- tmp/tmpu_7iaep2/{from.md → to.md} +588 -326
tmp/tmpu_7iaep2/{from.md → to.md}
RENAMED
|
@@ -3,15 +3,16 @@
|
|
| 3 |
The specifiers that can be used in a declaration are
|
| 4 |
|
| 5 |
``` bnf
|
| 6 |
decl-specifier:
|
| 7 |
storage-class-specifier
|
| 8 |
-
type-specifier
|
| 9 |
function-specifier
|
| 10 |
'friend'
|
| 11 |
'typedef'
|
| 12 |
'constexpr'
|
|
|
|
| 13 |
```
|
| 14 |
|
| 15 |
``` bnf
|
| 16 |
decl-specifier-seq:
|
| 17 |
decl-specifier attribute-specifier-seqₒₚₜ
|
|
@@ -22,15 +23,20 @@ The optional *attribute-specifier-seq* in a *decl-specifier-seq*
|
|
| 22 |
appertains to the type determined by the preceding *decl-specifier*s (
|
| 23 |
[[dcl.meaning]]). The *attribute-specifier-seq* affects the type only
|
| 24 |
for the declaration it appears in, not other declarations involving the
|
| 25 |
same type.
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
If a *type-name* is encountered while parsing a *decl-specifier-seq*, it
|
| 28 |
is interpreted as part of the *decl-specifier-seq* if and only if there
|
| 29 |
-
is no previous *type-specifier* other than a *cv-qualifier* in
|
| 30 |
-
*decl-specifier-seq*. The sequence shall be self-consistent as
|
| 31 |
-
below.
|
|
|
|
|
|
|
| 32 |
|
| 33 |
``` cpp
|
| 34 |
typedef char* Pc;
|
| 35 |
static Pc; // error: name missing
|
| 36 |
```
|
|
@@ -45,26 +51,35 @@ For another example,
|
|
| 45 |
``` cpp
|
| 46 |
void f(const Pc); // void f(char* const) (not const char*)
|
| 47 |
void g(const int Pc); // void g(const int)
|
| 48 |
```
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
Since `signed`, `unsigned`, `long`, and `short` by default imply `int`,
|
| 51 |
a *type-name* appearing after one of those specifiers is treated as the
|
| 52 |
name being (re)declared.
|
| 53 |
|
|
|
|
|
|
|
| 54 |
``` cpp
|
| 55 |
void h(unsigned Pc); // void h(unsigned int)
|
| 56 |
void k(unsigned int Pc); // void k(unsigned int)
|
| 57 |
```
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
### Storage class specifiers <a id="dcl.stc">[[dcl.stc]]</a>
|
| 60 |
|
| 61 |
The storage class specifiers are
|
| 62 |
|
| 63 |
``` bnf
|
| 64 |
storage-class-specifier:
|
| 65 |
-
'register'
|
| 66 |
'static'
|
| 67 |
'thread_local'
|
| 68 |
'extern'
|
| 69 |
'mutable'
|
| 70 |
```
|
|
@@ -73,70 +88,68 @@ At most one *storage-class-specifier* shall appear in a given
|
|
| 73 |
*decl-specifier-seq*, except that `thread_local` may appear with
|
| 74 |
`static` or `extern`. If `thread_local` appears in any declaration of a
|
| 75 |
variable it shall be present in all declarations of that entity. If a
|
| 76 |
*storage-class-specifier* appears in a *decl-specifier-seq*, there can
|
| 77 |
be no `typedef` specifier in the same *decl-specifier-seq* and the
|
| 78 |
-
*init-declarator-list* of the declaration
|
| 79 |
-
an anonymous union declared in a named
|
| 80 |
-
namespace, which shall be declared `static` (
|
| 81 |
-
*storage-class-specifier* applies to the
|
| 82 |
-
*init-declarator* in the list and not to any names
|
| 83 |
-
specifiers. A *storage-class-specifier*
|
| 84 |
-
|
| 85 |
-
instantiation ([[temp.explicit]])
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
declared
|
| 89 |
-
[[
|
| 90 |
-
storage duration ([[basic.stc.auto]]). A variable declared without a
|
| 91 |
-
*storage-class-specifier* at block scope or declared as a function
|
| 92 |
-
parameter has automatic storage duration by default.
|
| 93 |
-
|
| 94 |
-
A `register` specifier is a hint to the implementation that the variable
|
| 95 |
-
so declared will be heavily used. The hint can be ignored and in most
|
| 96 |
-
implementations it will be ignored if the address of the variable is
|
| 97 |
-
taken. This use is deprecated (see [[depr.register]]).
|
| 98 |
|
| 99 |
The `thread_local` specifier indicates that the named entity has thread
|
| 100 |
storage duration ([[basic.stc.thread]]). It shall be applied only to
|
| 101 |
the names of variables of namespace or block scope and to the names of
|
| 102 |
static data members. When `thread_local` is applied to a variable of
|
| 103 |
block scope the *storage-class-specifier* `static` is implied if no
|
| 104 |
other *storage-class-specifier* appears in the *decl-specifier-seq*.
|
| 105 |
|
| 106 |
The `static` specifier can be applied only to names of variables and
|
| 107 |
-
functions and to anonymous unions ([[class.union]]). There can be
|
| 108 |
-
`static` function declarations within a block, nor any `static`
|
| 109 |
-
parameters. A `static` specifier used in the declaration of a
|
| 110 |
-
declares the variable to have static storage duration (
|
| 111 |
[[basic.stc.static]]), unless accompanied by the `thread_local`
|
| 112 |
specifier, which declares the variable to have thread storage duration (
|
| 113 |
[[basic.stc.thread]]). A `static` specifier can be used in declarations
|
| 114 |
of class members; [[class.static]] describes its effect. For the
|
| 115 |
linkage of a name declared with a `static` specifier, see
|
| 116 |
[[basic.link]].
|
| 117 |
|
| 118 |
The `extern` specifier can be applied only to the names of variables and
|
| 119 |
functions. The `extern` specifier cannot be used in the declaration of
|
| 120 |
class members or function parameters. For the linkage of a name declared
|
| 121 |
-
with an `extern` specifier, see [[basic.link]].
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
The linkages implied by successive declarations for a given entity shall
|
| 125 |
agree. That is, within a given scope, each declaration declaring the
|
| 126 |
same variable name or the same overloading of a function name shall
|
| 127 |
imply the same linkage. Each function in a given set of overloaded
|
| 128 |
functions can have a different linkage, however.
|
| 129 |
|
|
|
|
|
|
|
| 130 |
``` cpp
|
| 131 |
static char* f(); // f() has internal linkage
|
| 132 |
char* f() // f() still has internal linkage
|
| 133 |
-
{
|
| 134 |
|
| 135 |
char* g(); // g() has external linkage
|
| 136 |
static char* g() // error: inconsistent linkage
|
| 137 |
-
{
|
| 138 |
|
| 139 |
void h();
|
| 140 |
inline void h(); // external linkage
|
| 141 |
|
| 142 |
inline void l();
|
|
@@ -159,14 +172,18 @@ static int c; // error: inconsistent linkage
|
|
| 159 |
|
| 160 |
extern int d; // d has external linkage
|
| 161 |
static int d; // error: inconsistent linkage
|
| 162 |
```
|
| 163 |
|
|
|
|
|
|
|
| 164 |
The name of a declared but undefined class can be used in an `extern`
|
| 165 |
declaration. Such a declaration can only be used in ways that do not
|
| 166 |
require a complete class type.
|
| 167 |
|
|
|
|
|
|
|
| 168 |
``` cpp
|
| 169 |
struct S;
|
| 170 |
extern S a;
|
| 171 |
extern S f();
|
| 172 |
extern void g(S);
|
|
@@ -175,21 +192,27 @@ void h() {
|
|
| 175 |
g(a); // error: S is incomplete
|
| 176 |
f(); // error: S is incomplete
|
| 177 |
}
|
| 178 |
```
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
``` cpp
|
| 185 |
class X {
|
| 186 |
mutable const int* p; // OK
|
| 187 |
mutable int* const q; // ill-formed
|
| 188 |
};
|
| 189 |
```
|
| 190 |
|
|
|
|
|
|
|
| 191 |
The `mutable` specifier on a class data member nullifies a `const`
|
| 192 |
specifier applied to the containing class object and permits
|
| 193 |
modification of the mutable class member even though the rest of the
|
| 194 |
object is `const` ([[dcl.type.cv]]).
|
| 195 |
|
|
@@ -197,48 +220,14 @@ object is `const` ([[dcl.type.cv]]).
|
|
| 197 |
|
| 198 |
can be used only in function declarations.
|
| 199 |
|
| 200 |
``` bnf
|
| 201 |
function-specifier:
|
| 202 |
-
'inline'
|
| 203 |
'virtual'
|
| 204 |
'explicit'
|
| 205 |
```
|
| 206 |
|
| 207 |
-
A function declaration ([[dcl.fct]], [[class.mfct]], [[class.friend]])
|
| 208 |
-
with an `inline` specifier declares an *inline function*. The inline
|
| 209 |
-
specifier indicates to the implementation that inline substitution of
|
| 210 |
-
the function body at the point of call is to be preferred to the usual
|
| 211 |
-
function call mechanism. An implementation is not required to perform
|
| 212 |
-
this inline substitution at the point of call; however, even if this
|
| 213 |
-
inline substitution is omitted, the other rules for inline functions
|
| 214 |
-
defined by [[dcl.fct.spec]] shall still be respected.
|
| 215 |
-
|
| 216 |
-
A function defined within a class definition is an inline function. The
|
| 217 |
-
`inline` specifier shall not appear on a block scope function
|
| 218 |
-
declaration.[^2] If the `inline` specifier is used in a friend
|
| 219 |
-
declaration, that declaration shall be a definition or the function
|
| 220 |
-
shall have previously been declared inline.
|
| 221 |
-
|
| 222 |
-
An inline function shall be defined in every translation unit in which
|
| 223 |
-
it is odr-used and shall have exactly the same definition in every
|
| 224 |
-
case ([[basic.def.odr]]). A call to the inline function may be
|
| 225 |
-
encountered before its definition appears in the translation unit. If
|
| 226 |
-
the definition of a function appears in a translation unit before its
|
| 227 |
-
first declaration as inline, the program is ill-formed. If a function
|
| 228 |
-
with external linkage is declared inline in one translation unit, it
|
| 229 |
-
shall be declared inline in all translation units in which it appears;
|
| 230 |
-
no diagnostic is required. An `inline` function with external linkage
|
| 231 |
-
shall have the same address in all translation units. A `static` local
|
| 232 |
-
variable in an `extern` `inline` function always refers to the same
|
| 233 |
-
object. A string literal in the body of an `extern` `inline` function is
|
| 234 |
-
the same object in different translation units. A string literal
|
| 235 |
-
appearing in a default argument is not in the body of an inline function
|
| 236 |
-
merely because the expression is used in a function call from that
|
| 237 |
-
inline function. A type defined within the body of an `extern inline`
|
| 238 |
-
function is the same type in every translation unit.
|
| 239 |
-
|
| 240 |
The `virtual` specifier shall be used only in the initial declaration of
|
| 241 |
a non-static class member function; see [[class.virtual]].
|
| 242 |
|
| 243 |
The `explicit` specifier shall be used only in the declaration of a
|
| 244 |
constructor or conversion function within its class definition; see
|
|
@@ -248,14 +237,16 @@ constructor or conversion function within its class definition; see
|
|
| 248 |
|
| 249 |
Declarations containing the *decl-specifier* `typedef` declare
|
| 250 |
identifiers that can be used later for naming fundamental (
|
| 251 |
[[basic.fundamental]]) or compound ([[basic.compound]]) types. The
|
| 252 |
`typedef` specifier shall not be combined in a *decl-specifier-seq* with
|
| 253 |
-
any other kind of specifier except a *type-specifier
|
| 254 |
-
be used in the *decl-specifier-seq* of a
|
| 255 |
-
[[dcl.fct]]) nor in the *decl-specifier-seq*
|
| 256 |
-
*function-definition* ([[dcl.fct.def]]).
|
|
|
|
|
|
|
| 257 |
|
| 258 |
``` bnf
|
| 259 |
typedef-name:
|
| 260 |
identifier
|
| 261 |
```
|
|
@@ -264,11 +255,15 @@ A name declared with the `typedef` specifier becomes a *typedef-name*.
|
|
| 264 |
Within the scope of its declaration, a *typedef-name* is syntactically
|
| 265 |
equivalent to a keyword and names the type associated with the
|
| 266 |
identifier in the way described in Clause [[dcl.decl]]. A
|
| 267 |
*typedef-name* is thus a synonym for another type. A *typedef-name* does
|
| 268 |
not introduce a new type the way a class declaration ([[class.name]])
|
| 269 |
-
or enum declaration does.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
``` cpp
|
| 272 |
typedef int MILES, *KLICKSP;
|
| 273 |
```
|
| 274 |
|
|
@@ -278,88 +273,121 @@ the constructions
|
|
| 278 |
MILES distance;
|
| 279 |
extern KLICKSP metricp;
|
| 280 |
```
|
| 281 |
|
| 282 |
are all correct declarations; the type of `distance` is `int` and that
|
| 283 |
-
of `metricp` is “pointer to `int`
|
|
|
|
|
|
|
| 284 |
|
| 285 |
A *typedef-name* can also be introduced by an *alias-declaration*. The
|
| 286 |
*identifier* following the `using` keyword becomes a *typedef-name* and
|
| 287 |
the optional *attribute-specifier-seq* following the *identifier*
|
| 288 |
-
appertains to that *typedef-name*.
|
| 289 |
-
were introduced by the `typedef` specifier. In
|
| 290 |
-
|
|
|
|
|
|
|
| 291 |
|
| 292 |
``` cpp
|
| 293 |
using handler_t = void (*)(int);
|
| 294 |
extern handler_t ignore;
|
| 295 |
extern void (*ignore)(int); // redeclare ignore
|
| 296 |
using cell = pair<void*, cell*>; // ill-formed
|
| 297 |
```
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
In a given non-class scope, a `typedef` specifier can be used to
|
| 300 |
redefine the name of any type declared in that scope to refer to the
|
| 301 |
type to which it already refers.
|
| 302 |
|
|
|
|
|
|
|
| 303 |
``` cpp
|
| 304 |
-
typedef struct s {
|
| 305 |
typedef int I;
|
| 306 |
typedef int I;
|
| 307 |
typedef I I;
|
| 308 |
```
|
| 309 |
|
|
|
|
|
|
|
| 310 |
In a given class scope, a `typedef` specifier can be used to redefine
|
| 311 |
any *class-name* declared in that scope that is not also a
|
| 312 |
*typedef-name* to refer to the type to which it already refers.
|
| 313 |
|
|
|
|
|
|
|
| 314 |
``` cpp
|
| 315 |
struct S {
|
| 316 |
typedef struct A { } A; // OK
|
| 317 |
typedef struct B B; // OK
|
| 318 |
typedef A A; // error
|
| 319 |
};
|
| 320 |
```
|
| 321 |
|
|
|
|
|
|
|
| 322 |
If a `typedef` specifier is used to redefine in a given scope an entity
|
| 323 |
that can be referenced using an *elaborated-type-specifier*, the entity
|
| 324 |
can continue to be referenced by an *elaborated-type-specifier* or as an
|
| 325 |
enumeration or class name in an enumeration or class definition
|
| 326 |
respectively.
|
| 327 |
|
|
|
|
|
|
|
| 328 |
``` cpp
|
| 329 |
struct S;
|
| 330 |
typedef struct S S;
|
| 331 |
int main() {
|
| 332 |
struct S* p; // OK
|
| 333 |
}
|
| 334 |
struct S { }; // OK
|
| 335 |
```
|
| 336 |
|
|
|
|
|
|
|
| 337 |
In a given scope, a `typedef` specifier shall not be used to redefine
|
| 338 |
the name of any type declared in that scope to refer to a different
|
| 339 |
type.
|
| 340 |
|
|
|
|
|
|
|
| 341 |
``` cpp
|
| 342 |
-
class complex {
|
| 343 |
typedef int complex; // error: redefinition
|
| 344 |
```
|
| 345 |
|
|
|
|
|
|
|
| 346 |
Similarly, in a given scope, a class or enumeration shall not be
|
| 347 |
declared with the same name as a *typedef-name* that is declared in that
|
| 348 |
scope and refers to a type other than the class or enumeration itself.
|
| 349 |
|
|
|
|
|
|
|
| 350 |
``` cpp
|
| 351 |
typedef int complex;
|
| 352 |
-
class complex {
|
| 353 |
```
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
[[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
``` cpp
|
| 363 |
struct S {
|
| 364 |
S();
|
| 365 |
~S();
|
|
@@ -369,35 +397,47 @@ typedef struct S T;
|
|
| 369 |
|
| 370 |
S a = T(); // OK
|
| 371 |
struct T * p; // error
|
| 372 |
```
|
| 373 |
|
|
|
|
|
|
|
| 374 |
If the typedef declaration defines an unnamed class (or enum), the first
|
| 375 |
*typedef-name* declared by the declaration to be that class type (or
|
| 376 |
enum type) is used to denote the class type (or enum type) for linkage
|
| 377 |
purposes only ([[basic.link]]).
|
| 378 |
|
|
|
|
|
|
|
| 379 |
``` cpp
|
| 380 |
typedef struct { } *ps, S; // S is the class name for linkage purposes
|
| 381 |
```
|
| 382 |
|
|
|
|
|
|
|
| 383 |
### The `friend` specifier <a id="dcl.friend">[[dcl.friend]]</a>
|
| 384 |
|
| 385 |
The `friend` specifier is used to specify access to class members; see
|
| 386 |
[[class.friend]].
|
| 387 |
|
| 388 |
### The `constexpr` specifier <a id="dcl.constexpr">[[dcl.constexpr]]</a>
|
| 389 |
|
| 390 |
The `constexpr` specifier shall be applied only to the definition of a
|
| 391 |
-
variable or variable template
|
| 392 |
-
template
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
``` cpp
|
| 401 |
constexpr void square(int &x); // OK: declaration
|
| 402 |
constexpr int bufsz = 1024; // OK: definition
|
| 403 |
constexpr struct pixel { // error: pixel is a type
|
|
@@ -419,31 +459,34 @@ int next(constexpr int x) { // error: not for parameters
|
|
| 419 |
return x + 1;
|
| 420 |
}
|
| 421 |
extern constexpr int memsz; // error: not a definition
|
| 422 |
```
|
| 423 |
|
|
|
|
|
|
|
| 424 |
A `constexpr` specifier used in the declaration of a function that is
|
| 425 |
not a constructor declares that function to be a *constexpr function*.
|
| 426 |
Similarly, a `constexpr` specifier used in a constructor declaration
|
| 427 |
-
declares that constructor to be a *constexpr constructor*.
|
| 428 |
-
functions and `constexpr` constructors are implicitly `inline` (
|
| 429 |
-
[[dcl.fct.spec]]).
|
| 430 |
|
| 431 |
-
The definition of a
|
| 432 |
-
|
| 433 |
|
| 434 |
- it shall not be virtual ([[class.virtual]]);
|
| 435 |
- its return type shall be a literal type;
|
| 436 |
- each of its parameter types shall be a literal type;
|
| 437 |
- its *function-body* shall be `= delete`, `= default`, or a
|
| 438 |
*compound-statement* that does not contain
|
| 439 |
- an *asm-definition*,
|
| 440 |
- a `goto` statement,
|
|
|
|
| 441 |
- a *try-block*, or
|
| 442 |
- a definition of a variable of non-literal type or of static or
|
| 443 |
thread storage duration or for which no initialization is performed.
|
| 444 |
|
|
|
|
|
|
|
| 445 |
``` cpp
|
| 446 |
constexpr int square(int x)
|
| 447 |
{ return x * x; } // OK
|
| 448 |
constexpr long long_max()
|
| 449 |
{ return 2147483647; } // OK
|
|
@@ -467,51 +510,60 @@ constexpr int g(int x, int n) { // OK
|
|
| 467 |
while (--n > 0) r *= x;
|
| 468 |
return r;
|
| 469 |
}
|
| 470 |
```
|
| 471 |
|
| 472 |
-
|
| 473 |
-
|
|
|
|
|
|
|
| 474 |
|
| 475 |
- the class shall not have any virtual base classes;
|
| 476 |
- each of the parameter types shall be a literal type;
|
| 477 |
-
- its *function-body* shall not be a *function-try-block*
|
| 478 |
|
| 479 |
In addition, either its *function-body* shall be `= delete`, or it shall
|
| 480 |
-
satisfy the following
|
| 481 |
|
| 482 |
- either its *function-body* shall be `= default`, or the
|
| 483 |
*compound-statement* of its *function-body* shall satisfy the
|
| 484 |
-
|
| 485 |
-
- every non-variant non-static data member and base class
|
| 486 |
shall be initialized ([[class.base.init]]);
|
| 487 |
- if the class is a union having variant members ([[class.union]]),
|
| 488 |
exactly one of them shall be initialized;
|
| 489 |
- if the class is a union-like class, but is not a union, for each of
|
| 490 |
its anonymous union members having variant members, exactly one of
|
| 491 |
them shall be initialized;
|
| 492 |
- for a non-delegating constructor, every constructor selected to
|
| 493 |
-
initialize non-static data members and base class
|
| 494 |
-
a
|
| 495 |
- for a delegating constructor, the target constructor shall be a
|
| 496 |
-
|
|
|
|
|
|
|
| 497 |
|
| 498 |
``` cpp
|
| 499 |
struct Length {
|
| 500 |
constexpr explicit Length(int i = 0) : val(i) { }
|
| 501 |
private:
|
| 502 |
int val;
|
| 503 |
};
|
| 504 |
```
|
| 505 |
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
| 511 |
required.
|
| 512 |
|
|
|
|
|
|
|
| 513 |
``` cpp
|
| 514 |
constexpr int f(bool b)
|
| 515 |
{ return b ? throw 0 : 0; } // OK
|
| 516 |
constexpr int f() { return f(true); } // ill-formed, no diagnostic required
|
| 517 |
|
|
@@ -526,66 +578,113 @@ struct D : B {
|
|
| 526 |
constexpr D() : B(global) { } // ill-formed, no diagnostic required
|
| 527 |
// lvalue-to-rvalue conversion on non-constant global
|
| 528 |
};
|
| 529 |
```
|
| 530 |
|
| 531 |
-
|
|
|
|
|
|
|
| 532 |
template or member function of a class template would fail to satisfy
|
| 533 |
-
the requirements for a
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
A call to a
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
|
| 548 |
``` cpp
|
| 549 |
constexpr int bar(int x, int y) // OK
|
| 550 |
{ return x + y + x*y; }
|
| 551 |
// ...
|
| 552 |
int bar(int x, int y) // error: redefinition of bar
|
| 553 |
{ return x * 2 + 3 * y; }
|
| 554 |
```
|
| 555 |
|
|
|
|
|
|
|
| 556 |
A `constexpr` specifier used in an object declaration declares the
|
| 557 |
object as `const`. Such an object shall have literal type and shall be
|
| 558 |
-
initialized.
|
| 559 |
-
be a constant expression (
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
expressions and each constructor call used for the initialization is
|
| 564 |
-
part of such a full-expression.
|
| 565 |
|
| 566 |
``` cpp
|
| 567 |
struct pixel {
|
| 568 |
int x, y;
|
| 569 |
};
|
| 570 |
constexpr pixel ur = { 1294, 1024 }; // OK
|
| 571 |
constexpr pixel origin; // error: initializer missing
|
| 572 |
```
|
| 573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
### Type specifiers <a id="dcl.type">[[dcl.type]]</a>
|
| 575 |
|
| 576 |
The type-specifiers are
|
| 577 |
|
| 578 |
``` bnf
|
| 579 |
type-specifier:
|
| 580 |
-
trailing-type-specifier
|
| 581 |
-
class-specifier
|
| 582 |
-
enum-specifier
|
| 583 |
-
```
|
| 584 |
-
|
| 585 |
-
``` bnf
|
| 586 |
-
trailing-type-specifier:
|
| 587 |
simple-type-specifier
|
| 588 |
elaborated-type-specifier
|
| 589 |
typename-specifier
|
| 590 |
cv-qualifier
|
| 591 |
```
|
|
@@ -595,74 +694,91 @@ type-specifier-seq:
|
|
| 595 |
type-specifier attribute-specifier-seqₒₚₜ
|
| 596 |
type-specifier type-specifier-seq
|
| 597 |
```
|
| 598 |
|
| 599 |
``` bnf
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
```
|
| 604 |
|
| 605 |
The optional *attribute-specifier-seq* in a *type-specifier-seq* or a
|
| 606 |
-
*
|
| 607 |
-
preceding *type-specifier*s (
|
| 608 |
-
*attribute-specifier-seq* affects the type only
|
| 609 |
-
appears in, not other declarations involving the
|
|
|
|
| 610 |
|
| 611 |
-
As a general rule, at most one *type-specifier* is allowed in
|
| 612 |
-
complete *decl-specifier-seq* of a *declaration* or in a
|
| 613 |
-
*type-specifier-seq*
|
| 614 |
-
exceptions to this rule are
|
|
|
|
| 615 |
|
| 616 |
- `const` can be combined with any type specifier except itself.
|
| 617 |
- `volatile` can be combined with any type specifier except itself.
|
| 618 |
- `signed` or `unsigned` can be combined with `char`, `long`, `short`,
|
| 619 |
or `int`.
|
| 620 |
- `short` or `long` can be combined with `int`.
|
| 621 |
- `long` can be combined with `double`.
|
| 622 |
- `long` can be combined with `long`.
|
| 623 |
|
| 624 |
Except in a declaration of a constructor, destructor, or conversion
|
| 625 |
-
function, at least one *type-specifier* that is not a
|
| 626 |
-
shall appear in a complete *type-specifier-seq* or a
|
| 627 |
-
*decl-specifier-seq*.[^3]
|
| 628 |
-
class or enumeration unless it appears in the *type-id* of an
|
| 629 |
-
*alias-declaration* ([[dcl.typedef]]) that is not the *declaration* of
|
| 630 |
-
a *template-declaration*.
|
| 631 |
|
| 632 |
-
*enum-specifier*s, *class-specifier*s, and
|
| 633 |
-
discussed in [[dcl.enum]], Clause [[class]],
|
| 634 |
-
respectively. The remaining *type-specifier*s are
|
| 635 |
-
of this section.
|
| 636 |
|
| 637 |
-
#### The *cv-
|
| 638 |
|
| 639 |
-
There are two *cv-
|
| 640 |
*cv-qualifier* shall appear at most once in a *cv-qualifier-seq*. If a
|
| 641 |
*cv-qualifier* appears in a *decl-specifier-seq*, the
|
| 642 |
-
*init-declarator-list* of the declaration
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
|
| 653 |
A pointer or reference to a cv-qualified type need not actually point or
|
| 654 |
refer to a cv-qualified object, but it is treated as if it does; a
|
| 655 |
const-qualified access path cannot be used to modify an object even if
|
| 656 |
the object referenced is a non-const object and can be modified through
|
| 657 |
-
some other access path.
|
| 658 |
-
|
|
|
|
|
|
|
|
|
|
| 659 |
|
| 660 |
Except that any class member declared `mutable` ([[dcl.stc]]) can be
|
| 661 |
modified, any attempt to modify a `const` object during its lifetime (
|
| 662 |
[[basic.life]]) results in undefined behavior.
|
| 663 |
|
|
|
|
|
|
|
| 664 |
``` cpp
|
| 665 |
const int ci = 3; // cv-qualified (initialized as required)
|
| 666 |
ci = 4; // ill-formed: attempt to modify const
|
| 667 |
|
| 668 |
int i = 2; // not cv-qualified
|
|
@@ -677,11 +793,11 @@ ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
|
|
| 677 |
const int* ciq = new const int (3); // initialized as required
|
| 678 |
int* iq = const_cast<int*>(ciq); // cast required
|
| 679 |
*iq = 4; // undefined: modifies a const object
|
| 680 |
```
|
| 681 |
|
| 682 |
-
For another example
|
| 683 |
|
| 684 |
``` cpp
|
| 685 |
struct X {
|
| 686 |
mutable int i;
|
| 687 |
int j;
|
|
@@ -697,31 +813,35 @@ y.x.j++; // ill-formed: const-qualified member modified
|
|
| 697 |
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
|
| 698 |
p->x.i = 99; // well-formed: mutable member can be modified
|
| 699 |
p->x.j = 99; // undefined: modifies a const member
|
| 700 |
```
|
| 701 |
|
| 702 |
-
|
| 703 |
-
is implementation-defined. If an attempt is made to refer to an object
|
| 704 |
-
defined with a volatile-qualified type through the use of a glvalue with
|
| 705 |
-
a non-volatile-qualified type, the program behavior is undefined.
|
| 706 |
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 714 |
|
| 715 |
#### Simple type specifiers <a id="dcl.type.simple">[[dcl.type.simple]]</a>
|
| 716 |
|
| 717 |
The simple type specifiers are
|
| 718 |
|
| 719 |
``` bnf
|
| 720 |
simple-type-specifier:
|
| 721 |
nested-name-specifierₒₚₜ type-name
|
| 722 |
nested-name-specifier 'template' simple-template-id
|
|
|
|
| 723 |
'char'
|
| 724 |
'char16_t'
|
| 725 |
'char32_t'
|
| 726 |
'wchar_t'
|
| 727 |
'bool'
|
|
@@ -749,23 +869,28 @@ type-name:
|
|
| 749 |
decltype-specifier:
|
| 750 |
'decltype' '(' expression ')'
|
| 751 |
'decltype' '(' 'auto' ')'
|
| 752 |
```
|
| 753 |
|
| 754 |
-
The `auto`
|
| 755 |
-
[[dcl.spec.auto]]).
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
previously-declared type, a type determined from an expression, or one
|
| 757 |
of the fundamental types ([[basic.fundamental]]). Table
|
| 758 |
[[tab:simple.type.specifiers]] summarizes the valid combinations of
|
| 759 |
*simple-type-specifier*s and the types they specify.
|
| 760 |
|
| 761 |
**Table: *simple-type-specifier*{s} and the types they specify** <a id="tab:simple.type.specifiers">[tab:simple.type.specifiers]</a>
|
| 762 |
|
| 763 |
-
|
|
| 764 |
| ---------------------- | -------------------------------------- |
|
| 765 |
| *type-name* | the type named |
|
| 766 |
| *simple-template-id* | the type as defined in~ [[temp.names]] |
|
|
|
|
| 767 |
| char | ``char'' |
|
| 768 |
| unsigned char | ``unsigned char'' |
|
| 769 |
| signed char | ``signed char'' |
|
| 770 |
| char16_t | ``char16_t'' |
|
| 771 |
| char32_t | ``char32_t'' |
|
|
@@ -797,90 +922,109 @@ of the fundamental types ([[basic.fundamental]]). Table
|
|
| 797 |
| float | ``float'' |
|
| 798 |
| double | ``double'' |
|
| 799 |
| long double | ``long double'' |
|
| 800 |
| void | ``void'' |
|
| 801 |
| auto | placeholder for a type to be deduced |
|
|
|
|
| 802 |
| decltype(*expression*) | the type as defined below |
|
| 803 |
|
| 804 |
|
| 805 |
-
When multiple *simple-type-
|
| 806 |
-
intermixed with other *decl-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
|
|
|
|
|
|
| 810 |
|
| 811 |
For an expression `e`, the type denoted by `decltype(e)` is defined as
|
| 812 |
follows:
|
| 813 |
|
| 814 |
-
- if `e` is an unparenthesized *id-expression*
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
|
|
|
|
|
|
|
|
|
| 818 |
- otherwise, if `e` is an xvalue, `decltype(e)` is `T&&`, where `T` is
|
| 819 |
the type of `e`;
|
| 820 |
- otherwise, if `e` is an lvalue, `decltype(e)` is `T&`, where `T` is
|
| 821 |
the type of `e`;
|
| 822 |
- otherwise, `decltype(e)` is the type of `e`.
|
| 823 |
|
| 824 |
The operand of the `decltype` specifier is an unevaluated operand
|
| 825 |
(Clause [[expr]]).
|
| 826 |
|
|
|
|
|
|
|
| 827 |
``` cpp
|
| 828 |
const int&& foo();
|
| 829 |
int i;
|
| 830 |
struct A { double x; };
|
| 831 |
const A* a = new A();
|
| 832 |
-
decltype(foo()) x1 =
|
| 833 |
decltype(i) x2; // type is int
|
| 834 |
decltype(a->x) x3; // type is double
|
| 835 |
decltype((a->x)) x4 = x3; // type is const double&
|
| 836 |
```
|
| 837 |
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 852 |
|
| 853 |
``` cpp
|
| 854 |
template<class T> struct A { ~A() = delete; };
|
| 855 |
template<class T> auto h()
|
| 856 |
-> A<T>;
|
| 857 |
template<class T> auto i(T) // identity
|
| 858 |
-> T;
|
| 859 |
template<class T> auto f(T) // #1
|
| 860 |
-
-> decltype(i(h<T>())); // forces completion of A<T> and implicitly uses
|
| 861 |
-
//
|
| 862 |
-
//
|
| 863 |
-
// as a result of the use of i().)
|
| 864 |
template<class T> auto f(T) // #2
|
| 865 |
-> void;
|
| 866 |
auto g() -> void {
|
| 867 |
-
f(42); // OK: calls #2. (#1 is not a viable candidate: type
|
| 868 |
-
//
|
| 869 |
-
//
|
| 870 |
}
|
| 871 |
template<class T> auto q(T)
|
| 872 |
-
-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is
|
| 873 |
-
//
|
| 874 |
void r() {
|
| 875 |
-
q(42); // Error: deduction against q succeeds, so overload resolution
|
| 876 |
-
//
|
| 877 |
// The return type is A<int>, so a temporary is introduced and its
|
| 878 |
// destructor is used, so the program is ill-formed.
|
| 879 |
}
|
| 880 |
```
|
| 881 |
|
|
|
|
|
|
|
| 882 |
#### Elaborated type specifiers <a id="dcl.type.elab">[[dcl.type.elab]]</a>
|
| 883 |
|
| 884 |
``` bnf
|
| 885 |
elaborated-type-specifier:
|
| 886 |
class-key attribute-specifier-seqₒₚₜ nested-name-specifierₒₚₜ identifier
|
|
@@ -914,20 +1058,26 @@ class whenever it is named.
|
|
| 914 |
resolves to a *class-name* or *enum-name*, the
|
| 915 |
*elaborated-type-specifier* introduces it into the declaration the same
|
| 916 |
way a *simple-type-specifier* introduces its *type-name*. If the
|
| 917 |
*identifier* resolves to a *typedef-name* or the *simple-template-id*
|
| 918 |
resolves to an alias template specialization, the
|
| 919 |
-
*elaborated-type-specifier* is ill-formed.
|
| 920 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 921 |
|
| 922 |
``` cpp
|
| 923 |
friend class T;
|
| 924 |
```
|
| 925 |
|
| 926 |
is ill-formed. However, the similar declaration `friend T;` is allowed (
|
| 927 |
[[class.friend]]).
|
| 928 |
|
|
|
|
|
|
|
| 929 |
The *class-key* or `enum` keyword present in the
|
| 930 |
*elaborated-type-specifier* shall agree in kind with the declaration to
|
| 931 |
which the name in the *elaborated-type-specifier* refers. This rule also
|
| 932 |
applies to the form of *elaborated-type-specifier* that declares a
|
| 933 |
*class-name* or `friend` class since it can be construed as referring to
|
|
@@ -936,164 +1086,130 @@ the `enum` keyword shall be used to refer to an enumeration (
|
|
| 936 |
[[dcl.enum]]), the `union` *class-key* shall be used to refer to a union
|
| 937 |
(Clause [[class]]), and either the `class` or `struct` *class-key*
|
| 938 |
shall be used to refer to a class (Clause [[class]]) declared using the
|
| 939 |
`class` or `struct` *class-key*.
|
| 940 |
|
|
|
|
|
|
|
| 941 |
``` cpp
|
| 942 |
enum class E { a, b };
|
| 943 |
enum E x = E::a; // OK
|
| 944 |
```
|
| 945 |
|
| 946 |
-
|
| 947 |
|
| 948 |
-
The `auto`
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 953 |
|
| 954 |
The placeholder type can appear with a function declarator in the
|
| 955 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 956 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 957 |
If the function declarator includes a *trailing-return-type* (
|
| 958 |
-
[[dcl.fct]]), that specifies the declared return
|
| 959 |
-
|
| 960 |
-
the return type of the function
|
| 961 |
-
the
|
|
|
|
|
|
|
| 962 |
|
| 963 |
If the `auto` *type-specifier* appears as one of the *decl-specifier*s
|
| 964 |
in the *decl-specifier-seq* of a *parameter-declaration* of a
|
| 965 |
*lambda-expression*, the lambda is a *generic lambda* (
|
| 966 |
-
[[expr.prim.lambda]]).
|
|
|
|
|
|
|
| 967 |
|
| 968 |
``` cpp
|
| 969 |
auto glambda = [](int i, auto a) { return i; }; // OK: a generic lambda
|
| 970 |
```
|
| 971 |
|
|
|
|
|
|
|
| 972 |
The type of a variable declared using `auto` or `decltype(auto)` is
|
| 973 |
-
deduced from its initializer. This use is allowed
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
*
|
| 978 |
-
one or more *init-declarator*s, each of which shall have a non-empty
|
| 979 |
*initializer*. In an *initializer* of the form
|
| 980 |
|
| 981 |
``` cpp
|
| 982 |
( expression-list )
|
| 983 |
```
|
| 984 |
|
| 985 |
the *expression-list* shall be a single *assignment-expression*.
|
| 986 |
|
|
|
|
|
|
|
| 987 |
``` cpp
|
| 988 |
auto x = 5; // OK: x has type int
|
| 989 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 990 |
static auto y = 0.0; // OK: y has type double
|
| 991 |
auto int r; // error: auto is not a storage-class-specifier
|
| 992 |
auto f() -> int; // OK: f returns int
|
| 993 |
auto g() { return 0.0; } // OK: g returns double
|
| 994 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 995 |
```
|
| 996 |
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
*
|
| 1001 |
-
*
|
| 1002 |
-
|
| 1003 |
|
| 1004 |
A program that uses `auto` or `decltype(auto)` in a context not
|
| 1005 |
explicitly allowed in this section is ill-formed.
|
| 1006 |
|
| 1007 |
-
When a variable declared using a placeholder type is initialized, or a
|
| 1008 |
-
`return` statement occurs in a function declared with a return type that
|
| 1009 |
-
contains a placeholder type, the deduced return type or variable type is
|
| 1010 |
-
determined from the type of its initializer. In the case of a `return`
|
| 1011 |
-
with no operand, the initializer is considered to be `void()`. Let `T`
|
| 1012 |
-
be the declared type of the variable or return type of the function. If
|
| 1013 |
-
the placeholder is the `auto` *type-specifier*, the deduced type is
|
| 1014 |
-
determined using the rules for template argument deduction. If the
|
| 1015 |
-
deduction is for a `return` statement and the initializer is a
|
| 1016 |
-
*braced-init-list* ([[dcl.init.list]]), the program is ill-formed.
|
| 1017 |
-
Otherwise, obtain `P` from `T` by replacing the occurrences of `auto`
|
| 1018 |
-
with either a new invented type template parameter `U` or, if the
|
| 1019 |
-
initializer is a *braced-init-list*, with `std::initializer_list<U>`.
|
| 1020 |
-
Deduce a value for `U` using the rules of template argument deduction
|
| 1021 |
-
from a function call ([[temp.deduct.call]]), where `P` is a function
|
| 1022 |
-
template parameter type and the initializer is the corresponding
|
| 1023 |
-
argument. If the deduction fails, the declaration is ill-formed.
|
| 1024 |
-
Otherwise, the type deduced for the variable or return type is obtained
|
| 1025 |
-
by substituting the deduced `U` into `P`.
|
| 1026 |
-
|
| 1027 |
-
``` cpp
|
| 1028 |
-
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 1029 |
-
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 1030 |
-
```
|
| 1031 |
-
|
| 1032 |
-
``` cpp
|
| 1033 |
-
const auto &i = expr;
|
| 1034 |
-
```
|
| 1035 |
-
|
| 1036 |
-
The type of `i` is the deduced type of the parameter `u` in the call
|
| 1037 |
-
`f(expr)` of the following invented function template:
|
| 1038 |
-
|
| 1039 |
-
``` cpp
|
| 1040 |
-
template <class U> void f(const U& u);
|
| 1041 |
-
```
|
| 1042 |
-
|
| 1043 |
-
If the placeholder is the `decltype(auto)` *type-specifier*, the
|
| 1044 |
-
declared type of the variable or return type of the function shall be
|
| 1045 |
-
the placeholder alone. The type deduced for the variable or return type
|
| 1046 |
-
is determined as described in [[dcl.type.simple]], as though the
|
| 1047 |
-
initializer had been the operand of the `decltype`.
|
| 1048 |
-
|
| 1049 |
-
``` cpp
|
| 1050 |
-
int i;
|
| 1051 |
-
int&& f();
|
| 1052 |
-
auto x3a = i; // decltype(x3a) is int
|
| 1053 |
-
decltype(auto) x3d = i; // decltype(x3d) is int
|
| 1054 |
-
auto x4a = (i); // decltype(x4a) is int
|
| 1055 |
-
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 1056 |
-
auto x5a = f(); // decltype(x5a) is int
|
| 1057 |
-
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 1058 |
-
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 1059 |
-
decltype(auto) x6d = { 1, 2 }; // error, { 1, 2 } is not an expression
|
| 1060 |
-
auto *x7a = &i; // decltype(x7a) is int*
|
| 1061 |
-
decltype(auto)*x7d = &i; // error, declared type is not plain decltype(auto)
|
| 1062 |
-
```
|
| 1063 |
-
|
| 1064 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 1065 |
they shall all form declarations of variables. The type of each declared
|
| 1066 |
-
variable is determined
|
| 1067 |
-
|
| 1068 |
-
ill-formed.
|
|
|
|
|
|
|
| 1069 |
|
| 1070 |
``` cpp
|
| 1071 |
auto x = 5, *y = &x; // OK: auto is int
|
| 1072 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 1073 |
```
|
| 1074 |
|
|
|
|
|
|
|
| 1075 |
If a function with a declared return type that contains a placeholder
|
| 1076 |
-
type has multiple `return` statements, the return type is
|
| 1077 |
-
each `return` statement. If the type deduced is not the
|
| 1078 |
-
deduction, the program is ill-formed.
|
| 1079 |
|
| 1080 |
If a function with a declared return type that uses a placeholder type
|
| 1081 |
-
has no `return` statements, the return type is deduced as
|
| 1082 |
-
`return` statement with no operand at the closing brace of
|
| 1083 |
-
body.
|
|
|
|
|
|
|
| 1084 |
|
| 1085 |
``` cpp
|
| 1086 |
auto f() { } // OK, return type is void
|
| 1087 |
auto* g() { } // error, cannot deduce auto* from void()
|
| 1088 |
```
|
| 1089 |
|
|
|
|
|
|
|
| 1090 |
If the type of an entity with an undeduced placeholder type is needed to
|
| 1091 |
determine the type of an expression, the program is ill-formed. Once a
|
| 1092 |
-
`return` statement has been seen in a function, however,
|
| 1093 |
-
deduced from that statement can be used in the rest of
|
| 1094 |
-
including in other `return` statements.
|
|
|
|
|
|
|
| 1095 |
|
| 1096 |
``` cpp
|
| 1097 |
auto n = n; // error, n's type is unknown
|
| 1098 |
auto f();
|
| 1099 |
void g() { &f; } // error, f's return type is unknown
|
|
@@ -1103,30 +1219,41 @@ auto sum(int i) {
|
|
| 1103 |
else
|
| 1104 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 1105 |
}
|
| 1106 |
```
|
| 1107 |
|
|
|
|
|
|
|
| 1108 |
Return type deduction for a function template with a placeholder in its
|
| 1109 |
declared type occurs when the definition is instantiated even if the
|
| 1110 |
function body contains a `return` statement with a non-type-dependent
|
| 1111 |
-
operand.
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1115 |
|
| 1116 |
``` cpp
|
| 1117 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 1118 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 1119 |
template<class T> auto f(T* t) { return *t; }
|
| 1120 |
void g() { int (*p)(int*) = &f; } // instantiates both fs to determine return types,
|
| 1121 |
// chooses second
|
| 1122 |
```
|
| 1123 |
|
|
|
|
|
|
|
| 1124 |
Redeclarations or specializations of a function or function template
|
| 1125 |
with a declared return type that uses a placeholder type shall also use
|
| 1126 |
that placeholder, not a deduced type.
|
| 1127 |
|
|
|
|
|
|
|
| 1128 |
``` cpp
|
| 1129 |
auto f();
|
| 1130 |
auto f() { return 42; } // return type is int
|
| 1131 |
auto f(); // OK
|
| 1132 |
int f(); // error, cannot be overloaded with auto f()
|
|
@@ -1147,20 +1274,155 @@ template <typename T> struct A {
|
|
| 1147 |
friend T frf(T);
|
| 1148 |
};
|
| 1149 |
auto frf(int i) { return i; } // not a friend of A<int>
|
| 1150 |
```
|
| 1151 |
|
|
|
|
|
|
|
| 1152 |
A function declared with a return type that uses a placeholder type
|
| 1153 |
shall not be `virtual` ([[class.virtual]]).
|
| 1154 |
|
| 1155 |
An explicit instantiation declaration ([[temp.explicit]]) does not
|
| 1156 |
cause the instantiation of an entity declared using a placeholder type,
|
| 1157 |
but it also does not prevent that entity from being instantiated as
|
| 1158 |
needed to determine its type.
|
| 1159 |
|
|
|
|
|
|
|
| 1160 |
``` cpp
|
| 1161 |
template <typename T> auto f(T t) { return t; }
|
| 1162 |
extern template auto f(int); // does not instantiate f<int>
|
| 1163 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
| 1164 |
// instantiation definition is still required somewhere in the program
|
| 1165 |
```
|
| 1166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
The specifiers that can be used in a declaration are
|
| 4 |
|
| 5 |
``` bnf
|
| 6 |
decl-specifier:
|
| 7 |
storage-class-specifier
|
| 8 |
+
defining-type-specifier
|
| 9 |
function-specifier
|
| 10 |
'friend'
|
| 11 |
'typedef'
|
| 12 |
'constexpr'
|
| 13 |
+
'inline'
|
| 14 |
```
|
| 15 |
|
| 16 |
``` bnf
|
| 17 |
decl-specifier-seq:
|
| 18 |
decl-specifier attribute-specifier-seqₒₚₜ
|
|
|
|
| 23 |
appertains to the type determined by the preceding *decl-specifier*s (
|
| 24 |
[[dcl.meaning]]). The *attribute-specifier-seq* affects the type only
|
| 25 |
for the declaration it appears in, not other declarations involving the
|
| 26 |
same type.
|
| 27 |
|
| 28 |
+
Each *decl-specifier* shall appear at most once in a complete
|
| 29 |
+
*decl-specifier-seq*, except that `long` may appear twice.
|
| 30 |
+
|
| 31 |
If a *type-name* is encountered while parsing a *decl-specifier-seq*, it
|
| 32 |
is interpreted as part of the *decl-specifier-seq* if and only if there
|
| 33 |
+
is no previous *defining-type-specifier* other than a *cv-qualifier* in
|
| 34 |
+
the *decl-specifier-seq*. The sequence shall be self-consistent as
|
| 35 |
+
described below.
|
| 36 |
+
|
| 37 |
+
[*Example 1*:
|
| 38 |
|
| 39 |
``` cpp
|
| 40 |
typedef char* Pc;
|
| 41 |
static Pc; // error: name missing
|
| 42 |
```
|
|
|
|
| 51 |
``` cpp
|
| 52 |
void f(const Pc); // void f(char* const) (not const char*)
|
| 53 |
void g(const int Pc); // void g(const int)
|
| 54 |
```
|
| 55 |
|
| 56 |
+
— *end example*]
|
| 57 |
+
|
| 58 |
+
[*Note 1*:
|
| 59 |
+
|
| 60 |
Since `signed`, `unsigned`, `long`, and `short` by default imply `int`,
|
| 61 |
a *type-name* appearing after one of those specifiers is treated as the
|
| 62 |
name being (re)declared.
|
| 63 |
|
| 64 |
+
[*Example 2*:
|
| 65 |
+
|
| 66 |
``` cpp
|
| 67 |
void h(unsigned Pc); // void h(unsigned int)
|
| 68 |
void k(unsigned int Pc); // void k(unsigned int)
|
| 69 |
```
|
| 70 |
|
| 71 |
+
— *end example*]
|
| 72 |
+
|
| 73 |
+
— *end note*]
|
| 74 |
+
|
| 75 |
### Storage class specifiers <a id="dcl.stc">[[dcl.stc]]</a>
|
| 76 |
|
| 77 |
The storage class specifiers are
|
| 78 |
|
| 79 |
``` bnf
|
| 80 |
storage-class-specifier:
|
|
|
|
| 81 |
'static'
|
| 82 |
'thread_local'
|
| 83 |
'extern'
|
| 84 |
'mutable'
|
| 85 |
```
|
|
|
|
| 88 |
*decl-specifier-seq*, except that `thread_local` may appear with
|
| 89 |
`static` or `extern`. If `thread_local` appears in any declaration of a
|
| 90 |
variable it shall be present in all declarations of that entity. If a
|
| 91 |
*storage-class-specifier* appears in a *decl-specifier-seq*, there can
|
| 92 |
be no `typedef` specifier in the same *decl-specifier-seq* and the
|
| 93 |
+
*init-declarator-list* or *member-declarator-list* of the declaration
|
| 94 |
+
shall not be empty (except for an anonymous union declared in a named
|
| 95 |
+
namespace or in the global namespace, which shall be declared `static` (
|
| 96 |
+
[[class.union.anon]])). The *storage-class-specifier* applies to the
|
| 97 |
+
name declared by each *init-declarator* in the list and not to any names
|
| 98 |
+
declared by other specifiers. A *storage-class-specifier* other than
|
| 99 |
+
`thread_local` shall not be specified in an explicit specialization (
|
| 100 |
+
[[temp.expl.spec]]) or an explicit instantiation ([[temp.explicit]])
|
| 101 |
+
directive.
|
| 102 |
|
| 103 |
+
[*Note 1*: A variable declared without a *storage-class-specifier* at
|
| 104 |
+
block scope or declared as a function parameter has automatic storage
|
| 105 |
+
duration by default ([[basic.stc.auto]]). — *end note*]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
The `thread_local` specifier indicates that the named entity has thread
|
| 108 |
storage duration ([[basic.stc.thread]]). It shall be applied only to
|
| 109 |
the names of variables of namespace or block scope and to the names of
|
| 110 |
static data members. When `thread_local` is applied to a variable of
|
| 111 |
block scope the *storage-class-specifier* `static` is implied if no
|
| 112 |
other *storage-class-specifier* appears in the *decl-specifier-seq*.
|
| 113 |
|
| 114 |
The `static` specifier can be applied only to names of variables and
|
| 115 |
+
functions and to anonymous unions ([[class.union.anon]]). There can be
|
| 116 |
+
no `static` function declarations within a block, nor any `static`
|
| 117 |
+
function parameters. A `static` specifier used in the declaration of a
|
| 118 |
+
variable declares the variable to have static storage duration (
|
| 119 |
[[basic.stc.static]]), unless accompanied by the `thread_local`
|
| 120 |
specifier, which declares the variable to have thread storage duration (
|
| 121 |
[[basic.stc.thread]]). A `static` specifier can be used in declarations
|
| 122 |
of class members; [[class.static]] describes its effect. For the
|
| 123 |
linkage of a name declared with a `static` specifier, see
|
| 124 |
[[basic.link]].
|
| 125 |
|
| 126 |
The `extern` specifier can be applied only to the names of variables and
|
| 127 |
functions. The `extern` specifier cannot be used in the declaration of
|
| 128 |
class members or function parameters. For the linkage of a name declared
|
| 129 |
+
with an `extern` specifier, see [[basic.link]].
|
| 130 |
+
|
| 131 |
+
[*Note 2*: The `extern` keyword can also be used in
|
| 132 |
+
*explicit-instantiation*s and *linkage-specification*s, but it is not a
|
| 133 |
+
*storage-class-specifier* in such contexts. — *end note*]
|
| 134 |
|
| 135 |
The linkages implied by successive declarations for a given entity shall
|
| 136 |
agree. That is, within a given scope, each declaration declaring the
|
| 137 |
same variable name or the same overloading of a function name shall
|
| 138 |
imply the same linkage. Each function in a given set of overloaded
|
| 139 |
functions can have a different linkage, however.
|
| 140 |
|
| 141 |
+
[*Example 1*:
|
| 142 |
+
|
| 143 |
``` cpp
|
| 144 |
static char* f(); // f() has internal linkage
|
| 145 |
char* f() // f() still has internal linkage
|
| 146 |
+
{ ... }
|
| 147 |
|
| 148 |
char* g(); // g() has external linkage
|
| 149 |
static char* g() // error: inconsistent linkage
|
| 150 |
+
{ ... }
|
| 151 |
|
| 152 |
void h();
|
| 153 |
inline void h(); // external linkage
|
| 154 |
|
| 155 |
inline void l();
|
|
|
|
| 172 |
|
| 173 |
extern int d; // d has external linkage
|
| 174 |
static int d; // error: inconsistent linkage
|
| 175 |
```
|
| 176 |
|
| 177 |
+
— *end example*]
|
| 178 |
+
|
| 179 |
The name of a declared but undefined class can be used in an `extern`
|
| 180 |
declaration. Such a declaration can only be used in ways that do not
|
| 181 |
require a complete class type.
|
| 182 |
|
| 183 |
+
[*Example 2*:
|
| 184 |
+
|
| 185 |
``` cpp
|
| 186 |
struct S;
|
| 187 |
extern S a;
|
| 188 |
extern S f();
|
| 189 |
extern void g(S);
|
|
|
|
| 192 |
g(a); // error: S is incomplete
|
| 193 |
f(); // error: S is incomplete
|
| 194 |
}
|
| 195 |
```
|
| 196 |
|
| 197 |
+
— *end example*]
|
| 198 |
+
|
| 199 |
+
The `mutable` specifier shall appear only in the declaration of a
|
| 200 |
+
non-static data member ([[class.mem]]) whose type is neither
|
| 201 |
+
const-qualified nor a reference type.
|
| 202 |
+
|
| 203 |
+
[*Example 3*:
|
| 204 |
|
| 205 |
``` cpp
|
| 206 |
class X {
|
| 207 |
mutable const int* p; // OK
|
| 208 |
mutable int* const q; // ill-formed
|
| 209 |
};
|
| 210 |
```
|
| 211 |
|
| 212 |
+
— *end example*]
|
| 213 |
+
|
| 214 |
The `mutable` specifier on a class data member nullifies a `const`
|
| 215 |
specifier applied to the containing class object and permits
|
| 216 |
modification of the mutable class member even though the rest of the
|
| 217 |
object is `const` ([[dcl.type.cv]]).
|
| 218 |
|
|
|
|
| 220 |
|
| 221 |
can be used only in function declarations.
|
| 222 |
|
| 223 |
``` bnf
|
| 224 |
function-specifier:
|
|
|
|
| 225 |
'virtual'
|
| 226 |
'explicit'
|
| 227 |
```
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
The `virtual` specifier shall be used only in the initial declaration of
|
| 230 |
a non-static class member function; see [[class.virtual]].
|
| 231 |
|
| 232 |
The `explicit` specifier shall be used only in the declaration of a
|
| 233 |
constructor or conversion function within its class definition; see
|
|
|
|
| 237 |
|
| 238 |
Declarations containing the *decl-specifier* `typedef` declare
|
| 239 |
identifiers that can be used later for naming fundamental (
|
| 240 |
[[basic.fundamental]]) or compound ([[basic.compound]]) types. The
|
| 241 |
`typedef` specifier shall not be combined in a *decl-specifier-seq* with
|
| 242 |
+
any other kind of specifier except a *defining-type-specifier*, and it
|
| 243 |
+
shall not be used in the *decl-specifier-seq* of a
|
| 244 |
+
*parameter-declaration* ([[dcl.fct]]) nor in the *decl-specifier-seq*
|
| 245 |
+
of a *function-definition* ([[dcl.fct.def]]). If a `typedef` specifier
|
| 246 |
+
appears in a declaration without a *declarator*, the program is
|
| 247 |
+
ill-formed.
|
| 248 |
|
| 249 |
``` bnf
|
| 250 |
typedef-name:
|
| 251 |
identifier
|
| 252 |
```
|
|
|
|
| 255 |
Within the scope of its declaration, a *typedef-name* is syntactically
|
| 256 |
equivalent to a keyword and names the type associated with the
|
| 257 |
identifier in the way described in Clause [[dcl.decl]]. A
|
| 258 |
*typedef-name* is thus a synonym for another type. A *typedef-name* does
|
| 259 |
not introduce a new type the way a class declaration ([[class.name]])
|
| 260 |
+
or enum declaration does.
|
| 261 |
+
|
| 262 |
+
[*Example 1*:
|
| 263 |
+
|
| 264 |
+
After
|
| 265 |
|
| 266 |
``` cpp
|
| 267 |
typedef int MILES, *KLICKSP;
|
| 268 |
```
|
| 269 |
|
|
|
|
| 273 |
MILES distance;
|
| 274 |
extern KLICKSP metricp;
|
| 275 |
```
|
| 276 |
|
| 277 |
are all correct declarations; the type of `distance` is `int` and that
|
| 278 |
+
of `metricp` is “pointer to `int`”.
|
| 279 |
+
|
| 280 |
+
— *end example*]
|
| 281 |
|
| 282 |
A *typedef-name* can also be introduced by an *alias-declaration*. The
|
| 283 |
*identifier* following the `using` keyword becomes a *typedef-name* and
|
| 284 |
the optional *attribute-specifier-seq* following the *identifier*
|
| 285 |
+
appertains to that *typedef-name*. Such a *typedef-name* has the same
|
| 286 |
+
semantics as if it were introduced by the `typedef` specifier. In
|
| 287 |
+
particular, it does not define a new type.
|
| 288 |
+
|
| 289 |
+
[*Example 2*:
|
| 290 |
|
| 291 |
``` cpp
|
| 292 |
using handler_t = void (*)(int);
|
| 293 |
extern handler_t ignore;
|
| 294 |
extern void (*ignore)(int); // redeclare ignore
|
| 295 |
using cell = pair<void*, cell*>; // ill-formed
|
| 296 |
```
|
| 297 |
|
| 298 |
+
— *end example*]
|
| 299 |
+
|
| 300 |
+
The *defining-type-specifier-seq* of the *defining-type-id* shall not
|
| 301 |
+
define a class or enumeration if the *alias-declaration* is the
|
| 302 |
+
*declaration* of a *template-declaration*.
|
| 303 |
+
|
| 304 |
In a given non-class scope, a `typedef` specifier can be used to
|
| 305 |
redefine the name of any type declared in that scope to refer to the
|
| 306 |
type to which it already refers.
|
| 307 |
|
| 308 |
+
[*Example 3*:
|
| 309 |
+
|
| 310 |
``` cpp
|
| 311 |
+
typedef struct s { ... } s;
|
| 312 |
typedef int I;
|
| 313 |
typedef int I;
|
| 314 |
typedef I I;
|
| 315 |
```
|
| 316 |
|
| 317 |
+
— *end example*]
|
| 318 |
+
|
| 319 |
In a given class scope, a `typedef` specifier can be used to redefine
|
| 320 |
any *class-name* declared in that scope that is not also a
|
| 321 |
*typedef-name* to refer to the type to which it already refers.
|
| 322 |
|
| 323 |
+
[*Example 4*:
|
| 324 |
+
|
| 325 |
``` cpp
|
| 326 |
struct S {
|
| 327 |
typedef struct A { } A; // OK
|
| 328 |
typedef struct B B; // OK
|
| 329 |
typedef A A; // error
|
| 330 |
};
|
| 331 |
```
|
| 332 |
|
| 333 |
+
— *end example*]
|
| 334 |
+
|
| 335 |
If a `typedef` specifier is used to redefine in a given scope an entity
|
| 336 |
that can be referenced using an *elaborated-type-specifier*, the entity
|
| 337 |
can continue to be referenced by an *elaborated-type-specifier* or as an
|
| 338 |
enumeration or class name in an enumeration or class definition
|
| 339 |
respectively.
|
| 340 |
|
| 341 |
+
[*Example 5*:
|
| 342 |
+
|
| 343 |
``` cpp
|
| 344 |
struct S;
|
| 345 |
typedef struct S S;
|
| 346 |
int main() {
|
| 347 |
struct S* p; // OK
|
| 348 |
}
|
| 349 |
struct S { }; // OK
|
| 350 |
```
|
| 351 |
|
| 352 |
+
— *end example*]
|
| 353 |
+
|
| 354 |
In a given scope, a `typedef` specifier shall not be used to redefine
|
| 355 |
the name of any type declared in that scope to refer to a different
|
| 356 |
type.
|
| 357 |
|
| 358 |
+
[*Example 6*:
|
| 359 |
+
|
| 360 |
``` cpp
|
| 361 |
+
class complex { ... };
|
| 362 |
typedef int complex; // error: redefinition
|
| 363 |
```
|
| 364 |
|
| 365 |
+
— *end example*]
|
| 366 |
+
|
| 367 |
Similarly, in a given scope, a class or enumeration shall not be
|
| 368 |
declared with the same name as a *typedef-name* that is declared in that
|
| 369 |
scope and refers to a type other than the class or enumeration itself.
|
| 370 |
|
| 371 |
+
[*Example 7*:
|
| 372 |
+
|
| 373 |
``` cpp
|
| 374 |
typedef int complex;
|
| 375 |
+
class complex { ... }; // error: redefinition
|
| 376 |
```
|
| 377 |
|
| 378 |
+
— *end example*]
|
| 379 |
+
|
| 380 |
+
[*Note 1*: A *typedef-name* that names a class type, or a cv-qualified
|
| 381 |
+
version thereof, is also a *class-name* ([[class.name]]). If a
|
| 382 |
+
*typedef-name* is used to identify the subject of an
|
| 383 |
+
*elaborated-type-specifier* ([[dcl.type.elab]]), a class definition
|
| 384 |
+
(Clause [[class]]), a constructor declaration ([[class.ctor]]), or a
|
| 385 |
+
destructor declaration ([[class.dtor]]), the program is
|
| 386 |
+
ill-formed. — *end note*]
|
| 387 |
+
|
| 388 |
+
[*Example 8*:
|
| 389 |
|
| 390 |
``` cpp
|
| 391 |
struct S {
|
| 392 |
S();
|
| 393 |
~S();
|
|
|
|
| 397 |
|
| 398 |
S a = T(); // OK
|
| 399 |
struct T * p; // error
|
| 400 |
```
|
| 401 |
|
| 402 |
+
— *end example*]
|
| 403 |
+
|
| 404 |
If the typedef declaration defines an unnamed class (or enum), the first
|
| 405 |
*typedef-name* declared by the declaration to be that class type (or
|
| 406 |
enum type) is used to denote the class type (or enum type) for linkage
|
| 407 |
purposes only ([[basic.link]]).
|
| 408 |
|
| 409 |
+
[*Example 9*:
|
| 410 |
+
|
| 411 |
``` cpp
|
| 412 |
typedef struct { } *ps, S; // S is the class name for linkage purposes
|
| 413 |
```
|
| 414 |
|
| 415 |
+
— *end example*]
|
| 416 |
+
|
| 417 |
### The `friend` specifier <a id="dcl.friend">[[dcl.friend]]</a>
|
| 418 |
|
| 419 |
The `friend` specifier is used to specify access to class members; see
|
| 420 |
[[class.friend]].
|
| 421 |
|
| 422 |
### The `constexpr` specifier <a id="dcl.constexpr">[[dcl.constexpr]]</a>
|
| 423 |
|
| 424 |
The `constexpr` specifier shall be applied only to the definition of a
|
| 425 |
+
variable or variable template or the declaration of a function or
|
| 426 |
+
function template. A function or static data member declared with the
|
| 427 |
+
`constexpr` specifier is implicitly an inline function or variable (
|
| 428 |
+
[[dcl.inline]]). If any declaration of a function or function template
|
| 429 |
+
has a `constexpr` specifier, then all its declarations shall contain the
|
| 430 |
+
`constexpr` specifier.
|
| 431 |
+
|
| 432 |
+
[*Note 1*: An explicit specialization can differ from the template
|
| 433 |
+
declaration with respect to the `constexpr` specifier. — *end note*]
|
| 434 |
+
|
| 435 |
+
[*Note 2*: Function parameters cannot be declared
|
| 436 |
+
`constexpr`. — *end note*]
|
| 437 |
+
|
| 438 |
+
[*Example 1*:
|
| 439 |
|
| 440 |
``` cpp
|
| 441 |
constexpr void square(int &x); // OK: declaration
|
| 442 |
constexpr int bufsz = 1024; // OK: definition
|
| 443 |
constexpr struct pixel { // error: pixel is a type
|
|
|
|
| 459 |
return x + 1;
|
| 460 |
}
|
| 461 |
extern constexpr int memsz; // error: not a definition
|
| 462 |
```
|
| 463 |
|
| 464 |
+
— *end example*]
|
| 465 |
+
|
| 466 |
A `constexpr` specifier used in the declaration of a function that is
|
| 467 |
not a constructor declares that function to be a *constexpr function*.
|
| 468 |
Similarly, a `constexpr` specifier used in a constructor declaration
|
| 469 |
+
declares that constructor to be a *constexpr constructor*.
|
|
|
|
|
|
|
| 470 |
|
| 471 |
+
The definition of a constexpr function shall satisfy the following
|
| 472 |
+
requirements:
|
| 473 |
|
| 474 |
- it shall not be virtual ([[class.virtual]]);
|
| 475 |
- its return type shall be a literal type;
|
| 476 |
- each of its parameter types shall be a literal type;
|
| 477 |
- its *function-body* shall be `= delete`, `= default`, or a
|
| 478 |
*compound-statement* that does not contain
|
| 479 |
- an *asm-definition*,
|
| 480 |
- a `goto` statement,
|
| 481 |
+
- an identifier label ([[stmt.label]]),
|
| 482 |
- a *try-block*, or
|
| 483 |
- a definition of a variable of non-literal type or of static or
|
| 484 |
thread storage duration or for which no initialization is performed.
|
| 485 |
|
| 486 |
+
[*Example 2*:
|
| 487 |
+
|
| 488 |
``` cpp
|
| 489 |
constexpr int square(int x)
|
| 490 |
{ return x * x; } // OK
|
| 491 |
constexpr long long_max()
|
| 492 |
{ return 2147483647; } // OK
|
|
|
|
| 510 |
while (--n > 0) r *= x;
|
| 511 |
return r;
|
| 512 |
}
|
| 513 |
```
|
| 514 |
|
| 515 |
+
— *end example*]
|
| 516 |
+
|
| 517 |
+
The definition of a constexpr constructor shall satisfy the following
|
| 518 |
+
requirements:
|
| 519 |
|
| 520 |
- the class shall not have any virtual base classes;
|
| 521 |
- each of the parameter types shall be a literal type;
|
| 522 |
+
- its *function-body* shall not be a *function-try-block*.
|
| 523 |
|
| 524 |
In addition, either its *function-body* shall be `= delete`, or it shall
|
| 525 |
+
satisfy the following requirements:
|
| 526 |
|
| 527 |
- either its *function-body* shall be `= default`, or the
|
| 528 |
*compound-statement* of its *function-body* shall satisfy the
|
| 529 |
+
requirements for a *function-body* of a constexpr function;
|
| 530 |
+
- every non-variant non-static data member and base class subobject
|
| 531 |
shall be initialized ([[class.base.init]]);
|
| 532 |
- if the class is a union having variant members ([[class.union]]),
|
| 533 |
exactly one of them shall be initialized;
|
| 534 |
- if the class is a union-like class, but is not a union, for each of
|
| 535 |
its anonymous union members having variant members, exactly one of
|
| 536 |
them shall be initialized;
|
| 537 |
- for a non-delegating constructor, every constructor selected to
|
| 538 |
+
initialize non-static data members and base class subobjects shall be
|
| 539 |
+
a constexpr constructor;
|
| 540 |
- for a delegating constructor, the target constructor shall be a
|
| 541 |
+
constexpr constructor.
|
| 542 |
+
|
| 543 |
+
[*Example 3*:
|
| 544 |
|
| 545 |
``` cpp
|
| 546 |
struct Length {
|
| 547 |
constexpr explicit Length(int i = 0) : val(i) { }
|
| 548 |
private:
|
| 549 |
int val;
|
| 550 |
};
|
| 551 |
```
|
| 552 |
|
| 553 |
+
— *end example*]
|
| 554 |
+
|
| 555 |
+
For a constexpr function or constexpr constructor that is neither
|
| 556 |
+
defaulted nor a template, if no argument values exist such that an
|
| 557 |
+
invocation of the function or constructor could be an evaluated
|
| 558 |
+
subexpression of a core constant expression ([[expr.const]]), or, for a
|
| 559 |
+
constructor, a constant initializer for some object (
|
| 560 |
+
[[basic.start.static]]), the program is ill-formed, no diagnostic
|
| 561 |
required.
|
| 562 |
|
| 563 |
+
[*Example 4*:
|
| 564 |
+
|
| 565 |
``` cpp
|
| 566 |
constexpr int f(bool b)
|
| 567 |
{ return b ? throw 0 : 0; } // OK
|
| 568 |
constexpr int f() { return f(true); } // ill-formed, no diagnostic required
|
| 569 |
|
|
|
|
| 578 |
constexpr D() : B(global) { } // ill-formed, no diagnostic required
|
| 579 |
// lvalue-to-rvalue conversion on non-constant global
|
| 580 |
};
|
| 581 |
```
|
| 582 |
|
| 583 |
+
— *end example*]
|
| 584 |
+
|
| 585 |
+
If the instantiated template specialization of a constexpr function
|
| 586 |
template or member function of a class template would fail to satisfy
|
| 587 |
+
the requirements for a constexpr function or constexpr constructor, that
|
| 588 |
+
specialization is still a constexpr function or constexpr constructor,
|
| 589 |
+
even though a call to such a function cannot appear in a constant
|
| 590 |
+
expression. If no specialization of the template would satisfy the
|
| 591 |
+
requirements for a constexpr function or constexpr constructor when
|
| 592 |
+
considered as a non-template function or constructor, the template is
|
| 593 |
+
ill-formed, no diagnostic required.
|
| 594 |
+
|
| 595 |
+
A call to a constexpr function produces the same result as a call to an
|
| 596 |
+
equivalent non-constexpr function in all respects except that
|
| 597 |
+
|
| 598 |
+
- a call to a constexpr function can appear in a constant expression (
|
| 599 |
+
[[expr.const]]) and
|
| 600 |
+
- copy elision is mandatory in a constant expression ([[class.copy]]).
|
| 601 |
+
|
| 602 |
+
The `constexpr` specifier has no effect on the type of a constexpr
|
| 603 |
+
function or a constexpr constructor.
|
| 604 |
+
|
| 605 |
+
[*Example 5*:
|
| 606 |
|
| 607 |
``` cpp
|
| 608 |
constexpr int bar(int x, int y) // OK
|
| 609 |
{ return x + y + x*y; }
|
| 610 |
// ...
|
| 611 |
int bar(int x, int y) // error: redefinition of bar
|
| 612 |
{ return x * 2 + 3 * y; }
|
| 613 |
```
|
| 614 |
|
| 615 |
+
— *end example*]
|
| 616 |
+
|
| 617 |
A `constexpr` specifier used in an object declaration declares the
|
| 618 |
object as `const`. Such an object shall have literal type and shall be
|
| 619 |
+
initialized. In any `constexpr` variable declaration, the
|
| 620 |
+
full-expression of the initialization shall be a constant expression (
|
| 621 |
+
[[expr.const]]).
|
| 622 |
+
|
| 623 |
+
[*Example 6*:
|
|
|
|
|
|
|
| 624 |
|
| 625 |
``` cpp
|
| 626 |
struct pixel {
|
| 627 |
int x, y;
|
| 628 |
};
|
| 629 |
constexpr pixel ur = { 1294, 1024 }; // OK
|
| 630 |
constexpr pixel origin; // error: initializer missing
|
| 631 |
```
|
| 632 |
|
| 633 |
+
— *end example*]
|
| 634 |
+
|
| 635 |
+
### The `inline` specifier <a id="dcl.inline">[[dcl.inline]]</a>
|
| 636 |
+
|
| 637 |
+
The `inline` specifier can be applied only to the declaration or
|
| 638 |
+
definition of a variable or function.
|
| 639 |
+
|
| 640 |
+
A function declaration ([[dcl.fct]], [[class.mfct]], [[class.friend]])
|
| 641 |
+
with an `inline` specifier declares an *inline function*. The inline
|
| 642 |
+
specifier indicates to the implementation that inline substitution of
|
| 643 |
+
the function body at the point of call is to be preferred to the usual
|
| 644 |
+
function call mechanism. An implementation is not required to perform
|
| 645 |
+
this inline substitution at the point of call; however, even if this
|
| 646 |
+
inline substitution is omitted, the other rules for inline functions
|
| 647 |
+
specified in this section shall still be respected.
|
| 648 |
+
|
| 649 |
+
A variable declaration with an `inline` specifier declares an *inline
|
| 650 |
+
variable*.
|
| 651 |
+
|
| 652 |
+
A function defined within a class definition is an inline function.
|
| 653 |
+
|
| 654 |
+
The `inline` specifier shall not appear on a block scope
|
| 655 |
+
declaration.[^2] If the `inline` specifier is used in a friend function
|
| 656 |
+
declaration, that declaration shall be a definition or the function
|
| 657 |
+
shall have previously been declared inline.
|
| 658 |
+
|
| 659 |
+
An inline function or variable shall be defined in every translation
|
| 660 |
+
unit in which it is odr-used and shall have exactly the same definition
|
| 661 |
+
in every case ([[basic.def.odr]]).
|
| 662 |
+
|
| 663 |
+
[*Note 1*: A call to the inline function or a use of the inline
|
| 664 |
+
variable may be encountered before its definition appears in the
|
| 665 |
+
translation unit. — *end note*]
|
| 666 |
+
|
| 667 |
+
If the definition of a function or variable appears in a translation
|
| 668 |
+
unit before its first declaration as inline, the program is ill-formed.
|
| 669 |
+
If a function or variable with external linkage is declared inline in
|
| 670 |
+
one translation unit, it shall be declared inline in all translation
|
| 671 |
+
units in which it appears; no diagnostic is required. An inline function
|
| 672 |
+
or variable with external linkage shall have the same address in all
|
| 673 |
+
translation units.
|
| 674 |
+
|
| 675 |
+
[*Note 2*: A `static` local variable in an inline function with
|
| 676 |
+
external linkage always refers to the same object. A type defined within
|
| 677 |
+
the body of an inline function with external linkage is the same type in
|
| 678 |
+
every translation unit. — *end note*]
|
| 679 |
+
|
| 680 |
### Type specifiers <a id="dcl.type">[[dcl.type]]</a>
|
| 681 |
|
| 682 |
The type-specifiers are
|
| 683 |
|
| 684 |
``` bnf
|
| 685 |
type-specifier:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
simple-type-specifier
|
| 687 |
elaborated-type-specifier
|
| 688 |
typename-specifier
|
| 689 |
cv-qualifier
|
| 690 |
```
|
|
|
|
| 694 |
type-specifier attribute-specifier-seqₒₚₜ
|
| 695 |
type-specifier type-specifier-seq
|
| 696 |
```
|
| 697 |
|
| 698 |
``` bnf
|
| 699 |
+
defining-type-specifier:
|
| 700 |
+
type-specifier
|
| 701 |
+
class-specifier
|
| 702 |
+
enum-specifier
|
| 703 |
+
```
|
| 704 |
+
|
| 705 |
+
``` bnf
|
| 706 |
+
defining-type-specifier-seq:
|
| 707 |
+
defining-type-specifier attribute-specifier-seqₒₚₜ
|
| 708 |
+
defining-type-specifier defining-type-specifier-seq
|
| 709 |
```
|
| 710 |
|
| 711 |
The optional *attribute-specifier-seq* in a *type-specifier-seq* or a
|
| 712 |
+
*defining-type-specifier-seq* appertains to the type denoted by the
|
| 713 |
+
preceding *type-specifier*s or *defining-type-specifier*s (
|
| 714 |
+
[[dcl.meaning]]). The *attribute-specifier-seq* affects the type only
|
| 715 |
+
for the declaration it appears in, not other declarations involving the
|
| 716 |
+
same type.
|
| 717 |
|
| 718 |
+
As a general rule, at most one *defining-type-specifier* is allowed in
|
| 719 |
+
the complete *decl-specifier-seq* of a *declaration* or in a
|
| 720 |
+
*defining-type-specifier-seq*, and at most one *type-specifier* is
|
| 721 |
+
allowed in a *type-specifier-seq*. The only exceptions to this rule are
|
| 722 |
+
the following:
|
| 723 |
|
| 724 |
- `const` can be combined with any type specifier except itself.
|
| 725 |
- `volatile` can be combined with any type specifier except itself.
|
| 726 |
- `signed` or `unsigned` can be combined with `char`, `long`, `short`,
|
| 727 |
or `int`.
|
| 728 |
- `short` or `long` can be combined with `int`.
|
| 729 |
- `long` can be combined with `double`.
|
| 730 |
- `long` can be combined with `long`.
|
| 731 |
|
| 732 |
Except in a declaration of a constructor, destructor, or conversion
|
| 733 |
+
function, at least one *defining-type-specifier* that is not a
|
| 734 |
+
*cv-qualifier* shall appear in a complete *type-specifier-seq* or a
|
| 735 |
+
complete *decl-specifier-seq*.[^3]
|
|
|
|
|
|
|
|
|
|
| 736 |
|
| 737 |
+
[*Note 1*: *enum-specifier*s, *class-specifier*s, and
|
| 738 |
+
*typename-specifier*s are discussed in [[dcl.enum]], Clause [[class]],
|
| 739 |
+
and [[temp.res]], respectively. The remaining *type-specifier*s are
|
| 740 |
+
discussed in the rest of this section. — *end note*]
|
| 741 |
|
| 742 |
+
#### The *cv-qualifier*s <a id="dcl.type.cv">[[dcl.type.cv]]</a>
|
| 743 |
|
| 744 |
+
There are two *cv-qualifier*s, `const` and `volatile`. Each
|
| 745 |
*cv-qualifier* shall appear at most once in a *cv-qualifier-seq*. If a
|
| 746 |
*cv-qualifier* appears in a *decl-specifier-seq*, the
|
| 747 |
+
*init-declarator-list* or *member-declarator-list* of the declaration
|
| 748 |
+
shall not be empty.
|
| 749 |
+
|
| 750 |
+
[*Note 1*: [[basic.type.qualifier]] and [[dcl.fct]] describe how
|
| 751 |
+
cv-qualifiers affect object and function types. — *end note*]
|
| 752 |
+
|
| 753 |
+
Redundant cv-qualifications are ignored.
|
| 754 |
+
|
| 755 |
+
[*Note 2*: For example, these could be introduced by
|
| 756 |
+
typedefs. — *end note*]
|
| 757 |
+
|
| 758 |
+
[*Note 3*: Declaring a variable `const` can affect its linkage (
|
| 759 |
+
[[dcl.stc]]) and its usability in constant expressions (
|
| 760 |
+
[[expr.const]]). As described in [[dcl.init]], the definition of an
|
| 761 |
+
object or subobject of const-qualified type must specify an initializer
|
| 762 |
+
or be subject to default-initialization. — *end note*]
|
| 763 |
|
| 764 |
A pointer or reference to a cv-qualified type need not actually point or
|
| 765 |
refer to a cv-qualified object, but it is treated as if it does; a
|
| 766 |
const-qualified access path cannot be used to modify an object even if
|
| 767 |
the object referenced is a non-const object and can be modified through
|
| 768 |
+
some other access path.
|
| 769 |
+
|
| 770 |
+
[*Note 4*: Cv-qualifiers are supported by the type system so that they
|
| 771 |
+
cannot be subverted without casting (
|
| 772 |
+
[[expr.const.cast]]). — *end note*]
|
| 773 |
|
| 774 |
Except that any class member declared `mutable` ([[dcl.stc]]) can be
|
| 775 |
modified, any attempt to modify a `const` object during its lifetime (
|
| 776 |
[[basic.life]]) results in undefined behavior.
|
| 777 |
|
| 778 |
+
[*Example 1*:
|
| 779 |
+
|
| 780 |
``` cpp
|
| 781 |
const int ci = 3; // cv-qualified (initialized as required)
|
| 782 |
ci = 4; // ill-formed: attempt to modify const
|
| 783 |
|
| 784 |
int i = 2; // not cv-qualified
|
|
|
|
| 793 |
const int* ciq = new const int (3); // initialized as required
|
| 794 |
int* iq = const_cast<int*>(ciq); // cast required
|
| 795 |
*iq = 4; // undefined: modifies a const object
|
| 796 |
```
|
| 797 |
|
| 798 |
+
For another example,
|
| 799 |
|
| 800 |
``` cpp
|
| 801 |
struct X {
|
| 802 |
mutable int i;
|
| 803 |
int j;
|
|
|
|
| 813 |
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
|
| 814 |
p->x.i = 99; // well-formed: mutable member can be modified
|
| 815 |
p->x.j = 99; // undefined: modifies a const member
|
| 816 |
```
|
| 817 |
|
| 818 |
+
— *end example*]
|
|
|
|
|
|
|
|
|
|
| 819 |
|
| 820 |
+
The semantics of an access through a volatile glvalue are
|
| 821 |
+
*implementation-defined*. If an attempt is made to access an object
|
| 822 |
+
defined with a volatile-qualified type through the use of a non-volatile
|
| 823 |
+
glvalue, the behavior is undefined.
|
| 824 |
+
|
| 825 |
+
[*Note 5*: `volatile` is a hint to the implementation to avoid
|
| 826 |
+
aggressive optimization involving the object because the value of the
|
| 827 |
+
object might be changed by means undetectable by an implementation.
|
| 828 |
+
Furthermore, for some implementations, `volatile` might indicate that
|
| 829 |
+
special hardware instructions are required to access the object. See
|
| 830 |
+
[[intro.execution]] for detailed semantics. In general, the semantics of
|
| 831 |
+
`volatile` are intended to be the same in C++as they are in
|
| 832 |
+
C. — *end note*]
|
| 833 |
|
| 834 |
#### Simple type specifiers <a id="dcl.type.simple">[[dcl.type.simple]]</a>
|
| 835 |
|
| 836 |
The simple type specifiers are
|
| 837 |
|
| 838 |
``` bnf
|
| 839 |
simple-type-specifier:
|
| 840 |
nested-name-specifierₒₚₜ type-name
|
| 841 |
nested-name-specifier 'template' simple-template-id
|
| 842 |
+
nested-name-specifierₒₚₜ template-name
|
| 843 |
'char'
|
| 844 |
'char16_t'
|
| 845 |
'char32_t'
|
| 846 |
'wchar_t'
|
| 847 |
'bool'
|
|
|
|
| 869 |
decltype-specifier:
|
| 870 |
'decltype' '(' expression ')'
|
| 871 |
'decltype' '(' 'auto' ')'
|
| 872 |
```
|
| 873 |
|
| 874 |
+
The *simple-type-specifier* `auto` is a placeholder for a type to be
|
| 875 |
+
deduced ([[dcl.spec.auto]]). A *type-specifier* of the form
|
| 876 |
+
`typename`ₒₚₜ *nested-name-specifier*ₒₚₜ *template-name* is a
|
| 877 |
+
placeholder for a deduced class type ([[dcl.type.class.deduct]]). The
|
| 878 |
+
*template-name* shall name a class template that is not an
|
| 879 |
+
injected-class-name. The other *simple-type-specifier*s specify either a
|
| 880 |
previously-declared type, a type determined from an expression, or one
|
| 881 |
of the fundamental types ([[basic.fundamental]]). Table
|
| 882 |
[[tab:simple.type.specifiers]] summarizes the valid combinations of
|
| 883 |
*simple-type-specifier*s and the types they specify.
|
| 884 |
|
| 885 |
**Table: *simple-type-specifier*{s} and the types they specify** <a id="tab:simple.type.specifiers">[tab:simple.type.specifiers]</a>
|
| 886 |
|
| 887 |
+
| Specifier(s) | Type |
|
| 888 |
| ---------------------- | -------------------------------------- |
|
| 889 |
| *type-name* | the type named |
|
| 890 |
| *simple-template-id* | the type as defined in~ [[temp.names]] |
|
| 891 |
+
| *template-name* | placeholder for a type to be deduced |
|
| 892 |
| char | ``char'' |
|
| 893 |
| unsigned char | ``unsigned char'' |
|
| 894 |
| signed char | ``signed char'' |
|
| 895 |
| char16_t | ``char16_t'' |
|
| 896 |
| char32_t | ``char32_t'' |
|
|
|
|
| 922 |
| float | ``float'' |
|
| 923 |
| double | ``double'' |
|
| 924 |
| long double | ``long double'' |
|
| 925 |
| void | ``void'' |
|
| 926 |
| auto | placeholder for a type to be deduced |
|
| 927 |
+
| decltype(auto) | placeholder for a type to be deduced |
|
| 928 |
| decltype(*expression*) | the type as defined below |
|
| 929 |
|
| 930 |
|
| 931 |
+
When multiple *simple-type-specifier*s are allowed, they can be freely
|
| 932 |
+
intermixed with other *decl-specifier*s in any order.
|
| 933 |
+
|
| 934 |
+
[*Note 1*: It is *implementation-defined* whether objects of `char`
|
| 935 |
+
type are represented as signed or unsigned quantities. The `signed`
|
| 936 |
+
specifier forces `char` objects to be signed; it is redundant in other
|
| 937 |
+
contexts. — *end note*]
|
| 938 |
|
| 939 |
For an expression `e`, the type denoted by `decltype(e)` is defined as
|
| 940 |
follows:
|
| 941 |
|
| 942 |
+
- if `e` is an unparenthesized *id-expression* naming a structured
|
| 943 |
+
binding ([[dcl.struct.bind]]), `decltype(e)` is the referenced type
|
| 944 |
+
as given in the specification of the structured binding declaration;
|
| 945 |
+
- otherwise, if `e` is an unparenthesized *id-expression* or an
|
| 946 |
+
unparenthesized class member access ([[expr.ref]]), `decltype(e)` is
|
| 947 |
+
the type of the entity named by `e`. If there is no such entity, or if
|
| 948 |
+
`e` names a set of overloaded functions, the program is ill-formed;
|
| 949 |
- otherwise, if `e` is an xvalue, `decltype(e)` is `T&&`, where `T` is
|
| 950 |
the type of `e`;
|
| 951 |
- otherwise, if `e` is an lvalue, `decltype(e)` is `T&`, where `T` is
|
| 952 |
the type of `e`;
|
| 953 |
- otherwise, `decltype(e)` is the type of `e`.
|
| 954 |
|
| 955 |
The operand of the `decltype` specifier is an unevaluated operand
|
| 956 |
(Clause [[expr]]).
|
| 957 |
|
| 958 |
+
[*Example 1*:
|
| 959 |
+
|
| 960 |
``` cpp
|
| 961 |
const int&& foo();
|
| 962 |
int i;
|
| 963 |
struct A { double x; };
|
| 964 |
const A* a = new A();
|
| 965 |
+
decltype(foo()) x1 = 17; // type is const int&&
|
| 966 |
decltype(i) x2; // type is int
|
| 967 |
decltype(a->x) x3; // type is double
|
| 968 |
decltype((a->x)) x4 = x3; // type is const double&
|
| 969 |
```
|
| 970 |
|
| 971 |
+
— *end example*]
|
| 972 |
+
|
| 973 |
+
[*Note 2*: The rules for determining types involving `decltype(auto)`
|
| 974 |
+
are specified in [[dcl.spec.auto]]. — *end note*]
|
| 975 |
+
|
| 976 |
+
If the operand of a *decltype-specifier* is a prvalue, the temporary
|
| 977 |
+
materialization conversion is not applied ([[conv.rval]]) and no result
|
| 978 |
+
object is provided for the prvalue. The type of the prvalue may be
|
| 979 |
+
incomplete.
|
| 980 |
+
|
| 981 |
+
[*Note 3*: As a result, storage is not allocated for the prvalue and it
|
| 982 |
+
is not destroyed. Thus, a class type is not instantiated as a result of
|
| 983 |
+
being the type of a function call in this context. In this context, the
|
| 984 |
+
common purpose of writing the expression is merely to refer to its type.
|
| 985 |
+
In that sense, a *decltype-specifier* is analogous to a use of a
|
| 986 |
+
*typedef-name*, so the usual reasons for requiring a complete type do
|
| 987 |
+
not apply. In particular, it is not necessary to allocate storage for a
|
| 988 |
+
temporary object or to enforce the semantic constraints associated with
|
| 989 |
+
invoking the type’s destructor. — *end note*]
|
| 990 |
+
|
| 991 |
+
[*Note 4*: Unlike the preceding rule, parentheses have no special
|
| 992 |
+
meaning in this context. — *end note*]
|
| 993 |
+
|
| 994 |
+
[*Example 2*:
|
| 995 |
|
| 996 |
``` cpp
|
| 997 |
template<class T> struct A { ~A() = delete; };
|
| 998 |
template<class T> auto h()
|
| 999 |
-> A<T>;
|
| 1000 |
template<class T> auto i(T) // identity
|
| 1001 |
-> T;
|
| 1002 |
template<class T> auto f(T) // #1
|
| 1003 |
+
-> decltype(i(h<T>())); // forces completion of A<T> and implicitly uses A<T>::~A()
|
| 1004 |
+
// for the temporary introduced by the use of h().
|
| 1005 |
+
// (A temporary is not introduced as a result of the use of i().)
|
|
|
|
| 1006 |
template<class T> auto f(T) // #2
|
| 1007 |
-> void;
|
| 1008 |
auto g() -> void {
|
| 1009 |
+
f(42); // OK: calls #2. (#1 is not a viable candidate: type deduction
|
| 1010 |
+
// fails~([temp.deduct]) because A<int>::~{A()} is implicitly used in its
|
| 1011 |
+
// decltype-specifier)
|
| 1012 |
}
|
| 1013 |
template<class T> auto q(T)
|
| 1014 |
+
-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is not implicitly
|
| 1015 |
+
// used within the context of this decltype-specifier
|
| 1016 |
void r() {
|
| 1017 |
+
q(42); // Error: deduction against q succeeds, so overload resolution selects
|
| 1018 |
+
// the specialization ``q(T) -> decltype((h<T>())) [with T=int]''.
|
| 1019 |
// The return type is A<int>, so a temporary is introduced and its
|
| 1020 |
// destructor is used, so the program is ill-formed.
|
| 1021 |
}
|
| 1022 |
```
|
| 1023 |
|
| 1024 |
+
— *end example*]
|
| 1025 |
+
|
| 1026 |
#### Elaborated type specifiers <a id="dcl.type.elab">[[dcl.type.elab]]</a>
|
| 1027 |
|
| 1028 |
``` bnf
|
| 1029 |
elaborated-type-specifier:
|
| 1030 |
class-key attribute-specifier-seqₒₚₜ nested-name-specifierₒₚₜ identifier
|
|
|
|
| 1058 |
resolves to a *class-name* or *enum-name*, the
|
| 1059 |
*elaborated-type-specifier* introduces it into the declaration the same
|
| 1060 |
way a *simple-type-specifier* introduces its *type-name*. If the
|
| 1061 |
*identifier* resolves to a *typedef-name* or the *simple-template-id*
|
| 1062 |
resolves to an alias template specialization, the
|
| 1063 |
+
*elaborated-type-specifier* is ill-formed.
|
| 1064 |
+
|
| 1065 |
+
[*Note 1*:
|
| 1066 |
+
|
| 1067 |
+
This implies that, within a class template with a template
|
| 1068 |
+
*type-parameter* `T`, the declaration
|
| 1069 |
|
| 1070 |
``` cpp
|
| 1071 |
friend class T;
|
| 1072 |
```
|
| 1073 |
|
| 1074 |
is ill-formed. However, the similar declaration `friend T;` is allowed (
|
| 1075 |
[[class.friend]]).
|
| 1076 |
|
| 1077 |
+
— *end note*]
|
| 1078 |
+
|
| 1079 |
The *class-key* or `enum` keyword present in the
|
| 1080 |
*elaborated-type-specifier* shall agree in kind with the declaration to
|
| 1081 |
which the name in the *elaborated-type-specifier* refers. This rule also
|
| 1082 |
applies to the form of *elaborated-type-specifier* that declares a
|
| 1083 |
*class-name* or `friend` class since it can be construed as referring to
|
|
|
|
| 1086 |
[[dcl.enum]]), the `union` *class-key* shall be used to refer to a union
|
| 1087 |
(Clause [[class]]), and either the `class` or `struct` *class-key*
|
| 1088 |
shall be used to refer to a class (Clause [[class]]) declared using the
|
| 1089 |
`class` or `struct` *class-key*.
|
| 1090 |
|
| 1091 |
+
[*Example 1*:
|
| 1092 |
+
|
| 1093 |
``` cpp
|
| 1094 |
enum class E { a, b };
|
| 1095 |
enum E x = E::a; // OK
|
| 1096 |
```
|
| 1097 |
|
| 1098 |
+
— *end example*]
|
| 1099 |
|
| 1100 |
+
#### The `auto` specifier <a id="dcl.spec.auto">[[dcl.spec.auto]]</a>
|
| 1101 |
+
|
| 1102 |
+
The `auto` and `decltype(auto)` *type-specifier*s are used to designate
|
| 1103 |
+
a placeholder type that will be replaced later by deduction from an
|
| 1104 |
+
initializer. The `auto` *type-specifier* is also used to introduce a
|
| 1105 |
+
function type having a *trailing-return-type* or to signify that a
|
| 1106 |
+
lambda is a generic lambda ([[expr.prim.lambda.closure]]). The `auto`
|
| 1107 |
+
*type-specifier* is also used to introduce a structured binding
|
| 1108 |
+
declaration ([[dcl.struct.bind]]).
|
| 1109 |
|
| 1110 |
The placeholder type can appear with a function declarator in the
|
| 1111 |
*decl-specifier-seq*, *type-specifier-seq*, *conversion-function-id*, or
|
| 1112 |
*trailing-return-type*, in any context where such a declarator is valid.
|
| 1113 |
If the function declarator includes a *trailing-return-type* (
|
| 1114 |
+
[[dcl.fct]]), that *trailing-return-type* specifies the declared return
|
| 1115 |
+
type of the function. Otherwise, the function declarator shall declare a
|
| 1116 |
+
function. If the declared return type of the function contains a
|
| 1117 |
+
placeholder type, the return type of the function is deduced from
|
| 1118 |
+
non-discarded `return` statements, if any, in the body of the function (
|
| 1119 |
+
[[stmt.if]]).
|
| 1120 |
|
| 1121 |
If the `auto` *type-specifier* appears as one of the *decl-specifier*s
|
| 1122 |
in the *decl-specifier-seq* of a *parameter-declaration* of a
|
| 1123 |
*lambda-expression*, the lambda is a *generic lambda* (
|
| 1124 |
+
[[expr.prim.lambda.closure]]).
|
| 1125 |
+
|
| 1126 |
+
[*Example 1*:
|
| 1127 |
|
| 1128 |
``` cpp
|
| 1129 |
auto glambda = [](int i, auto a) { return i; }; // OK: a generic lambda
|
| 1130 |
```
|
| 1131 |
|
| 1132 |
+
— *end example*]
|
| 1133 |
+
|
| 1134 |
The type of a variable declared using `auto` or `decltype(auto)` is
|
| 1135 |
+
deduced from its initializer. This use is allowed in an initializing
|
| 1136 |
+
declaration ([[dcl.init]]) of a variable. `auto` or `decltype(auto)`
|
| 1137 |
+
shall appear as one of the *decl-specifier*s in the *decl-specifier-seq*
|
| 1138 |
+
and the *decl-specifier-seq* shall be followed by one or more
|
| 1139 |
+
*declarator*s, each of which shall be followed by a non-empty
|
|
|
|
| 1140 |
*initializer*. In an *initializer* of the form
|
| 1141 |
|
| 1142 |
``` cpp
|
| 1143 |
( expression-list )
|
| 1144 |
```
|
| 1145 |
|
| 1146 |
the *expression-list* shall be a single *assignment-expression*.
|
| 1147 |
|
| 1148 |
+
[*Example 2*:
|
| 1149 |
+
|
| 1150 |
``` cpp
|
| 1151 |
auto x = 5; // OK: x has type int
|
| 1152 |
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
|
| 1153 |
static auto y = 0.0; // OK: y has type double
|
| 1154 |
auto int r; // error: auto is not a storage-class-specifier
|
| 1155 |
auto f() -> int; // OK: f returns int
|
| 1156 |
auto g() { return 0.0; } // OK: g returns double
|
| 1157 |
auto h(); // OK: h's return type will be deduced when it is defined
|
| 1158 |
```
|
| 1159 |
|
| 1160 |
+
— *end example*]
|
| 1161 |
+
|
| 1162 |
+
A placeholder type can also be used in the *type-specifier-seq* in the
|
| 1163 |
+
*new-type-id* or *type-id* of a *new-expression* ([[expr.new]]) and as
|
| 1164 |
+
a *decl-specifier* of the *parameter-declaration*'s *decl-specifier-seq*
|
| 1165 |
+
in a *template-parameter* ([[temp.param]]).
|
| 1166 |
|
| 1167 |
A program that uses `auto` or `decltype(auto)` in a context not
|
| 1168 |
explicitly allowed in this section is ill-formed.
|
| 1169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1170 |
If the *init-declarator-list* contains more than one *init-declarator*,
|
| 1171 |
they shall all form declarations of variables. The type of each declared
|
| 1172 |
+
variable is determined by placeholder type deduction (
|
| 1173 |
+
[[dcl.type.auto.deduct]]), and if the type that replaces the placeholder
|
| 1174 |
+
type is not the same in each deduction, the program is ill-formed.
|
| 1175 |
+
|
| 1176 |
+
[*Example 3*:
|
| 1177 |
|
| 1178 |
``` cpp
|
| 1179 |
auto x = 5, *y = &x; // OK: auto is int
|
| 1180 |
auto a = 5, b = { 1, 2 }; // error: different types for auto
|
| 1181 |
```
|
| 1182 |
|
| 1183 |
+
— *end example*]
|
| 1184 |
+
|
| 1185 |
If a function with a declared return type that contains a placeholder
|
| 1186 |
+
type has multiple non-discarded `return` statements, the return type is
|
| 1187 |
+
deduced for each such `return` statement. If the type deduced is not the
|
| 1188 |
+
same in each deduction, the program is ill-formed.
|
| 1189 |
|
| 1190 |
If a function with a declared return type that uses a placeholder type
|
| 1191 |
+
has no non-discarded `return` statements, the return type is deduced as
|
| 1192 |
+
though from a `return` statement with no operand at the closing brace of
|
| 1193 |
+
the function body.
|
| 1194 |
+
|
| 1195 |
+
[*Example 4*:
|
| 1196 |
|
| 1197 |
``` cpp
|
| 1198 |
auto f() { } // OK, return type is void
|
| 1199 |
auto* g() { } // error, cannot deduce auto* from void()
|
| 1200 |
```
|
| 1201 |
|
| 1202 |
+
— *end example*]
|
| 1203 |
+
|
| 1204 |
If the type of an entity with an undeduced placeholder type is needed to
|
| 1205 |
determine the type of an expression, the program is ill-formed. Once a
|
| 1206 |
+
non-discarded `return` statement has been seen in a function, however,
|
| 1207 |
+
the return type deduced from that statement can be used in the rest of
|
| 1208 |
+
the function, including in other `return` statements.
|
| 1209 |
+
|
| 1210 |
+
[*Example 5*:
|
| 1211 |
|
| 1212 |
``` cpp
|
| 1213 |
auto n = n; // error, n's type is unknown
|
| 1214 |
auto f();
|
| 1215 |
void g() { &f; } // error, f's return type is unknown
|
|
|
|
| 1219 |
else
|
| 1220 |
return sum(i-1)+i; // OK, sum's return type has been deduced
|
| 1221 |
}
|
| 1222 |
```
|
| 1223 |
|
| 1224 |
+
— *end example*]
|
| 1225 |
+
|
| 1226 |
Return type deduction for a function template with a placeholder in its
|
| 1227 |
declared type occurs when the definition is instantiated even if the
|
| 1228 |
function body contains a `return` statement with a non-type-dependent
|
| 1229 |
+
operand.
|
| 1230 |
+
|
| 1231 |
+
[*Note 1*: Therefore, any use of a specialization of the function
|
| 1232 |
+
template will cause an implicit instantiation. Any errors that arise
|
| 1233 |
+
from this instantiation are not in the immediate context of the function
|
| 1234 |
+
type and can result in the program being ill-formed (
|
| 1235 |
+
[[temp.deduct]]). — *end note*]
|
| 1236 |
+
|
| 1237 |
+
[*Example 6*:
|
| 1238 |
|
| 1239 |
``` cpp
|
| 1240 |
template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
|
| 1241 |
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
|
| 1242 |
template<class T> auto f(T* t) { return *t; }
|
| 1243 |
void g() { int (*p)(int*) = &f; } // instantiates both fs to determine return types,
|
| 1244 |
// chooses second
|
| 1245 |
```
|
| 1246 |
|
| 1247 |
+
— *end example*]
|
| 1248 |
+
|
| 1249 |
Redeclarations or specializations of a function or function template
|
| 1250 |
with a declared return type that uses a placeholder type shall also use
|
| 1251 |
that placeholder, not a deduced type.
|
| 1252 |
|
| 1253 |
+
[*Example 7*:
|
| 1254 |
+
|
| 1255 |
``` cpp
|
| 1256 |
auto f();
|
| 1257 |
auto f() { return 42; } // return type is int
|
| 1258 |
auto f(); // OK
|
| 1259 |
int f(); // error, cannot be overloaded with auto f()
|
|
|
|
| 1274 |
friend T frf(T);
|
| 1275 |
};
|
| 1276 |
auto frf(int i) { return i; } // not a friend of A<int>
|
| 1277 |
```
|
| 1278 |
|
| 1279 |
+
— *end example*]
|
| 1280 |
+
|
| 1281 |
A function declared with a return type that uses a placeholder type
|
| 1282 |
shall not be `virtual` ([[class.virtual]]).
|
| 1283 |
|
| 1284 |
An explicit instantiation declaration ([[temp.explicit]]) does not
|
| 1285 |
cause the instantiation of an entity declared using a placeholder type,
|
| 1286 |
but it also does not prevent that entity from being instantiated as
|
| 1287 |
needed to determine its type.
|
| 1288 |
|
| 1289 |
+
[*Example 8*:
|
| 1290 |
+
|
| 1291 |
``` cpp
|
| 1292 |
template <typename T> auto f(T t) { return t; }
|
| 1293 |
extern template auto f(int); // does not instantiate f<int>
|
| 1294 |
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit
|
| 1295 |
// instantiation definition is still required somewhere in the program
|
| 1296 |
```
|
| 1297 |
|
| 1298 |
+
— *end example*]
|
| 1299 |
+
|
| 1300 |
+
##### Placeholder type deduction <a id="dcl.type.auto.deduct">[[dcl.type.auto.deduct]]</a>
|
| 1301 |
+
|
| 1302 |
+
*Placeholder type deduction* is the process by which a type containing a
|
| 1303 |
+
placeholder type is replaced by a deduced type.
|
| 1304 |
+
|
| 1305 |
+
A type `T` containing a placeholder type, and a corresponding
|
| 1306 |
+
initializer `e`, are determined as follows:
|
| 1307 |
+
|
| 1308 |
+
- for a non-discarded `return` statement that occurs in a function
|
| 1309 |
+
declared with a return type that contains a placeholder type, `T` is
|
| 1310 |
+
the declared return type and `e` is the operand of the `return`
|
| 1311 |
+
statement. If the `return` statement has no operand, then `e` is
|
| 1312 |
+
`void()`;
|
| 1313 |
+
- for a variable declared with a type that contains a placeholder type,
|
| 1314 |
+
`T` is the declared type of the variable and `e` is the initializer.
|
| 1315 |
+
If the initialization is direct-list-initialization, the initializer
|
| 1316 |
+
shall be a *braced-init-list* containing only a single
|
| 1317 |
+
*assignment-expression* and `e` is the *assignment-expression*;
|
| 1318 |
+
- for a non-type template parameter declared with a type that contains a
|
| 1319 |
+
placeholder type, `T` is the declared type of the non-type template
|
| 1320 |
+
parameter and `e` is the corresponding template argument.
|
| 1321 |
+
|
| 1322 |
+
In the case of a `return` statement with no operand or with an operand
|
| 1323 |
+
of type `void`, `T` shall be either `decltype(auto)` or cv `auto`.
|
| 1324 |
+
|
| 1325 |
+
If the deduction is for a `return` statement and `e` is a
|
| 1326 |
+
*braced-init-list* ([[dcl.init.list]]), the program is ill-formed.
|
| 1327 |
+
|
| 1328 |
+
If the placeholder is the `auto` *type-specifier*, the deduced type T'
|
| 1329 |
+
replacing `T` is determined using the rules for template argument
|
| 1330 |
+
deduction. Obtain `P` from `T` by replacing the occurrences of `auto`
|
| 1331 |
+
with either a new invented type template parameter `U` or, if the
|
| 1332 |
+
initialization is copy-list-initialization, with
|
| 1333 |
+
`std::initializer_list<U>`. Deduce a value for `U` using the rules of
|
| 1334 |
+
template argument deduction from a function call (
|
| 1335 |
+
[[temp.deduct.call]]), where `P` is a function template parameter type
|
| 1336 |
+
and the corresponding argument is `e`. If the deduction fails, the
|
| 1337 |
+
declaration is ill-formed. Otherwise, T' is obtained by substituting the
|
| 1338 |
+
deduced `U` into `P`.
|
| 1339 |
+
|
| 1340 |
+
[*Example 9*:
|
| 1341 |
+
|
| 1342 |
+
``` cpp
|
| 1343 |
+
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
|
| 1344 |
+
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
|
| 1345 |
+
auto x3{ 1, 2 }; // error: not a single element
|
| 1346 |
+
auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
|
| 1347 |
+
auto x5{ 3 }; // decltype(x5) is int
|
| 1348 |
+
```
|
| 1349 |
+
|
| 1350 |
+
— *end example*]
|
| 1351 |
+
|
| 1352 |
+
[*Example 10*:
|
| 1353 |
+
|
| 1354 |
+
``` cpp
|
| 1355 |
+
const auto &i = expr;
|
| 1356 |
+
```
|
| 1357 |
+
|
| 1358 |
+
The type of `i` is the deduced type of the parameter `u` in the call
|
| 1359 |
+
`f(expr)` of the following invented function template:
|
| 1360 |
+
|
| 1361 |
+
``` cpp
|
| 1362 |
+
template <class U> void f(const U& u);
|
| 1363 |
+
```
|
| 1364 |
+
|
| 1365 |
+
— *end example*]
|
| 1366 |
+
|
| 1367 |
+
If the placeholder is the `decltype(auto)` *type-specifier*, `T` shall
|
| 1368 |
+
be the placeholder alone. The type deduced for `T` is determined as
|
| 1369 |
+
described in [[dcl.type.simple]], as though `e` had been the operand of
|
| 1370 |
+
the `decltype`.
|
| 1371 |
+
|
| 1372 |
+
[*Example 11*:
|
| 1373 |
+
|
| 1374 |
+
``` cpp
|
| 1375 |
+
int i;
|
| 1376 |
+
int&& f();
|
| 1377 |
+
auto x2a(i); // decltype(x2a) is int
|
| 1378 |
+
decltype(auto) x2d(i); // decltype(x2d) is int
|
| 1379 |
+
auto x3a = i; // decltype(x3a) is int
|
| 1380 |
+
decltype(auto) x3d = i; // decltype(x3d) is int
|
| 1381 |
+
auto x4a = (i); // decltype(x4a) is int
|
| 1382 |
+
decltype(auto) x4d = (i); // decltype(x4d) is int&
|
| 1383 |
+
auto x5a = f(); // decltype(x5a) is int
|
| 1384 |
+
decltype(auto) x5d = f(); // decltype(x5d) is int&&
|
| 1385 |
+
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
|
| 1386 |
+
decltype(auto) x6d = { 1, 2 }; // error, { 1, 2 } is not an expression
|
| 1387 |
+
auto *x7a = &i; // decltype(x7a) is int*
|
| 1388 |
+
decltype(auto)*x7d = &i; // error, declared type is not plain decltype(auto)
|
| 1389 |
+
```
|
| 1390 |
+
|
| 1391 |
+
— *end example*]
|
| 1392 |
+
|
| 1393 |
+
#### Deduced class template specialization types <a id="dcl.type.class.deduct">[[dcl.type.class.deduct]]</a>
|
| 1394 |
+
|
| 1395 |
+
If a placeholder for a deduced class type appears as a *decl-specifier*
|
| 1396 |
+
in the *decl-specifier-seq* of an initializing declaration (
|
| 1397 |
+
[[dcl.init]]) of a variable, the placeholder is replaced by the return
|
| 1398 |
+
type of the function selected by overload resolution for class template
|
| 1399 |
+
deduction ([[over.match.class.deduct]]). If the *decl-specifier-seq* is
|
| 1400 |
+
followed by an *init-declarator-list* or *member-declarator-list*
|
| 1401 |
+
containing more than one *declarator*, the type that replaces the
|
| 1402 |
+
placeholder shall be the same in each deduction.
|
| 1403 |
+
|
| 1404 |
+
A placeholder for a deduced class type can also be used in the
|
| 1405 |
+
*type-specifier-seq* in the *new-type-id* or *type-id* of a
|
| 1406 |
+
*new-expression* ([[expr.new]]), or as the *simple-type-specifier* in
|
| 1407 |
+
an explicit type conversion (functional notation) ([[expr.type.conv]]).
|
| 1408 |
+
A placeholder for a deduced class type shall not appear in any other
|
| 1409 |
+
context.
|
| 1410 |
+
|
| 1411 |
+
[*Example 1*:
|
| 1412 |
+
|
| 1413 |
+
``` cpp
|
| 1414 |
+
template<class T> struct container {
|
| 1415 |
+
container(T t) {}
|
| 1416 |
+
template<class Iter> container(Iter beg, Iter end);
|
| 1417 |
+
};
|
| 1418 |
+
template<class Iter>
|
| 1419 |
+
container(Iter b, Iter e) -> container<typename std::iterator_traits<Iter>::value_type>;
|
| 1420 |
+
std::vector<double> v = { ... };
|
| 1421 |
+
|
| 1422 |
+
container c(7); // OK, deduces int for T
|
| 1423 |
+
auto d = container(v.begin(), v.end()); // OK, deduces double for T
|
| 1424 |
+
container e{5, 6}; // error, int is not an iterator
|
| 1425 |
+
```
|
| 1426 |
+
|
| 1427 |
+
— *end example*]
|
| 1428 |
+
|