- tmp/tmp6n6_5ebr/{from.md → to.md} +103 -62
tmp/tmp6n6_5ebr/{from.md → to.md}
RENAMED
|
@@ -8,10 +8,12 @@ enumeration. If a `::` scope resolution operator in a
|
|
| 8 |
lookup of the name preceding that `::` considers only namespaces, types,
|
| 9 |
and templates whose specializations are types. If the name found does
|
| 10 |
not designate a namespace or a class, enumeration, or dependent type,
|
| 11 |
the program is ill-formed.
|
| 12 |
|
|
|
|
|
|
|
| 13 |
``` cpp
|
| 14 |
class A {
|
| 15 |
public:
|
| 16 |
static int n;
|
| 17 |
};
|
|
@@ -20,31 +22,37 @@ int main() {
|
|
| 20 |
A::n = 42; // OK
|
| 21 |
A b; // ill-formed: A does not name a type
|
| 22 |
}
|
| 23 |
```
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
In a declaration in which the *declarator-id* is a *qualified-id*, names
|
| 30 |
used before the *qualified-id* being declared are looked up in the
|
| 31 |
defining namespace scope; names following the *qualified-id* are looked
|
| 32 |
up in the scope of the member’s class or namespace.
|
| 33 |
|
|
|
|
|
|
|
| 34 |
``` cpp
|
| 35 |
class X { };
|
| 36 |
class C {
|
| 37 |
class X { };
|
| 38 |
static const int number = 50;
|
| 39 |
static X arr[number];
|
| 40 |
};
|
| 41 |
X C::arr[number]; // ill-formed:
|
| 42 |
-
// equivalent to
|
| 43 |
-
// not to
|
| 44 |
```
|
| 45 |
|
|
|
|
|
|
|
| 46 |
A name prefixed by the unary scope operator `::` ([[expr.prim]]) is
|
| 47 |
looked up in global scope, in the translation unit where it is used. The
|
| 48 |
name shall be declared in global namespace scope or shall be a name
|
| 49 |
whose declaration is visible in global scope because of a
|
| 50 |
*using-directive* ([[namespace.qual]]). The use of `::` allows a global
|
|
@@ -63,20 +71,21 @@ scope designated by the *nested-name-specifier*. Similarly, in a
|
|
| 63 |
nested-name-specifierₒₚₜ class-name '::' '~' class-name
|
| 64 |
```
|
| 65 |
|
| 66 |
the second *class-name* is looked up in the same scope as the first.
|
| 67 |
|
|
|
|
|
|
|
| 68 |
``` cpp
|
| 69 |
struct C {
|
| 70 |
typedef int I;
|
| 71 |
};
|
| 72 |
typedef int I1, I2;
|
| 73 |
extern int* p;
|
| 74 |
extern int* q;
|
| 75 |
p->C::I::~I(); // I is looked up in the scope of C
|
| 76 |
-
q->I1::~I2(); // I2 is looked up in the scope of
|
| 77 |
-
// the postfix-expression
|
| 78 |
|
| 79 |
struct A {
|
| 80 |
~A();
|
| 81 |
};
|
| 82 |
typedef A AB;
|
|
@@ -84,25 +93,30 @@ int main() {
|
|
| 84 |
AB* p;
|
| 85 |
p->AB::~AB(); // explicitly calls the destructor for A
|
| 86 |
}
|
| 87 |
```
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
#### Class members <a id="class.qual">[[class.qual]]</a>
|
| 93 |
|
| 94 |
If the *nested-name-specifier* of a *qualified-id* nominates a class,
|
| 95 |
the name specified after the *nested-name-specifier* is looked up in the
|
| 96 |
scope of the class ([[class.member.lookup]]), except for the cases
|
| 97 |
listed below. The name shall represent one or more members of that class
|
| 98 |
-
or of one of its base classes (Clause [[class.derived]]).
|
| 99 |
-
member can be referred to using a *qualified-id* at any point in its
|
| 100 |
-
potential scope ([[basic.scope.class]]). The exceptions to the name
|
| 101 |
-
lookup rule above are the following:
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
- a *conversion-type-id* of a *conversion-function-id* is looked up in
|
| 105 |
the same manner as a *conversion-type-id* in a class member access
|
| 106 |
(see [[basic.lookup.classref]]);
|
| 107 |
- the names in a *template-argument* of a *template-id* are looked up in
|
| 108 |
the context in which the entire *postfix-expression* occurs.
|
|
@@ -113,22 +127,26 @@ lookup rule above are the following:
|
|
| 113 |
In a lookup in which function names are not ignored[^9] and the
|
| 114 |
*nested-name-specifier* nominates a class `C`:
|
| 115 |
|
| 116 |
- if the name specified after the *nested-name-specifier*, when looked
|
| 117 |
up in `C`, is the injected-class-name of `C` (Clause [[class]]), or
|
| 118 |
-
- in a *using-
|
| 119 |
-
*member-declaration*, if the name
|
| 120 |
-
*nested-name-specifier* is the same as the
|
| 121 |
-
*simple-template-id*’s *template-name* in the last
|
| 122 |
-
*nested-name-specifier*,
|
| 123 |
-
|
| 124 |
-
the name is instead considered to name the constructor of class `C`.
|
| 125 |
-
|
| 126 |
-
*
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
``` cpp
|
| 132 |
struct A { A(); };
|
| 133 |
struct B: public A { B(); };
|
| 134 |
|
|
@@ -138,39 +156,42 @@ B::B() { }
|
|
| 138 |
B::A ba; // object of type A
|
| 139 |
A::A a; // error, A::A is not a type name
|
| 140 |
struct A::A a2; // object of type A
|
| 141 |
```
|
| 142 |
|
|
|
|
|
|
|
| 143 |
A class member name hidden by a name in a nested declarative region or
|
| 144 |
by the name of a derived class member can still be found if qualified by
|
| 145 |
the name of its class followed by the `::` operator.
|
| 146 |
|
| 147 |
#### Namespace members <a id="namespace.qual">[[namespace.qual]]</a>
|
| 148 |
|
| 149 |
-
If the *nested-name-specifier* of a *qualified-id* nominates a
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
occurs.
|
| 156 |
|
| 157 |
For a namespace `X` and name `m`, the namespace-qualified lookup set
|
| 158 |
S(X, m) is defined as follows: Let S'(X, m) be the set of all
|
| 159 |
declarations of `m` in `X` and the inline namespace set of `X` (
|
| 160 |
[[namespace.def]]). If S'(X, m) is not empty, S(X, m) is S'(X, m);
|
| 161 |
otherwise, S(X, m) is the union of S(Nᵢ, m) for all namespaces Nᵢ
|
| 162 |
-
nominated by *using-
|
| 163 |
|
| 164 |
Given `X::m` (where `X` is a user-declared namespace), or given `::m`
|
| 165 |
(where X is the global namespace), if S(X, m) is the empty set, the
|
| 166 |
program is ill-formed. Otherwise, if S(X, m) has exactly one member, or
|
| 167 |
if the context of the reference is a *using-declaration* (
|
| 168 |
[[namespace.udecl]]), S(X, m) is the required set of declarations of
|
| 169 |
`m`. Otherwise if the use of `m` is not one that allows a unique
|
| 170 |
declaration to be chosen from S(X, m), the program is ill-formed.
|
| 171 |
|
|
|
|
|
|
|
| 172 |
``` cpp
|
| 173 |
int x;
|
| 174 |
namespace Y {
|
| 175 |
void f(float);
|
| 176 |
void h(int);
|
|
@@ -199,38 +220,38 @@ namespace AB {
|
|
| 199 |
void g();
|
| 200 |
}
|
| 201 |
|
| 202 |
void h()
|
| 203 |
{
|
| 204 |
-
AB::g(); // g is declared directly in AB,
|
| 205 |
-
|
| 206 |
-
AB::f(1); // f is not declared directly in AB so the rules are
|
| 207 |
-
//
|
| 208 |
-
//
|
| 209 |
-
|
| 210 |
-
// S is { A::f(int), B::f(char) } and overload
|
| 211 |
-
// resolution chooses A::f(int)
|
| 212 |
AB::f('c'); // as above but resolution chooses B::f(char)
|
| 213 |
|
| 214 |
-
AB::x++; // x is not declared directly in AB, and
|
| 215 |
-
//
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
// and
|
| 222 |
-
|
| 223 |
-
// not declared directly in A or B so the rules are
|
| 224 |
-
// applied recursively to Y and Z,
|
| 225 |
-
// S is { Y::h(int), Z::h(double) } and overload
|
| 226 |
-
// resolution chooses Z::h(double)
|
| 227 |
}
|
| 228 |
```
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
The same declaration found more than once is not an ambiguity (because
|
| 231 |
-
it is still a unique declaration).
|
|
|
|
|
|
|
| 232 |
|
| 233 |
``` cpp
|
| 234 |
namespace A {
|
| 235 |
int a;
|
| 236 |
}
|
|
@@ -248,11 +269,11 @@ namespace BC {
|
|
| 248 |
using namespace C;
|
| 249 |
}
|
| 250 |
|
| 251 |
void f()
|
| 252 |
{
|
| 253 |
-
BC::a++; // OK: S is { A::a, A::a }
|
| 254 |
}
|
| 255 |
|
| 256 |
namespace D {
|
| 257 |
using A::a;
|
| 258 |
}
|
|
@@ -262,14 +283,20 @@ namespace BD {
|
|
| 262 |
using namespace D;
|
| 263 |
}
|
| 264 |
|
| 265 |
void g()
|
| 266 |
{
|
| 267 |
-
BD::a++; // OK: S is {
|
| 268 |
}
|
| 269 |
```
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
Because each referenced namespace is searched at most once, the
|
| 272 |
following is well-defined:
|
| 273 |
|
| 274 |
``` cpp
|
| 275 |
namespace B {
|
|
@@ -285,25 +312,29 @@ namespace B {
|
|
| 285 |
using namespace A;
|
| 286 |
}
|
| 287 |
|
| 288 |
void f()
|
| 289 |
{
|
| 290 |
-
A::a++; // OK: a declared directly in A, S is {A::a}
|
| 291 |
-
B::a++; // OK: both A and B searched (once), S is {A::a}
|
| 292 |
-
A::b++; // OK: both A and B searched (once), S is {B::b}
|
| 293 |
-
B::b++; // OK: b declared directly in B, S is {B::b}
|
| 294 |
}
|
| 295 |
```
|
| 296 |
|
|
|
|
|
|
|
| 297 |
During the lookup of a qualified namespace member name, if the lookup
|
| 298 |
finds more than one declaration of the member, and if one declaration
|
| 299 |
introduces a class name or enumeration name and the other declarations
|
| 300 |
either introduce the same variable, the same enumerator or a set of
|
| 301 |
functions, the non-type name hides the class or enumeration name if and
|
| 302 |
only if the declarations are from the same namespace; otherwise (the
|
| 303 |
declarations are from different namespaces), the program is ill-formed.
|
| 304 |
|
|
|
|
|
|
|
| 305 |
``` cpp
|
| 306 |
namespace A {
|
| 307 |
struct x { };
|
| 308 |
int x;
|
| 309 |
int y;
|
|
@@ -319,10 +350,12 @@ namespace C {
|
|
| 319 |
int i = C::x; // OK, A::x (of type int)
|
| 320 |
int j = C::y; // ambiguous, A::y or B::y
|
| 321 |
}
|
| 322 |
```
|
| 323 |
|
|
|
|
|
|
|
| 324 |
In a declaration for a namespace member in which the *declarator-id* is
|
| 325 |
a *qualified-id*, given that the *qualified-id* for the namespace member
|
| 326 |
has the form
|
| 327 |
|
| 328 |
``` bnf
|
|
@@ -331,24 +364,30 @@ nested-name-specifier unqualified-id
|
|
| 331 |
|
| 332 |
the *unqualified-id* shall name a member of the namespace designated by
|
| 333 |
the *nested-name-specifier* or of an element of the inline namespace
|
| 334 |
set ([[namespace.def]]) of that namespace.
|
| 335 |
|
|
|
|
|
|
|
| 336 |
``` cpp
|
| 337 |
namespace A {
|
| 338 |
namespace B {
|
| 339 |
void f1(int);
|
| 340 |
}
|
| 341 |
using namespace B;
|
| 342 |
}
|
| 343 |
void A::f1(int){ } // ill-formed, f1 is not a member of A
|
| 344 |
```
|
| 345 |
|
|
|
|
|
|
|
| 346 |
However, in such namespace member declarations, the
|
| 347 |
*nested-name-specifier* may rely on *using-directive*s to implicitly
|
| 348 |
provide the initial part of the *nested-name-specifier*.
|
| 349 |
|
|
|
|
|
|
|
| 350 |
``` cpp
|
| 351 |
namespace A {
|
| 352 |
namespace B {
|
| 353 |
void f1(int);
|
| 354 |
}
|
|
@@ -363,5 +402,7 @@ namespace C {
|
|
| 363 |
using namespace A;
|
| 364 |
using namespace C::D;
|
| 365 |
void B::f1(int){ } // OK, defines A::B::f1(int)
|
| 366 |
```
|
| 367 |
|
|
|
|
|
|
|
|
|
| 8 |
lookup of the name preceding that `::` considers only namespaces, types,
|
| 9 |
and templates whose specializations are types. If the name found does
|
| 10 |
not designate a namespace or a class, enumeration, or dependent type,
|
| 11 |
the program is ill-formed.
|
| 12 |
|
| 13 |
+
[*Example 1*:
|
| 14 |
+
|
| 15 |
``` cpp
|
| 16 |
class A {
|
| 17 |
public:
|
| 18 |
static int n;
|
| 19 |
};
|
|
|
|
| 22 |
A::n = 42; // OK
|
| 23 |
A b; // ill-formed: A does not name a type
|
| 24 |
}
|
| 25 |
```
|
| 26 |
|
| 27 |
+
— *end example*]
|
| 28 |
+
|
| 29 |
+
[*Note 1*: Multiply qualified names, such as `N1::N2::N3::n`, can be
|
| 30 |
+
used to refer to members of nested classes ([[class.nest]]) or members
|
| 31 |
+
of nested namespaces. — *end note*]
|
| 32 |
|
| 33 |
In a declaration in which the *declarator-id* is a *qualified-id*, names
|
| 34 |
used before the *qualified-id* being declared are looked up in the
|
| 35 |
defining namespace scope; names following the *qualified-id* are looked
|
| 36 |
up in the scope of the member’s class or namespace.
|
| 37 |
|
| 38 |
+
[*Example 2*:
|
| 39 |
+
|
| 40 |
``` cpp
|
| 41 |
class X { };
|
| 42 |
class C {
|
| 43 |
class X { };
|
| 44 |
static const int number = 50;
|
| 45 |
static X arr[number];
|
| 46 |
};
|
| 47 |
X C::arr[number]; // ill-formed:
|
| 48 |
+
// equivalent to ::X C::arr[C::number];
|
| 49 |
+
// and not to C::X C::arr[C::number];
|
| 50 |
```
|
| 51 |
|
| 52 |
+
— *end example*]
|
| 53 |
+
|
| 54 |
A name prefixed by the unary scope operator `::` ([[expr.prim]]) is
|
| 55 |
looked up in global scope, in the translation unit where it is used. The
|
| 56 |
name shall be declared in global namespace scope or shall be a name
|
| 57 |
whose declaration is visible in global scope because of a
|
| 58 |
*using-directive* ([[namespace.qual]]). The use of `::` allows a global
|
|
|
|
| 71 |
nested-name-specifierₒₚₜ class-name '::' '~' class-name
|
| 72 |
```
|
| 73 |
|
| 74 |
the second *class-name* is looked up in the same scope as the first.
|
| 75 |
|
| 76 |
+
[*Example 3*:
|
| 77 |
+
|
| 78 |
``` cpp
|
| 79 |
struct C {
|
| 80 |
typedef int I;
|
| 81 |
};
|
| 82 |
typedef int I1, I2;
|
| 83 |
extern int* p;
|
| 84 |
extern int* q;
|
| 85 |
p->C::I::~I(); // I is looked up in the scope of C
|
| 86 |
+
q->I1::~I2(); // I2 is looked up in the scope of the postfix-expression
|
|
|
|
| 87 |
|
| 88 |
struct A {
|
| 89 |
~A();
|
| 90 |
};
|
| 91 |
typedef A AB;
|
|
|
|
| 93 |
AB* p;
|
| 94 |
p->AB::~AB(); // explicitly calls the destructor for A
|
| 95 |
}
|
| 96 |
```
|
| 97 |
|
| 98 |
+
— *end example*]
|
| 99 |
+
|
| 100 |
+
[*Note 2*: [[basic.lookup.classref]] describes how name lookup
|
| 101 |
+
proceeds after the `.` and `->` operators. — *end note*]
|
| 102 |
|
| 103 |
#### Class members <a id="class.qual">[[class.qual]]</a>
|
| 104 |
|
| 105 |
If the *nested-name-specifier* of a *qualified-id* nominates a class,
|
| 106 |
the name specified after the *nested-name-specifier* is looked up in the
|
| 107 |
scope of the class ([[class.member.lookup]]), except for the cases
|
| 108 |
listed below. The name shall represent one or more members of that class
|
| 109 |
+
or of one of its base classes (Clause [[class.derived]]).
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
[*Note 1*: A class member can be referred to using a *qualified-id* at
|
| 112 |
+
any point in its potential scope (
|
| 113 |
+
[[basic.scope.class]]). — *end note*]
|
| 114 |
+
|
| 115 |
+
The exceptions to the name lookup rule above are the following:
|
| 116 |
+
|
| 117 |
+
- the lookup for a destructor is as specified in [[basic.lookup.qual]];
|
| 118 |
- a *conversion-type-id* of a *conversion-function-id* is looked up in
|
| 119 |
the same manner as a *conversion-type-id* in a class member access
|
| 120 |
(see [[basic.lookup.classref]]);
|
| 121 |
- the names in a *template-argument* of a *template-id* are looked up in
|
| 122 |
the context in which the entire *postfix-expression* occurs.
|
|
|
|
| 127 |
In a lookup in which function names are not ignored[^9] and the
|
| 128 |
*nested-name-specifier* nominates a class `C`:
|
| 129 |
|
| 130 |
- if the name specified after the *nested-name-specifier*, when looked
|
| 131 |
up in `C`, is the injected-class-name of `C` (Clause [[class]]), or
|
| 132 |
+
- in a *using-declarator* of a *using-declaration* (
|
| 133 |
+
[[namespace.udecl]]) that is a *member-declaration*, if the name
|
| 134 |
+
specified after the *nested-name-specifier* is the same as the
|
| 135 |
+
*identifier* or the *simple-template-id*’s *template-name* in the last
|
| 136 |
+
component of the *nested-name-specifier*,
|
| 137 |
+
|
| 138 |
+
the name is instead considered to name the constructor of class `C`.
|
| 139 |
+
|
| 140 |
+
[*Note 2*: For example, the constructor is not an acceptable lookup
|
| 141 |
+
result in an *elaborated-type-specifier* so the constructor would not be
|
| 142 |
+
used in place of the injected-class-name. — *end note*]
|
| 143 |
+
|
| 144 |
+
Such a constructor name shall be used only in the *declarator-id* of a
|
| 145 |
+
declaration that names a constructor or in a *using-declaration*.
|
| 146 |
+
|
| 147 |
+
[*Example 1*:
|
| 148 |
|
| 149 |
``` cpp
|
| 150 |
struct A { A(); };
|
| 151 |
struct B: public A { B(); };
|
| 152 |
|
|
|
|
| 156 |
B::A ba; // object of type A
|
| 157 |
A::A a; // error, A::A is not a type name
|
| 158 |
struct A::A a2; // object of type A
|
| 159 |
```
|
| 160 |
|
| 161 |
+
— *end example*]
|
| 162 |
+
|
| 163 |
A class member name hidden by a name in a nested declarative region or
|
| 164 |
by the name of a derived class member can still be found if qualified by
|
| 165 |
the name of its class followed by the `::` operator.
|
| 166 |
|
| 167 |
#### Namespace members <a id="namespace.qual">[[namespace.qual]]</a>
|
| 168 |
|
| 169 |
+
If the *nested-name-specifier* of a *qualified-id* nominates a namespace
|
| 170 |
+
(including the case where the *nested-name-specifier* is `::`, i.e.,
|
| 171 |
+
nominating the global namespace), the name specified after the
|
| 172 |
+
*nested-name-specifier* is looked up in the scope of the namespace. The
|
| 173 |
+
names in a *template-argument* of a *template-id* are looked up in the
|
| 174 |
+
context in which the entire *postfix-expression* occurs.
|
|
|
|
| 175 |
|
| 176 |
For a namespace `X` and name `m`, the namespace-qualified lookup set
|
| 177 |
S(X, m) is defined as follows: Let S'(X, m) be the set of all
|
| 178 |
declarations of `m` in `X` and the inline namespace set of `X` (
|
| 179 |
[[namespace.def]]). If S'(X, m) is not empty, S(X, m) is S'(X, m);
|
| 180 |
otherwise, S(X, m) is the union of S(Nᵢ, m) for all namespaces Nᵢ
|
| 181 |
+
nominated by *using-directive*s in `X` and its inline namespace set.
|
| 182 |
|
| 183 |
Given `X::m` (where `X` is a user-declared namespace), or given `::m`
|
| 184 |
(where X is the global namespace), if S(X, m) is the empty set, the
|
| 185 |
program is ill-formed. Otherwise, if S(X, m) has exactly one member, or
|
| 186 |
if the context of the reference is a *using-declaration* (
|
| 187 |
[[namespace.udecl]]), S(X, m) is the required set of declarations of
|
| 188 |
`m`. Otherwise if the use of `m` is not one that allows a unique
|
| 189 |
declaration to be chosen from S(X, m), the program is ill-formed.
|
| 190 |
|
| 191 |
+
[*Example 1*:
|
| 192 |
+
|
| 193 |
``` cpp
|
| 194 |
int x;
|
| 195 |
namespace Y {
|
| 196 |
void f(float);
|
| 197 |
void h(int);
|
|
|
|
| 220 |
void g();
|
| 221 |
}
|
| 222 |
|
| 223 |
void h()
|
| 224 |
{
|
| 225 |
+
AB::g(); // g is declared directly in AB, therefore S is { `AB::g()` } and AB::g() is chosen
|
| 226 |
+
|
| 227 |
+
AB::f(1); // f is not declared directly in AB so the rules are applied recursively to A and B;
|
| 228 |
+
// namespace Y is not searched and Y::f(float) is not considered;
|
| 229 |
+
// S is { `A::f(int)`, `B::f(char)` } and overload resolution chooses A::f(int)
|
| 230 |
+
|
|
|
|
|
|
|
| 231 |
AB::f('c'); // as above but resolution chooses B::f(char)
|
| 232 |
|
| 233 |
+
AB::x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
|
| 234 |
+
// are applied recursively to Y and Z, S is { } so the program is ill-formed
|
| 235 |
+
|
| 236 |
+
AB::i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
|
| 237 |
+
// S is { `A::i`, `B::i` } so the use is ambiguous and the program is ill-formed
|
| 238 |
+
|
| 239 |
+
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
|
| 240 |
+
// are applied recursively to Y and Z, S is { `Y::h(int)`, `Z::h(double)` } and
|
| 241 |
+
// overload resolution chooses Z::h(double)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
}
|
| 243 |
```
|
| 244 |
|
| 245 |
+
— *end example*]
|
| 246 |
+
|
| 247 |
+
[*Note 1*:
|
| 248 |
+
|
| 249 |
The same declaration found more than once is not an ambiguity (because
|
| 250 |
+
it is still a unique declaration).
|
| 251 |
+
|
| 252 |
+
[*Example 2*:
|
| 253 |
|
| 254 |
``` cpp
|
| 255 |
namespace A {
|
| 256 |
int a;
|
| 257 |
}
|
|
|
|
| 269 |
using namespace C;
|
| 270 |
}
|
| 271 |
|
| 272 |
void f()
|
| 273 |
{
|
| 274 |
+
BC::a++; // OK: S is { `A::a`, `A::a` }
|
| 275 |
}
|
| 276 |
|
| 277 |
namespace D {
|
| 278 |
using A::a;
|
| 279 |
}
|
|
|
|
| 283 |
using namespace D;
|
| 284 |
}
|
| 285 |
|
| 286 |
void g()
|
| 287 |
{
|
| 288 |
+
BD::a++; // OK: S is { `A::a`, `A::a` }
|
| 289 |
}
|
| 290 |
```
|
| 291 |
|
| 292 |
+
— *end example*]
|
| 293 |
+
|
| 294 |
+
— *end note*]
|
| 295 |
+
|
| 296 |
+
[*Example 3*:
|
| 297 |
+
|
| 298 |
Because each referenced namespace is searched at most once, the
|
| 299 |
following is well-defined:
|
| 300 |
|
| 301 |
``` cpp
|
| 302 |
namespace B {
|
|
|
|
| 312 |
using namespace A;
|
| 313 |
}
|
| 314 |
|
| 315 |
void f()
|
| 316 |
{
|
| 317 |
+
A::a++; // OK: a declared directly in A, S is { `A::a` }
|
| 318 |
+
B::a++; // OK: both A and B searched (once), S is { `A::a` }
|
| 319 |
+
A::b++; // OK: both A and B searched (once), S is { `B::b` }
|
| 320 |
+
B::b++; // OK: b declared directly in B, S is { `B::b` }
|
| 321 |
}
|
| 322 |
```
|
| 323 |
|
| 324 |
+
— *end example*]
|
| 325 |
+
|
| 326 |
During the lookup of a qualified namespace member name, if the lookup
|
| 327 |
finds more than one declaration of the member, and if one declaration
|
| 328 |
introduces a class name or enumeration name and the other declarations
|
| 329 |
either introduce the same variable, the same enumerator or a set of
|
| 330 |
functions, the non-type name hides the class or enumeration name if and
|
| 331 |
only if the declarations are from the same namespace; otherwise (the
|
| 332 |
declarations are from different namespaces), the program is ill-formed.
|
| 333 |
|
| 334 |
+
[*Example 4*:
|
| 335 |
+
|
| 336 |
``` cpp
|
| 337 |
namespace A {
|
| 338 |
struct x { };
|
| 339 |
int x;
|
| 340 |
int y;
|
|
|
|
| 350 |
int i = C::x; // OK, A::x (of type int)
|
| 351 |
int j = C::y; // ambiguous, A::y or B::y
|
| 352 |
}
|
| 353 |
```
|
| 354 |
|
| 355 |
+
— *end example*]
|
| 356 |
+
|
| 357 |
In a declaration for a namespace member in which the *declarator-id* is
|
| 358 |
a *qualified-id*, given that the *qualified-id* for the namespace member
|
| 359 |
has the form
|
| 360 |
|
| 361 |
``` bnf
|
|
|
|
| 364 |
|
| 365 |
the *unqualified-id* shall name a member of the namespace designated by
|
| 366 |
the *nested-name-specifier* or of an element of the inline namespace
|
| 367 |
set ([[namespace.def]]) of that namespace.
|
| 368 |
|
| 369 |
+
[*Example 5*:
|
| 370 |
+
|
| 371 |
``` cpp
|
| 372 |
namespace A {
|
| 373 |
namespace B {
|
| 374 |
void f1(int);
|
| 375 |
}
|
| 376 |
using namespace B;
|
| 377 |
}
|
| 378 |
void A::f1(int){ } // ill-formed, f1 is not a member of A
|
| 379 |
```
|
| 380 |
|
| 381 |
+
— *end example*]
|
| 382 |
+
|
| 383 |
However, in such namespace member declarations, the
|
| 384 |
*nested-name-specifier* may rely on *using-directive*s to implicitly
|
| 385 |
provide the initial part of the *nested-name-specifier*.
|
| 386 |
|
| 387 |
+
[*Example 6*:
|
| 388 |
+
|
| 389 |
``` cpp
|
| 390 |
namespace A {
|
| 391 |
namespace B {
|
| 392 |
void f1(int);
|
| 393 |
}
|
|
|
|
| 402 |
using namespace A;
|
| 403 |
using namespace C::D;
|
| 404 |
void B::f1(int){ } // OK, defines A::B::f1(int)
|
| 405 |
```
|
| 406 |
|
| 407 |
+
— *end example*]
|
| 408 |
+
|