponent10;
|
| 233 |
-
```
|
| 234 |
-
|
| 235 |
-
Minimum negative integer such that 10 raised to that power is in the
|
| 236 |
-
range of normalized floating point numbers.[^13]
|
| 237 |
-
|
| 238 |
-
Meaningful for all floating point types.
|
| 239 |
-
|
| 240 |
-
``` cpp
|
| 241 |
-
static constexpr int max_exponent;
|
| 242 |
-
```
|
| 243 |
-
|
| 244 |
-
Maximum positive integer such that `radix` raised to the power one less
|
| 245 |
-
than that integer is a representable finite floating point number.[^14]
|
| 246 |
-
|
| 247 |
-
Meaningful for all floating point types.
|
| 248 |
-
|
| 249 |
-
``` cpp
|
| 250 |
-
static constexpr int max_exponent10;
|
| 251 |
-
```
|
| 252 |
-
|
| 253 |
-
Maximum positive integer such that 10 raised to that power is in the
|
| 254 |
-
range of representable finite floating point numbers.[^15]
|
| 255 |
-
|
| 256 |
-
Meaningful for all floating point types.
|
| 257 |
-
|
| 258 |
-
``` cpp
|
| 259 |
-
static constexpr bool has_infinity;
|
| 260 |
-
```
|
| 261 |
-
|
| 262 |
-
True if the type has a representation for positive infinity.
|
| 263 |
-
|
| 264 |
-
Meaningful for all floating point types.
|
| 265 |
-
|
| 266 |
-
Shall be `true` for all specializations in which `is_iec559 != false`.
|
| 267 |
-
|
| 268 |
-
``` cpp
|
| 269 |
-
static constexpr bool has_quiet_NaN;
|
| 270 |
-
```
|
| 271 |
-
|
| 272 |
-
True if the type has a representation for a quiet (non-signaling) “Not a
|
| 273 |
-
Number.”[^16]
|
| 274 |
-
|
| 275 |
-
Meaningful for all floating point types.
|
| 276 |
-
|
| 277 |
-
Shall be `true` for all specializations in which `is_iec559 != false`.
|
| 278 |
-
|
| 279 |
-
``` cpp
|
| 280 |
-
static constexpr bool has_signaling_NaN;
|
| 281 |
-
```
|
| 282 |
-
|
| 283 |
-
True if the type has a representation for a signaling “Not a
|
| 284 |
-
Number.”[^17]
|
| 285 |
-
|
| 286 |
-
Meaningful for all floating point types.
|
| 287 |
-
|
| 288 |
-
Shall be `true` for all specializations in which `is_iec559 != false`.
|
| 289 |
-
|
| 290 |
-
``` cpp
|
| 291 |
-
static constexpr float_denorm_style has_denorm;
|
| 292 |
-
```
|
| 293 |
-
|
| 294 |
-
`denorm_present` if the type allows denormalized values (variable number
|
| 295 |
-
of exponent bits)[^18], `denorm_absent` if the type does not allow
|
| 296 |
-
denormalized values, and `denorm_indeterminate` if it is indeterminate
|
| 297 |
-
at compile time whether the type allows denormalized values.
|
| 298 |
-
|
| 299 |
-
Meaningful for all floating point types.
|
| 300 |
-
|
| 301 |
-
``` cpp
|
| 302 |
-
static constexpr bool has_denorm_loss;
|
| 303 |
-
```
|
| 304 |
-
|
| 305 |
-
True if loss of accuracy is detected as a denormalization loss, rather
|
| 306 |
-
than as an inexact result.[^19]
|
| 307 |
-
|
| 308 |
-
``` cpp
|
| 309 |
-
static constexpr T infinity() noexcept;
|
| 310 |
-
```
|
| 311 |
-
|
| 312 |
-
Representation of positive infinity, if available.[^20]
|
| 313 |
-
|
| 314 |
-
Meaningful for all specializations for which `has_infinity != false`.
|
| 315 |
-
Required in specializations for which `is_iec559 != false`.
|
| 316 |
-
|
| 317 |
-
``` cpp
|
| 318 |
-
static constexpr T quiet_NaN() noexcept;
|
| 319 |
-
```
|
| 320 |
-
|
| 321 |
-
Representation of a quiet “Not a Number,” if available.[^21]
|
| 322 |
-
|
| 323 |
-
Meaningful for all specializations for which `has_quiet_NaN != false`.
|
| 324 |
-
Required in specializations for which `is_iec559 != false`.
|
| 325 |
-
|
| 326 |
-
``` cpp
|
| 327 |
-
static constexpr T signaling_NaN() noexcept;
|
| 328 |
-
```
|
| 329 |
-
|
| 330 |
-
Representation of a signaling “Not a Number,” if available.[^22]
|
| 331 |
-
|
| 332 |
-
Meaningful for all specializations for which
|
| 333 |
-
`has_signaling_NaN != false`. Required in specializations for which
|
| 334 |
-
`is_iec559 != false`.
|
| 335 |
-
|
| 336 |
-
``` cpp
|
| 337 |
-
static constexpr T denorm_min() noexcept;
|
| 338 |
-
```
|
| 339 |
-
|
| 340 |
-
Minimum positive denormalized value.[^23]
|
| 341 |
-
|
| 342 |
-
Meaningful for all floating point types.
|
| 343 |
-
|
| 344 |
-
In specializations for which `has_denorm == false`, returns the minimum
|
| 345 |
-
positive normalized value.
|
| 346 |
-
|
| 347 |
-
``` cpp
|
| 348 |
-
static constexpr bool is_iec559;
|
| 349 |
-
```
|
| 350 |
-
|
| 351 |
-
True if and only if the type adheres to IEC 559 standard.[^24]
|
| 352 |
-
|
| 353 |
-
Meaningful for all floating point types.
|
| 354 |
-
|
| 355 |
-
``` cpp
|
| 356 |
-
static constexpr bool is_bounded;
|
| 357 |
-
```
|
| 358 |
-
|
| 359 |
-
True if the set of values representable by the type is finite.[^25] All
|
| 360 |
-
fundamental types ([[basic.fundamental]]) are bounded. This member
|
| 361 |
-
would be false for arbitrary precision types.
|
| 362 |
-
|
| 363 |
-
Meaningful for all specializations.
|
| 364 |
-
|
| 365 |
-
``` cpp
|
| 366 |
-
static constexpr bool is_modulo;
|
| 367 |
-
```
|
| 368 |
-
|
| 369 |
-
True if the type is modulo.[^26] A type is modulo if, for any operation
|
| 370 |
-
involving `+`, `-`, or `*` on values of that type whose result would
|
| 371 |
-
fall outside the range \[`min()`, `max()`\], the value returned differs
|
| 372 |
-
from the true value by an integer multiple of `max() - min() + 1`.
|
| 373 |
-
|
| 374 |
-
On most machines, this is `false` for floating types, `true` for
|
| 375 |
-
unsigned integers, and `true` for signed integers.
|
| 376 |
-
|
| 377 |
-
Meaningful for all specializations.
|
| 378 |
-
|
| 379 |
-
``` cpp
|
| 380 |
-
static constexpr bool traps;
|
| 381 |
-
```
|
| 382 |
-
|
| 383 |
-
`true` if, at program startup, there exists a value of the type that
|
| 384 |
-
would cause an arithmetic operation using that value to trap.[^27]
|
| 385 |
-
|
| 386 |
-
Meaningful for all specializations.
|
| 387 |
-
|
| 388 |
-
``` cpp
|
| 389 |
-
static constexpr bool tinyness_before;
|
| 390 |
-
```
|
| 391 |
-
|
| 392 |
-
`true` if tinyness is detected before rounding.[^28]
|
| 393 |
-
|
| 394 |
-
Meaningful for all floating point types.
|
| 395 |
-
|
| 396 |
-
``` cpp
|
| 397 |
-
static constexpr float_round_style round_style;
|
| 398 |
-
```
|
| 399 |
-
|
| 400 |
-
The rounding style for the type.[^29]
|
| 401 |
-
|
| 402 |
-
Meaningful for all floating point types. Specializations for integer
|
| 403 |
-
types shall return `round_toward_zero`.
|
| 404 |
-
|
| 405 |
-
#### Type `float_round_style` <a id="round.style">[[round.style]]</a>
|
| 406 |
-
|
| 407 |
-
``` cpp
|
| 408 |
-
namespace std {
|
| 409 |
-
enum float_round_style {
|
| 410 |
-
round_indeterminate = -1,
|
| 411 |
-
round_toward_zero = 0,
|
| 412 |
-
round_to_nearest = 1,
|
| 413 |
-
round_toward_infinity = 2,
|
| 414 |
-
round_toward_neg_infinity = 3
|
| 415 |
-
};
|
| 416 |
-
}
|
| 417 |
-
```
|
| 418 |
-
|
| 419 |
-
The rounding mode for floating point arithmetic is characterized by the
|
| 420 |
-
values:
|
| 421 |
-
|
| 422 |
-
- `round_indeterminate` if the rounding style is indeterminable
|
| 423 |
-
- `round_toward_zero` if the rounding style is toward zero
|
| 424 |
-
- `round_to_nearest` if the rounding style is to the nearest
|
| 425 |
-
representable value
|
| 426 |
-
- `round_toward_infinity` if the rounding style is toward infinity
|
| 427 |
-
- `round_toward_neg_infinity` if the rounding style is toward negative
|
| 428 |
-
infinity
|
| 429 |
-
|
| 430 |
-
#### Type `float_denorm_style` <a id="denorm.style">[[denorm.style]]</a>
|
| 431 |
-
|
| 432 |
-
``` cpp
|
| 433 |
-
namespace std {
|
| 434 |
-
enum float_denorm_style {
|
| 435 |
-
denorm_indeterminate = -1,
|
| 436 |
-
denorm_absent = 0,
|
| 437 |
-
denorm_present = 1
|
| 438 |
-
};
|
| 439 |
-
}
|
| 440 |
-
```
|
| 441 |
-
|
| 442 |
-
The presence or absence of denormalization (variable number of exponent
|
| 443 |
-
bits) is characterized by the values:
|
| 444 |
-
|
| 445 |
-
- `denorm_indeterminate` if it cannot be determined whether or not the
|
| 446 |
-
type allows denormalized values
|
| 447 |
-
- `denorm_absent` if the type does not allow denormalized values
|
| 448 |
-
- `denorm_present` if the type does allow denormalized values
|
| 449 |
-
|
| 450 |
-
#### `numeric_limits` specializations <a id="numeric.special">[[numeric.special]]</a>
|
| 451 |
-
|
| 452 |
-
All members shall be provided for all specializations. However, many
|
| 453 |
-
values are only required to be meaningful under certain conditions (for
|
| 454 |
-
example, `epsilon()` is only meaningful if `is_integer` is `false`). Any
|
| 455 |
-
value that is not “meaningful” shall be set to 0 or `false`.
|
| 456 |
-
|
| 457 |
-
``` cpp
|
| 458 |
-
namespace std {
|
| 459 |
-
template<> class numeric_limits<float> {
|
| 460 |
-
public:
|
| 461 |
-
static constexpr bool is_specialized = true;
|
| 462 |
-
|
| 463 |
-
inline static constexpr float min() noexcept { return 1.17549435E-38F; }
|
| 464 |
-
inline static constexpr float max() noexcept { return 3.40282347E+38F; }
|
| 465 |
-
inline static constexpr float lowest() noexcept { return -3.40282347E+38F; }
|
| 466 |
-
|
| 467 |
-
static constexpr int digits = 24;
|
| 468 |
-
static constexpr int digits10 = 6;
|
| 469 |
-
static constexpr int max_digits10 = 9;
|
| 470 |
-
|
| 471 |
-
static constexpr bool is_signed = true;
|
| 472 |
-
static constexpr bool is_integer = false;
|
| 473 |
-
static constexpr bool is_exact = false;
|
| 474 |
-
|
| 475 |
-
static constexpr int radix = 2;
|
| 476 |
-
inline static constexpr float epsilon() noexcept { return 1.19209290E-07F; }
|
| 477 |
-
inline static constexpr float round_error() noexcept { return 0.5F; }
|
| 478 |
-
|
| 479 |
-
static constexpr int min_exponent = -125;
|
| 480 |
-
static constexpr int min_exponent10 = - 37;
|
| 481 |
-
static constexpr int max_exponent = +128;
|
| 482 |
-
static constexpr int max_exponent10 = + 38;
|
| 483 |
-
|
| 484 |
-
static constexpr bool has_infinity = true;
|
| 485 |
-
static constexpr bool has_quiet_NaN = true;
|
| 486 |
-
static constexpr bool has_signaling_NaN = true;
|
| 487 |
-
static constexpr float_denorm_style has_denorm = denorm_absent;
|
| 488 |
-
static constexpr bool has_denorm_loss = false;
|
| 489 |
-
|
| 490 |
-
inline static constexpr float infinity() noexcept { return value; }
|
| 491 |
-
inline static constexpr float quiet_NaN() noexcept { return value; }
|
| 492 |
-
inline static constexpr float signaling_NaN() noexcept { return value; }
|
| 493 |
-
inline static constexpr float denorm_min() noexcept { return min(); }
|
| 494 |
-
|
| 495 |
-
static constexpr bool is_iec559 = true;
|
| 496 |
-
static constexpr bool is_bounded = true;
|
| 497 |
-
static constexpr bool is_modulo = false;
|
| 498 |
-
static constexpr bool traps = true;
|
| 499 |
-
static constexpr bool tinyness_before = true;
|
| 500 |
-
|
| 501 |
-
static constexpr float_round_style round_style = round_to_nearest;
|
| 502 |
-
};
|
| 503 |
-
}
|
| 504 |
-
```
|
| 505 |
-
|
| 506 |
-
The specialization for `bool` shall be provided as follows:
|
| 507 |
-
|
| 508 |
-
``` cpp
|
| 509 |
-
namespace std {
|
| 510 |
-
template<> class numeric_limits<bool> {
|
| 511 |
-
public:
|
| 512 |
-
static constexpr bool is_specialized = true;
|
| 513 |
-
static constexpr bool min() noexcept { return false; }
|
| 514 |
-
static constexpr bool max() noexcept { return true; }
|
| 515 |
-
static constexpr bool lowest() noexcept { return false; }
|
| 516 |
-
|
| 517 |
-
static constexpr int digits = 1;
|
| 518 |
-
static constexpr int digits10 = 0;
|
| 519 |
-
static constexpr int max_digits10 = 0;
|
| 520 |
-
|
| 521 |
-
static constexpr bool is_signed = false;
|
| 522 |
-
static constexpr bool is_integer = true;
|
| 523 |
-
static constexpr bool is_exact = true;
|
| 524 |
-
static constexpr int radix = 2;
|
| 525 |
-
static constexpr bool epsilon() noexcept { return 0; }
|
| 526 |
-
static constexpr bool round_error() noexcept { return 0; }
|
| 527 |
-
|
| 528 |
-
static constexpr int min_exponent = 0;
|
| 529 |
-
static constexpr int min_exponent10 = 0;
|
| 530 |
-
static constexpr int max_exponent = 0;
|
| 531 |
-
static constexpr int max_exponent10 = 0;
|
| 532 |
-
|
| 533 |
-
static constexpr bool has_infinity = false;
|
| 534 |
-
static constexpr bool has_quiet_NaN = false;
|
| 535 |
-
static constexpr bool has_signaling_NaN = false;
|
| 536 |
-
static constexpr float_denorm_style has_denorm = denorm_absent;
|
| 537 |
-
static constexpr bool has_denorm_loss = false;
|
| 538 |
-
static constexpr bool infinity() noexcept { return 0; }
|
| 539 |
-
static constexpr bool quiet_NaN() noexcept { return 0; }
|
| 540 |
-
static constexpr bool signaling_NaN() noexcept { return 0; }
|
| 541 |
-
static constexpr bool denorm_min() noexcept { return 0; }
|
| 542 |
-
|
| 543 |
-
static constexpr bool is_iec559 = false;
|
| 544 |
-
static constexpr bool is_bounded = true;
|
| 545 |
-
static constexpr bool is_modulo = false;
|
| 546 |
-
|
| 547 |
-
static constexpr bool traps = false;
|
| 548 |
-
static constexpr bool tinyness_before = false;
|
| 549 |
-
static constexpr float_round_style round_style = round_toward_zero;
|
| 550 |
-
};
|
| 551 |
-
}
|
| 552 |
-
```
|
| 553 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|