tmp/tmpo6np09f9/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Introduction <a id="linalg.scaled.intro">[[linalg.scaled.intro]]</a>
|
| 2 |
+
|
| 3 |
+
The `scaled` function takes a value `alpha` and an `mdspan` `x`, and
|
| 4 |
+
returns a new read-only `mdspan` that represents the elementwise product
|
| 5 |
+
of `alpha` with each element of `x`.
|
| 6 |
+
|
| 7 |
+
[*Example 1*:
|
| 8 |
+
|
| 9 |
+
``` cpp
|
| 10 |
+
using Vec = mdspan<double, dextents<size_t, 1>>;
|
| 11 |
+
|
| 12 |
+
// z = alpha * x + y
|
| 13 |
+
void z_equals_alpha_times_x_plus_y(double alpha, Vec x, Vec y, Vec z) {
|
| 14 |
+
add(scaled(alpha, x), y, z);
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
// z = alpha * x + beta * y
|
| 18 |
+
void z_equals_alpha_times_x_plus_beta_times_y(double alpha, Vec x, double beta, Vec y, Vec z) {
|
| 19 |
+
add(scaled(alpha, x), scaled(beta, y), z);
|
| 20 |
+
}
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
— *end example*]
|
| 24 |
+
|