From Jason Turner

[alg.search]

Diff to HTML by rtfpessoa

tmp/tmp13d6qb62/{from.md → to.md} RENAMED
@@ -15,11 +15,11 @@ template<class ForwardIterator1, class ForwardIterator2,
15
  ```
16
 
17
  *Effects:* Finds a subsequence of equal values in a sequence.
18
 
19
  *Returns:* The first iterator `i` in the range \[`first1`,
20
- `last1 - (last2-first2)`) such that for any non-negative integer `n`
21
  less than `last2 - first2` the following corresponding conditions hold:
22
  `*(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false`.
23
  Returns `first1` if \[`first2`, `last2`) is empty, otherwise returns
24
  `last1` if no such iterator is found.
25
 
@@ -43,11 +43,11 @@ template<class ForwardIterator, class Size, class T,
43
  type ([[conv.integral]], [[class.conv]]).
44
 
45
  *Effects:* Finds a subsequence of equal values in a sequence.
46
 
47
  *Returns:* The first iterator `i` in the range \[`first`, `last-count`)
48
- such that for any non-negative integer `n` less than `count` the
49
  following corresponding conditions hold:
50
  `*(i + n) == value, pred(*(i + n),value) != false`. Returns `last` if no
51
  such iterator is found.
52
 
53
  *Complexity:* At most `last - first` applications of the corresponding
 
15
  ```
16
 
17
  *Effects:* Finds a subsequence of equal values in a sequence.
18
 
19
  *Returns:* The first iterator `i` in the range \[`first1`,
20
+ `last1 - (last2-first2)`) such that for every non-negative integer `n`
21
  less than `last2 - first2` the following corresponding conditions hold:
22
  `*(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false`.
23
  Returns `first1` if \[`first2`, `last2`) is empty, otherwise returns
24
  `last1` if no such iterator is found.
25
 
 
43
  type ([[conv.integral]], [[class.conv]]).
44
 
45
  *Effects:* Finds a subsequence of equal values in a sequence.
46
 
47
  *Returns:* The first iterator `i` in the range \[`first`, `last-count`)
48
+ such that for every non-negative integer `n` less than `count` the
49
  following corresponding conditions hold:
50
  `*(i + n) == value, pred(*(i + n),value) != false`. Returns `last` if no
51
  such iterator is found.
52
 
53
  *Complexity:* At most `last - first` applications of the corresponding