- tmp/tmp5xfb2kww/{from.md → to.md} +768 -290
tmp/tmp5xfb2kww/{from.md → to.md}
RENAMED
|
@@ -1,28 +1,31 @@
|
|
| 1 |
## Primary expressions <a id="expr.prim">[[expr.prim]]</a>
|
| 2 |
|
| 3 |
``` bnf
|
| 4 |
primary-expression:
|
| 5 |
literal
|
| 6 |
-
|
| 7 |
'(' expression ')'
|
| 8 |
id-expression
|
| 9 |
lambda-expression
|
| 10 |
fold-expression
|
|
|
|
| 11 |
```
|
| 12 |
|
| 13 |
### Literals <a id="expr.prim.literal">[[expr.prim.literal]]</a>
|
| 14 |
|
| 15 |
-
A *literal* is a primary expression.
|
| 16 |
-
[[lex.literal]]
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
### This <a id="expr.prim.this">[[expr.prim.this]]</a>
|
| 20 |
|
| 21 |
The keyword `this` names a pointer to the object for which a non-static
|
| 22 |
-
member function
|
| 23 |
-
|
| 24 |
|
| 25 |
If a declaration declares a member function or member function template
|
| 26 |
of a class `X`, the expression `this` is a prvalue of type “pointer to
|
| 27 |
*cv-qualifier-seq* `X`” between the optional *cv-qualifier-seq* and the
|
| 28 |
end of the *function-definition*, *member-declarator*, or *declarator*.
|
|
@@ -32,16 +35,15 @@ its type and value category are defined within a static member function
|
|
| 32 |
as they are within a non-static member function).
|
| 33 |
|
| 34 |
[*Note 1*: This is because declaration matching does not occur until
|
| 35 |
the complete declarator is known. — *end note*]
|
| 36 |
|
| 37 |
-
|
| 38 |
-
to be of complete type for purposes of class member access (
|
| 39 |
-
[[expr.ref]]) outside the member function body.
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
[*Example 1*:
|
| 45 |
|
| 46 |
``` cpp
|
| 47 |
struct A {
|
|
@@ -52,15 +54,16 @@ struct A {
|
|
| 52 |
template auto A::f(int t) -> decltype(t + g());
|
| 53 |
```
|
| 54 |
|
| 55 |
— *end example*]
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
[[class.mem]]
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
The expression `this` shall not appear in any other context.
|
| 64 |
|
| 65 |
[*Example 2*:
|
| 66 |
|
|
@@ -82,14 +85,13 @@ class Outer {
|
|
| 82 |
— *end example*]
|
| 83 |
|
| 84 |
### Parentheses <a id="expr.prim.paren">[[expr.prim.paren]]</a>
|
| 85 |
|
| 86 |
A parenthesized expression `(E)` is a primary expression whose type,
|
| 87 |
-
value, and value category are identical to those of
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
otherwise indicated.
|
| 91 |
|
| 92 |
### Names <a id="expr.prim.id">[[expr.prim.id]]</a>
|
| 93 |
|
| 94 |
``` bnf
|
| 95 |
id-expression:
|
|
@@ -97,20 +99,20 @@ id-expression:
|
|
| 97 |
qualified-id
|
| 98 |
```
|
| 99 |
|
| 100 |
An *id-expression* is a restricted form of a *primary-expression*.
|
| 101 |
|
| 102 |
-
[*Note 1*: An *id-expression* can appear after `.` and `->` operators
|
| 103 |
-
[[expr.ref]]
|
| 104 |
|
| 105 |
An *id-expression* that denotes a non-static data member or non-static
|
| 106 |
member function of a class can only be used:
|
| 107 |
|
| 108 |
-
- as part of a class member access
|
| 109 |
-
expression refers to the member’s class[^
|
| 110 |
that class, or
|
| 111 |
-
- to form a pointer to member
|
| 112 |
- if that *id-expression* denotes a non-static data member and it
|
| 113 |
appears in an unevaluated operand.
|
| 114 |
\[*Example 1*:
|
| 115 |
``` cpp
|
| 116 |
struct S {
|
|
@@ -120,124 +122,234 @@ member function of a class can only be used:
|
|
| 120 |
int j = sizeof(S::m + 42); // OK
|
| 121 |
```
|
| 122 |
|
| 123 |
— *end example*]
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
#### Unqualified names <a id="expr.prim.id.unqual">[[expr.prim.id.unqual]]</a>
|
| 126 |
|
| 127 |
``` bnf
|
| 128 |
unqualified-id:
|
| 129 |
identifier
|
| 130 |
operator-function-id
|
| 131 |
conversion-function-id
|
| 132 |
literal-operator-id
|
| 133 |
-
'~'
|
| 134 |
'~' decltype-specifier
|
| 135 |
template-id
|
| 136 |
```
|
| 137 |
|
| 138 |
-
An *identifier* is an *id-expression*
|
| 139 |
-
declared
|
|
|
|
|
|
|
| 140 |
|
| 141 |
[*Note 1*: For *operator-function-id*s, see [[over.oper]]; for
|
| 142 |
*conversion-function-id*s, see [[class.conv.fct]]; for
|
| 143 |
*literal-operator-id*s, see [[over.literal]]; for *template-id*s, see
|
| 144 |
-
[[temp.names]]. A *
|
| 145 |
-
denotes
|
| 146 |
-
non-static member function, an *identifier*
|
| 147 |
-
member is transformed to a class member access
|
| 148 |
-
[[class.mfct.non-static]]). — *end note*]
|
| 149 |
-
|
| 150 |
-
The
|
| 151 |
-
|
| 152 |
-
the
|
| 153 |
-
|
| 154 |
-
[[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
#### Qualified names <a id="expr.prim.id.qual">[[expr.prim.id.qual]]</a>
|
| 157 |
|
| 158 |
``` bnf
|
| 159 |
qualified-id:
|
| 160 |
-
nested-name-specifier
|
| 161 |
```
|
| 162 |
|
| 163 |
``` bnf
|
| 164 |
nested-name-specifier:
|
| 165 |
'::'
|
| 166 |
type-name '::'
|
| 167 |
namespace-name '::'
|
| 168 |
decltype-specifier '::'
|
| 169 |
nested-name-specifier identifier '::'
|
| 170 |
-
nested-name-specifier
|
| 171 |
```
|
| 172 |
|
| 173 |
The type denoted by a *decltype-specifier* in a *nested-name-specifier*
|
| 174 |
shall be a class or enumeration type.
|
| 175 |
|
| 176 |
A *nested-name-specifier* that denotes a class, optionally followed by
|
| 177 |
-
the keyword `template`
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
| 185 |
[*Note 1*: A class member can be referred to using a *qualified-id* at
|
| 186 |
-
any point in its potential scope
|
| 187 |
-
[[basic.scope.class]]). — *end note*]
|
| 188 |
|
| 189 |
-
Where *
|
| 190 |
-
|
| 191 |
-
[[
|
| 192 |
-
|
| 193 |
-
*
|
| 194 |
-
|
| 195 |
-
[*Note 2*: A *typedef-name* that names a class is a *class-name* (
|
| 196 |
-
[[class.name]]). — *end note*]
|
| 197 |
|
| 198 |
The *nested-name-specifier* `::` names the global namespace. A
|
| 199 |
-
*nested-name-specifier* that names a namespace
|
| 200 |
-
optionally followed by the keyword `template`
|
| 201 |
-
|
| 202 |
-
|
| 203 |
*qualified-id*; [[namespace.qual]] describes name lookup for namespace
|
| 204 |
members that appear in *qualified-id*s. The result is the member. The
|
| 205 |
type of the result is the type of the member. The result is an lvalue if
|
| 206 |
-
the member is a function
|
|
|
|
| 207 |
|
| 208 |
-
A *nested-name-specifier* that denotes an enumeration
|
| 209 |
followed by the name of an enumerator of that enumeration, is a
|
| 210 |
*qualified-id* that refers to the enumerator. The result is the
|
| 211 |
enumerator. The type of the result is the type of the enumeration. The
|
| 212 |
result is a prvalue.
|
| 213 |
|
| 214 |
In a *qualified-id*, if the *unqualified-id* is a
|
| 215 |
-
*conversion-function-id*, its *conversion-type-id*
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
### Lambda expressions <a id="expr.prim.lambda">[[expr.prim.lambda]]</a>
|
| 220 |
|
| 221 |
``` bnf
|
| 222 |
lambda-expression:
|
| 223 |
lambda-introducer lambda-declaratorₒₚₜ compound-statement
|
|
|
|
| 224 |
```
|
| 225 |
|
| 226 |
``` bnf
|
| 227 |
lambda-introducer:
|
| 228 |
'[' lambda-captureₒₚₜ ']'
|
| 229 |
```
|
| 230 |
|
| 231 |
``` bnf
|
| 232 |
lambda-declarator:
|
| 233 |
'(' parameter-declaration-clause ')' decl-specifier-seqₒₚₜ
|
| 234 |
-
noexcept-specifierₒₚₜ attribute-specifier-seqₒₚₜ trailing-return-typeₒₚₜ
|
| 235 |
```
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
[*Example 1*:
|
| 241 |
|
| 242 |
``` cpp
|
| 243 |
#include <algorithm>
|
|
@@ -248,24 +360,20 @@ void abssort(float* x, unsigned N) {
|
|
| 248 |
```
|
| 249 |
|
| 250 |
— *end example*]
|
| 251 |
|
| 252 |
A *lambda-expression* is a prvalue whose result object is called the
|
| 253 |
-
*closure object*.
|
| 254 |
-
unevaluated operand (Clause [[expr]]), in a *template-argument*, in an
|
| 255 |
-
*alias-declaration*, in a typedef declaration, or in the declaration of
|
| 256 |
-
a function or function template outside its function body and default
|
| 257 |
-
arguments.
|
| 258 |
|
| 259 |
-
[*Note 1*:
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
[*Note 2*: A closure object behaves like a function object (
|
| 263 |
-
[[function.objects]]). — *end note*]
|
| 264 |
|
| 265 |
In the *decl-specifier-seq* of the *lambda-declarator*, each
|
| 266 |
-
*decl-specifier* shall
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
If a *lambda-expression* does not include a *lambda-declarator*, it is
|
| 269 |
as if the *lambda-declarator* were `()`. The lambda return type is
|
| 270 |
`auto`, which is replaced by the type specified by the
|
| 271 |
*trailing-return-type* if provided and/or deduced from `return`
|
|
@@ -280,54 +388,63 @@ int j;
|
|
| 280 |
auto x3 = []()->auto&& { return j; }; // OK: return type is int&
|
| 281 |
```
|
| 282 |
|
| 283 |
— *end example*]
|
| 284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
#### Closure types <a id="expr.prim.lambda.closure">[[expr.prim.lambda.closure]]</a>
|
| 286 |
|
| 287 |
The type of a *lambda-expression* (which is also the type of the closure
|
| 288 |
object) is a unique, unnamed non-union class type, called the *closure
|
| 289 |
type*, whose properties are described below.
|
| 290 |
|
| 291 |
The closure type is declared in the smallest block scope, class scope,
|
| 292 |
or namespace scope that contains the corresponding *lambda-expression*.
|
| 293 |
|
| 294 |
[*Note 1*: This determines the set of namespaces and classes associated
|
| 295 |
-
with the closure type
|
| 296 |
-
|
| 297 |
classes. — *end note*]
|
| 298 |
|
| 299 |
-
The closure type is not an aggregate type
|
| 300 |
implementation may define the closure type differently from what is
|
| 301 |
described below provided this does not alter the observable behavior of
|
| 302 |
the program other than by changing:
|
| 303 |
|
| 304 |
- the size and/or alignment of the closure type,
|
| 305 |
-
- whether the closure type is trivially copyable
|
| 306 |
-
- whether the closure type is a standard-layout class
|
| 307 |
-
[[class]]), or
|
| 308 |
-
- whether the closure type is a POD class (Clause [[class]]).
|
| 309 |
|
| 310 |
An implementation shall not add members of rvalue reference type to the
|
| 311 |
closure type.
|
| 312 |
|
| 313 |
-
The closure type for a
|
| 314 |
-
|
|
|
|
| 315 |
return type are described by the *lambda-expression*’s
|
| 316 |
-
*parameter-declaration-clause* and *trailing-return-type* respectively
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
*parameter-declaration-clause* by replacing each occurrence of `auto` in
|
| 327 |
-
the *decl-specifier*s of the *parameter-declaration-clause* with the
|
| 328 |
-
name of the corresponding invented *template-parameter*.
|
| 329 |
|
| 330 |
[*Example 1*:
|
| 331 |
|
| 332 |
``` cpp
|
| 333 |
auto glambda = [](auto a, auto&& b) { return a < b; };
|
|
@@ -358,14 +475,17 @@ specified on a *lambda-expression* applies to the corresponding function
|
|
| 358 |
call operator or operator template. An *attribute-specifier-seq* in a
|
| 359 |
*lambda-declarator* appertains to the type of the corresponding function
|
| 360 |
call operator or operator template. The function call operator or any
|
| 361 |
given operator template specialization is a constexpr function if either
|
| 362 |
the corresponding *lambda-expression*'s *parameter-declaration-clause*
|
| 363 |
-
is followed by `constexpr`, or it satisfies the
|
| 364 |
-
constexpr function
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
[*Note
|
| 367 |
the context in which the *lambda-expression* appears. — *end note*]
|
| 368 |
|
| 369 |
[*Example 2*:
|
| 370 |
|
| 371 |
``` cpp
|
|
@@ -374,11 +494,11 @@ static_assert(ID(3) == 3); // OK
|
|
| 374 |
|
| 375 |
struct NonLiteral {
|
| 376 |
NonLiteral(int n) : n(n) { }
|
| 377 |
int n;
|
| 378 |
};
|
| 379 |
-
static_assert(ID(NonLiteral{3}).n == 3);
|
| 380 |
```
|
| 381 |
|
| 382 |
— *end example*]
|
| 383 |
|
| 384 |
[*Example 3*:
|
|
@@ -402,35 +522,65 @@ static_assert(add(one)(zero)() == one()); // OK
|
|
| 402 |
// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
|
| 403 |
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)
|
| 404 |
// in a constant expression.
|
| 405 |
auto two = monoid(2);
|
| 406 |
assert(two() == 2); // OK, not a constant expression.
|
| 407 |
-
static_assert(add(one)(one)() == two());
|
| 408 |
static_assert(add(one)(one)() == monoid(2)()); // OK
|
| 409 |
```
|
| 410 |
|
| 411 |
— *end example*]
|
| 412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
The closure type for a non-generic *lambda-expression* with no
|
| 414 |
-
*lambda-capture*
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
parameter types, as the function call operator template. The return type
|
| 427 |
-
of the pointer to function shall behave as if it were a
|
| 428 |
-
*decltype-specifier* denoting the return type of the corresponding
|
| 429 |
-
function call operator template specialization.
|
| 430 |
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
If the generic lambda has no *trailing-return-type* or the
|
| 434 |
*trailing-return-type* contains a placeholder type, return type
|
| 435 |
deduction of the corresponding function call operator template
|
| 436 |
specialization has to be done. The corresponding specialization is that
|
|
@@ -462,11 +612,11 @@ struct Closure {
|
|
| 462 |
};
|
| 463 |
```
|
| 464 |
|
| 465 |
— *end note*]
|
| 466 |
|
| 467 |
-
[*Example
|
| 468 |
|
| 469 |
``` cpp
|
| 470 |
void f1(int (*)(int)) { }
|
| 471 |
void f2(char (*)(int)) { }
|
| 472 |
|
|
@@ -487,19 +637,22 @@ int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK
|
|
| 487 |
— *end example*]
|
| 488 |
|
| 489 |
The value returned by any given specialization of this conversion
|
| 490 |
function template is the address of a function `F` that, when invoked,
|
| 491 |
has the same effect as invoking the generic lambda’s corresponding
|
| 492 |
-
function call operator template specialization
|
| 493 |
-
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
-
[*Note
|
| 496 |
generic lambda’s body. The instantiated generic lambda’s return type and
|
| 497 |
-
parameter types
|
| 498 |
-
pointer to function. — *end note*]
|
| 499 |
|
| 500 |
-
[*Example
|
| 501 |
|
| 502 |
``` cpp
|
| 503 |
auto GL = [](auto a) { std::cout << a; return a; };
|
| 504 |
int (*GL_int)(int) = GL; // OK: through conversion function template
|
| 505 |
GL_int(3); // OK: same as GL(3)
|
|
@@ -507,37 +660,36 @@ GL_int(3); // OK: same as GL(3)
|
|
| 507 |
|
| 508 |
— *end example*]
|
| 509 |
|
| 510 |
The conversion function or conversion function template is public,
|
| 511 |
constexpr, non-virtual, non-explicit, const, and has a non-throwing
|
| 512 |
-
exception specification
|
| 513 |
|
| 514 |
-
[*Example
|
| 515 |
|
| 516 |
``` cpp
|
| 517 |
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
|
| 518 |
auto C = [](auto a) { return a; };
|
| 519 |
|
| 520 |
static_assert(Fwd(C,3) == 3); // OK
|
| 521 |
|
| 522 |
// No specialization of the function call operator template can be constexpr (due to the local static).
|
| 523 |
auto NC = [](auto a) { static int s; return a; };
|
| 524 |
-
static_assert(Fwd(NC,3) == 3);
|
| 525 |
```
|
| 526 |
|
| 527 |
— *end example*]
|
| 528 |
|
| 529 |
The *lambda-expression*’s *compound-statement* yields the
|
| 530 |
-
*function-body*
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
*lambda-expression*.
|
| 537 |
|
| 538 |
-
[*Example
|
| 539 |
|
| 540 |
``` cpp
|
| 541 |
struct S1 {
|
| 542 |
int x, y;
|
| 543 |
int operator()(int);
|
|
@@ -555,22 +707,26 @@ struct S1 {
|
|
| 555 |
Further, a variable `__func__` is implicitly defined at the beginning of
|
| 556 |
the *compound-statement* of the *lambda-expression*, with semantics as
|
| 557 |
described in [[dcl.fct.def.general]].
|
| 558 |
|
| 559 |
The closure type associated with a *lambda-expression* has no default
|
| 560 |
-
constructor
|
| 561 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
-
[*Note
|
| 564 |
usual, and might therefore be defined as deleted. — *end note*]
|
| 565 |
|
| 566 |
The closure type associated with a *lambda-expression* has an
|
| 567 |
-
implicitly-declared destructor
|
| 568 |
|
| 569 |
-
A member of a closure type shall not be explicitly instantiated
|
| 570 |
-
[[temp.explicit]]
|
| 571 |
-
|
| 572 |
|
| 573 |
#### Captures <a id="expr.prim.lambda.capture">[[expr.prim.lambda.capture]]</a>
|
| 574 |
|
| 575 |
``` bnf
|
| 576 |
lambda-capture:
|
|
@@ -585,43 +741,43 @@ capture-default:
|
|
| 585 |
'='
|
| 586 |
```
|
| 587 |
|
| 588 |
``` bnf
|
| 589 |
capture-list:
|
| 590 |
-
capture
|
| 591 |
-
capture-list ',' capture
|
| 592 |
```
|
| 593 |
|
| 594 |
``` bnf
|
| 595 |
capture:
|
| 596 |
simple-capture
|
| 597 |
init-capture
|
| 598 |
```
|
| 599 |
|
| 600 |
``` bnf
|
| 601 |
simple-capture:
|
| 602 |
-
identifier
|
| 603 |
-
'&' identifier
|
| 604 |
-
|
| 605 |
-
'* this'
|
| 606 |
```
|
| 607 |
|
| 608 |
``` bnf
|
| 609 |
init-capture:
|
| 610 |
-
identifier initializer
|
| 611 |
-
'&' identifier initializer
|
| 612 |
```
|
| 613 |
|
| 614 |
The body of a *lambda-expression* may refer to variables with automatic
|
| 615 |
storage duration and the `*this` object (if any) of enclosing block
|
| 616 |
scopes by capturing those entities, as described below.
|
| 617 |
|
| 618 |
If a *lambda-capture* includes a *capture-default* that is `&`, no
|
| 619 |
identifier in a *simple-capture* of that *lambda-capture* shall be
|
| 620 |
preceded by `&`. If a *lambda-capture* includes a *capture-default* that
|
| 621 |
is `=`, each *simple-capture* of that *lambda-capture* shall be of the
|
| 622 |
-
form “`&` *identifier*” or “`* this`”.
|
| 623 |
|
| 624 |
[*Note 1*: The form `[&,this]` is redundant but accepted for
|
| 625 |
compatibility with ISO C++14. — *end note*]
|
| 626 |
|
| 627 |
Ignoring appearances in *initializer*s of *init-capture*s, an identifier
|
|
@@ -631,66 +787,62 @@ or `this` shall not appear more than once in a *lambda-capture*.
|
|
| 631 |
|
| 632 |
``` cpp
|
| 633 |
struct S2 { void f(int i); };
|
| 634 |
void S2::f(int i) {
|
| 635 |
[&, i]{ }; // OK
|
|
|
|
| 636 |
[&, &i]{ }; // error: i preceded by & when & is the default
|
| 637 |
[=, *this]{ }; // OK
|
| 638 |
-
[=, this]{ }; //
|
| 639 |
[i, i]{ }; // error: i repeated
|
| 640 |
[this, *this]{ }; // error: this appears twice
|
| 641 |
}
|
| 642 |
```
|
| 643 |
|
| 644 |
— *end example*]
|
| 645 |
|
| 646 |
-
A *lambda-expression*
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
including the innermost enclosing function and its parameters.
|
| 652 |
-
|
| 653 |
-
[*Note 2*: This reaching scope includes any intervening
|
| 654 |
-
*lambda-expression*s. — *end note*]
|
| 655 |
|
| 656 |
The *identifier* in a *simple-capture* is looked up using the usual
|
| 657 |
-
rules for unqualified name lookup
|
| 658 |
-
lookup shall find
|
| 659 |
-
*
|
| 660 |
-
|
| 661 |
-
variable with automatic storage duration declared in the reaching scope
|
| 662 |
-
of the local lambda expression.
|
| 663 |
|
| 664 |
If an *identifier* in a *simple-capture* appears as the *declarator-id*
|
| 665 |
of a parameter of the *lambda-declarator*'s
|
| 666 |
*parameter-declaration-clause*, the program is ill-formed.
|
| 667 |
|
| 668 |
[*Example 2*:
|
| 669 |
|
| 670 |
``` cpp
|
| 671 |
void f() {
|
| 672 |
int x = 0;
|
| 673 |
-
auto g = [x](int x) { return 0; } // error: parameter and simple-capture have the same name
|
| 674 |
}
|
| 675 |
```
|
| 676 |
|
| 677 |
— *end example*]
|
| 678 |
|
| 679 |
-
An *init-capture* behaves as if it declares and
|
| 680 |
-
variable of the form “`auto` *init-capture* `;`”
|
| 681 |
-
region is the *lambda-expression*’s
|
|
|
|
| 682 |
|
| 683 |
- if the capture is by copy (see below), the non-static data member
|
| 684 |
declared for the capture and the variable are treated as two different
|
| 685 |
ways of referring to the same object, which has the lifetime of the
|
| 686 |
non-static data member, and no additional copy and destruction is
|
| 687 |
performed, and
|
| 688 |
- if the capture is by reference, the variable’s lifetime ends when the
|
| 689 |
closure object’s lifetime ends.
|
| 690 |
|
| 691 |
-
[*Note
|
| 692 |
the second “`x`” must bind to a declaration in the surrounding
|
| 693 |
context. — *end note*]
|
| 694 |
|
| 695 |
[*Example 3*:
|
| 696 |
|
|
@@ -699,71 +851,100 @@ int x = 4;
|
|
| 699 |
auto y = [&r = x, x = x+1]()->int {
|
| 700 |
r += 2;
|
| 701 |
return x+2;
|
| 702 |
}(); // Updates ::x to 6, and initializes y to 7.
|
| 703 |
|
| 704 |
-
auto z = [a = 42](int a) { return 1; }
|
| 705 |
```
|
| 706 |
|
| 707 |
— *end example*]
|
| 708 |
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
(this excludes any *id-expression* that has been found to refer to an
|
| 712 |
-
*init-capture*'s associated non-static data member), is said to
|
| 713 |
-
*implicitly capture* the entity (i.e., `*this` or a variable) if the
|
| 714 |
-
*compound-statement*:
|
| 715 |
|
| 716 |
-
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 723 |
|
| 724 |
[*Example 4*:
|
| 725 |
|
| 726 |
``` cpp
|
| 727 |
-
void f(int, const int (&)[2] = {})
|
| 728 |
-
void f(const int&, const int (&)[1])
|
| 729 |
void test() {
|
| 730 |
const int x = 17;
|
| 731 |
auto g = [](auto a) {
|
| 732 |
f(x); // OK: calls #1, does not capture x
|
| 733 |
};
|
| 734 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
auto g2 = [=](auto a) {
|
| 736 |
int selector[sizeof(a) == 1 ? 1 : 2]{};
|
| 737 |
-
f(x, selector); // OK:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 738 |
};
|
| 739 |
}
|
| 740 |
```
|
| 741 |
|
|
|
|
|
|
|
|
|
|
| 742 |
— *end example*]
|
| 743 |
|
| 744 |
-
|
| 745 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 746 |
|
| 747 |
-
|
| 748 |
-
*lambda-expression* can cause its implicit capture by the containing
|
| 749 |
-
*lambda-expression* (see below). Implicit odr-uses of `this` can result
|
| 750 |
-
in implicit capture. — *end note*]
|
| 751 |
|
| 752 |
An entity is *captured* if it is captured explicitly or implicitly. An
|
| 753 |
-
entity captured by a *lambda-expression* is odr-used
|
| 754 |
-
|
| 755 |
-
`*this` is captured by a local lambda expression, its nearest enclosing
|
| 756 |
-
function shall be a non-static member function. If a *lambda-expression*
|
| 757 |
-
or an instantiation of the function call operator template of a generic
|
| 758 |
-
lambda odr-uses ([[basic.def.odr]]) `this` or a variable with automatic
|
| 759 |
-
storage duration from its reaching scope, that entity shall be captured
|
| 760 |
-
by the *lambda-expression*. If a *lambda-expression* captures an entity
|
| 761 |
-
and that entity is not defined or captured in the immediately enclosing
|
| 762 |
-
lambda expression or function, the program is ill-formed.
|
| 763 |
|
| 764 |
-
[*
|
|
|
|
|
|
|
|
|
|
|
|
|
| 765 |
|
| 766 |
``` cpp
|
| 767 |
void f1(int i) {
|
| 768 |
int const N = 20;
|
| 769 |
auto m1 = [=]{
|
|
@@ -777,14 +958,15 @@ void f1(int i) {
|
|
| 777 |
int f;
|
| 778 |
void work(int n) {
|
| 779 |
int m = n*n;
|
| 780 |
int j = 40;
|
| 781 |
auto m3 = [this,m] {
|
| 782 |
-
auto m4 = [&,j] { // error: j not
|
| 783 |
-
int x = n; // error: n
|
| 784 |
x += m; // OK: m implicitly captured by m4 and explicitly captured by m3
|
| 785 |
-
x += i; // error: i is
|
|
|
|
| 786 |
x += f; // OK: this captured implicitly by m4 and explicitly by m3
|
| 787 |
};
|
| 788 |
};
|
| 789 |
}
|
| 790 |
};
|
|
@@ -794,11 +976,11 @@ struct s2 {
|
|
| 794 |
double ohseven = .007;
|
| 795 |
auto f() {
|
| 796 |
return [this] {
|
| 797 |
return [*this] {
|
| 798 |
return ohseven; // OK
|
| 799 |
-
}
|
| 800 |
}();
|
| 801 |
}
|
| 802 |
auto g() {
|
| 803 |
return [] {
|
| 804 |
return [*this] { }; // error: *this not captured by outer lambda-expression
|
|
@@ -807,23 +989,30 @@ struct s2 {
|
|
| 807 |
};
|
| 808 |
```
|
| 809 |
|
| 810 |
— *end example*]
|
| 811 |
|
| 812 |
-
|
| 813 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 814 |
|
| 815 |
-
[*Example
|
| 816 |
|
| 817 |
``` cpp
|
| 818 |
void f2() {
|
| 819 |
int i = 1;
|
| 820 |
-
void g1(int = ([i]{ return i; })()); //
|
| 821 |
-
void g2(int = ([i]{ return 0; })()); //
|
| 822 |
-
void g3(int = ([=]{ return i; })()); //
|
| 823 |
void g4(int = ([=]{ return 0; })()); // OK
|
| 824 |
void g5(int = ([]{ return sizeof i; })()); // OK
|
|
|
|
|
|
|
| 825 |
}
|
| 826 |
```
|
| 827 |
|
| 828 |
— *end example*]
|
| 829 |
|
|
@@ -841,36 +1030,24 @@ the entity is a reference to an object, an lvalue reference to the
|
|
| 841 |
referenced function type if the entity is a reference to a function, or
|
| 842 |
the type of the corresponding captured entity otherwise. A member of an
|
| 843 |
anonymous union shall not be captured by copy.
|
| 844 |
|
| 845 |
Every *id-expression* within the *compound-statement* of a
|
| 846 |
-
*lambda-expression* that is an odr-use
|
| 847 |
captured by copy is transformed into an access to the corresponding
|
| 848 |
unnamed data member of the closure type.
|
| 849 |
|
| 850 |
-
[*Note
|
| 851 |
-
original entity, never to a member of the closure type.
|
| 852 |
-
|
| 853 |
entity. — *end note*]
|
| 854 |
|
| 855 |
-
If `*this` is captured by copy, each odr-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
|
| 859 |
-
[*
|
| 860 |
-
prvalue. — *end note*]
|
| 861 |
-
|
| 862 |
-
An *id-expression* within the *compound-statement* of a
|
| 863 |
-
*lambda-expression* that is an odr-use of a reference captured by
|
| 864 |
-
reference refers to the entity to which the captured reference is bound
|
| 865 |
-
and not to the captured reference.
|
| 866 |
-
|
| 867 |
-
[*Note 7*: The validity of such captures is determined by the lifetime
|
| 868 |
-
of the object to which the reference refers, not by the lifetime of the
|
| 869 |
-
reference itself. — *end note*]
|
| 870 |
-
|
| 871 |
-
[*Example 7*:
|
| 872 |
|
| 873 |
``` cpp
|
| 874 |
void f(const int*);
|
| 875 |
void g() {
|
| 876 |
const int N = 10;
|
|
@@ -878,27 +1055,21 @@ void g() {
|
|
| 878 |
int arr[N]; // OK: not an odr-use, refers to automatic variable
|
| 879 |
f(&N); // OK: causes N to be captured; &N points to
|
| 880 |
// the corresponding member of the closure type
|
| 881 |
};
|
| 882 |
}
|
| 883 |
-
auto h(int &r) {
|
| 884 |
-
return [&] {
|
| 885 |
-
++r; // Valid after h returns if the lifetime of the
|
| 886 |
-
// object to which r is bound has not ended
|
| 887 |
-
};
|
| 888 |
-
}
|
| 889 |
```
|
| 890 |
|
| 891 |
— *end example*]
|
| 892 |
|
| 893 |
An entity is *captured by reference* if it is implicitly or explicitly
|
| 894 |
captured but not captured by copy. It is unspecified whether additional
|
| 895 |
unnamed non-static data members are declared in the closure type for
|
| 896 |
entities captured by reference. If declared, such non-static data
|
| 897 |
members shall be of literal type.
|
| 898 |
|
| 899 |
-
[*Example
|
| 900 |
|
| 901 |
``` cpp
|
| 902 |
// The inner closure type must be a literal type regardless of how reference captures are represented.
|
| 903 |
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);
|
| 904 |
```
|
|
@@ -906,22 +1077,44 @@ static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);
|
|
| 906 |
— *end example*]
|
| 907 |
|
| 908 |
A bit-field or a member of an anonymous union shall not be captured by
|
| 909 |
reference.
|
| 910 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 911 |
If a *lambda-expression* `m2` captures an entity and that entity is
|
| 912 |
captured by an immediately enclosing *lambda-expression* `m1`, then
|
| 913 |
`m2`’s capture is transformed as follows:
|
| 914 |
|
| 915 |
- if `m1` captures the entity by copy, `m2` captures the corresponding
|
| 916 |
non-static data member of `m1`’s closure type;
|
| 917 |
- if `m1` captures the entity by reference, `m2` captures the same
|
| 918 |
entity captured by `m1`.
|
| 919 |
|
| 920 |
-
[*Example
|
| 921 |
|
| 922 |
-
The nested lambda
|
| 923 |
`123234`.
|
| 924 |
|
| 925 |
``` cpp
|
| 926 |
int a = 1, b = 1, c = 1;
|
| 927 |
auto m1 = [a, &b, &c]() mutable {
|
|
@@ -937,70 +1130,52 @@ m1();
|
|
| 937 |
std::cout << a << b << c;
|
| 938 |
```
|
| 939 |
|
| 940 |
— *end example*]
|
| 941 |
|
| 942 |
-
Every occurrence of `decltype((x))` where `x` is a possibly
|
| 943 |
-
parenthesized *id-expression* that names an entity of automatic storage
|
| 944 |
-
duration is treated as if `x` were transformed into an access to a
|
| 945 |
-
corresponding data member of the closure type that would have been
|
| 946 |
-
declared if `x` were an odr-use of the denoted entity.
|
| 947 |
-
|
| 948 |
-
[*Example 10*:
|
| 949 |
-
|
| 950 |
-
``` cpp
|
| 951 |
-
void f3() {
|
| 952 |
-
float x, &r = x;
|
| 953 |
-
[=] { // x and r are not captured (appearance in a decltype operand is not an odr-use)
|
| 954 |
-
decltype(x) y1; // y1 has type float
|
| 955 |
-
decltype((x)) y2 = y1; // y2 has type float const& because this lambda is not mutable and x is an lvalue
|
| 956 |
-
decltype(r) r1 = y1; // r1 has type float& (transformation not considered)
|
| 957 |
-
decltype((r)) r2 = y2; // r2 has type float const&
|
| 958 |
-
};
|
| 959 |
-
}
|
| 960 |
-
```
|
| 961 |
-
|
| 962 |
-
— *end example*]
|
| 963 |
-
|
| 964 |
When the *lambda-expression* is evaluated, the entities that are
|
| 965 |
captured by copy are used to direct-initialize each corresponding
|
| 966 |
non-static data member of the resulting closure object, and the
|
| 967 |
non-static data members corresponding to the *init-capture*s are
|
| 968 |
initialized as indicated by the corresponding *initializer* (which may
|
| 969 |
be copy- or direct-initialization). (For array members, the array
|
| 970 |
elements are direct-initialized in increasing subscript order.) These
|
| 971 |
initializations are performed in the (unspecified) order in which the
|
| 972 |
non-static data members are declared.
|
| 973 |
|
| 974 |
-
[*Note
|
| 975 |
order of the constructions. — *end note*]
|
| 976 |
|
| 977 |
-
[*Note
|
| 978 |
captured by reference, invoking the function call operator of the
|
| 979 |
corresponding *lambda-expression* after the lifetime of the entity has
|
| 980 |
ended is likely to result in undefined behavior. — *end note*]
|
| 981 |
|
| 982 |
-
A *simple-capture*
|
| 983 |
-
[[temp.variadic]]
|
| 984 |
-
|
|
|
|
| 985 |
|
| 986 |
-
[*Example
|
| 987 |
|
| 988 |
``` cpp
|
| 989 |
template<class... Args>
|
| 990 |
void f(Args... args) {
|
| 991 |
auto lm = [&, args...] { return g(args...); };
|
| 992 |
lm();
|
|
|
|
|
|
|
|
|
|
| 993 |
}
|
| 994 |
```
|
| 995 |
|
| 996 |
— *end example*]
|
| 997 |
|
| 998 |
### Fold expressions <a id="expr.prim.fold">[[expr.prim.fold]]</a>
|
| 999 |
|
| 1000 |
-
A fold expression performs a fold of a
|
| 1001 |
-
|
| 1002 |
|
| 1003 |
``` bnf
|
| 1004 |
fold-expression:
|
| 1005 |
'(' cast-expression fold-operator '...' ')'
|
| 1006 |
'(' '...' fold-operator cast-expression ')'
|
|
@@ -1019,20 +1194,19 @@ fold-operator: one of
|
|
| 1019 |
An expression of the form `(...` *op* `e)` where *op* is a
|
| 1020 |
*fold-operator* is called a *unary left fold*. An expression of the form
|
| 1021 |
`(e` *op* `...)` where *op* is a *fold-operator* is called a *unary
|
| 1022 |
right fold*. Unary left folds and unary right folds are collectively
|
| 1023 |
called *unary folds*. In a unary fold, the *cast-expression* shall
|
| 1024 |
-
contain an unexpanded
|
| 1025 |
|
| 1026 |
An expression of the form `(e1` *op1* `...` *op2* `e2)` where *op1* and
|
| 1027 |
*op2* are *fold-operator*s is called a *binary fold*. In a binary fold,
|
| 1028 |
*op1* and *op2* shall be the same *fold-operator*, and either `e1` shall
|
| 1029 |
-
contain an unexpanded
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
fold*.
|
| 1034 |
|
| 1035 |
[*Example 1*:
|
| 1036 |
|
| 1037 |
``` cpp
|
| 1038 |
template<typename ...Args>
|
|
@@ -1040,11 +1214,315 @@ bool f(Args ...args) {
|
|
| 1040 |
return (true && ... && args); // OK
|
| 1041 |
}
|
| 1042 |
|
| 1043 |
template<typename ...Args>
|
| 1044 |
bool f(Args ...args) {
|
| 1045 |
-
return (args + ... + args); // error: both operands contain unexpanded
|
| 1046 |
}
|
| 1047 |
```
|
| 1048 |
|
| 1049 |
— *end example*]
|
| 1050 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
## Primary expressions <a id="expr.prim">[[expr.prim]]</a>
|
| 2 |
|
| 3 |
``` bnf
|
| 4 |
primary-expression:
|
| 5 |
literal
|
| 6 |
+
this
|
| 7 |
'(' expression ')'
|
| 8 |
id-expression
|
| 9 |
lambda-expression
|
| 10 |
fold-expression
|
| 11 |
+
requires-expression
|
| 12 |
```
|
| 13 |
|
| 14 |
### Literals <a id="expr.prim.literal">[[expr.prim.literal]]</a>
|
| 15 |
|
| 16 |
+
A *literal* is a primary expression. The type of a *literal* is
|
| 17 |
+
determined based on its form as specified in [[lex.literal]]. A
|
| 18 |
+
*string-literal* is an lvalue, a *user-defined-literal* has the same
|
| 19 |
+
value category as the corresponding operator call expression described
|
| 20 |
+
in [[lex.ext]], and any other *literal* is a prvalue.
|
| 21 |
|
| 22 |
### This <a id="expr.prim.this">[[expr.prim.this]]</a>
|
| 23 |
|
| 24 |
The keyword `this` names a pointer to the object for which a non-static
|
| 25 |
+
member function [[class.this]] is invoked or a non-static data member’s
|
| 26 |
+
initializer [[class.mem]] is evaluated.
|
| 27 |
|
| 28 |
If a declaration declares a member function or member function template
|
| 29 |
of a class `X`, the expression `this` is a prvalue of type “pointer to
|
| 30 |
*cv-qualifier-seq* `X`” between the optional *cv-qualifier-seq* and the
|
| 31 |
end of the *function-definition*, *member-declarator*, or *declarator*.
|
|
|
|
| 35 |
as they are within a non-static member function).
|
| 36 |
|
| 37 |
[*Note 1*: This is because declaration matching does not occur until
|
| 38 |
the complete declarator is known. — *end note*]
|
| 39 |
|
| 40 |
+
[*Note 2*:
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
In a *trailing-return-type*, the class being defined is not required to
|
| 43 |
+
be complete for purposes of class member access [[expr.ref]]. Class
|
| 44 |
+
members declared later are not visible.
|
| 45 |
|
| 46 |
[*Example 1*:
|
| 47 |
|
| 48 |
``` cpp
|
| 49 |
struct A {
|
|
|
|
| 54 |
template auto A::f(int t) -> decltype(t + g());
|
| 55 |
```
|
| 56 |
|
| 57 |
— *end example*]
|
| 58 |
|
| 59 |
+
— *end note*]
|
| 60 |
+
|
| 61 |
+
Otherwise, if a *member-declarator* declares a non-static data member
|
| 62 |
+
[[class.mem]] of a class `X`, the expression `this` is a prvalue of type
|
| 63 |
+
“pointer to `X`” within the optional default member initializer
|
| 64 |
+
[[class.mem]]. It shall not appear elsewhere in the *member-declarator*.
|
| 65 |
|
| 66 |
The expression `this` shall not appear in any other context.
|
| 67 |
|
| 68 |
[*Example 2*:
|
| 69 |
|
|
|
|
| 85 |
— *end example*]
|
| 86 |
|
| 87 |
### Parentheses <a id="expr.prim.paren">[[expr.prim.paren]]</a>
|
| 88 |
|
| 89 |
A parenthesized expression `(E)` is a primary expression whose type,
|
| 90 |
+
value, and value category are identical to those of E. The parenthesized
|
| 91 |
+
expression can be used in exactly the same contexts as those where E can
|
| 92 |
+
be used, and with the same meaning, except as otherwise indicated.
|
|
|
|
| 93 |
|
| 94 |
### Names <a id="expr.prim.id">[[expr.prim.id]]</a>
|
| 95 |
|
| 96 |
``` bnf
|
| 97 |
id-expression:
|
|
|
|
| 99 |
qualified-id
|
| 100 |
```
|
| 101 |
|
| 102 |
An *id-expression* is a restricted form of a *primary-expression*.
|
| 103 |
|
| 104 |
+
[*Note 1*: An *id-expression* can appear after `.` and `->` operators
|
| 105 |
+
[[expr.ref]]. — *end note*]
|
| 106 |
|
| 107 |
An *id-expression* that denotes a non-static data member or non-static
|
| 108 |
member function of a class can only be used:
|
| 109 |
|
| 110 |
+
- as part of a class member access [[expr.ref]] in which the object
|
| 111 |
+
expression refers to the member’s class[^10] or a class derived from
|
| 112 |
that class, or
|
| 113 |
+
- to form a pointer to member [[expr.unary.op]], or
|
| 114 |
- if that *id-expression* denotes a non-static data member and it
|
| 115 |
appears in an unevaluated operand.
|
| 116 |
\[*Example 1*:
|
| 117 |
``` cpp
|
| 118 |
struct S {
|
|
|
|
| 122 |
int j = sizeof(S::m + 42); // OK
|
| 123 |
```
|
| 124 |
|
| 125 |
— *end example*]
|
| 126 |
|
| 127 |
+
A potentially-evaluated *id-expression* that denotes an immediate
|
| 128 |
+
function [[dcl.constexpr]] shall appear only
|
| 129 |
+
|
| 130 |
+
- as a subexpression of an immediate invocation, or
|
| 131 |
+
- in an immediate function context [[expr.const]].
|
| 132 |
+
|
| 133 |
+
For an *id-expression* that denotes an overload set, overload resolution
|
| 134 |
+
is performed to select a unique function ([[over.match]],
|
| 135 |
+
[[over.over]]).
|
| 136 |
+
|
| 137 |
+
[*Note 2*:
|
| 138 |
+
|
| 139 |
+
A program cannot refer to a function with a trailing *requires-clause*
|
| 140 |
+
whose *constraint-expression* is not satisfied, because such functions
|
| 141 |
+
are never selected by overload resolution.
|
| 142 |
+
|
| 143 |
+
[*Example 2*:
|
| 144 |
+
|
| 145 |
+
``` cpp
|
| 146 |
+
template<typename T> struct A {
|
| 147 |
+
static void f(int) requires false;
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
void g() {
|
| 151 |
+
A<int>::f(0); // error: cannot call f
|
| 152 |
+
void (*p1)(int) = A<int>::f; // error: cannot take the address of f
|
| 153 |
+
decltype(A<int>::f)* p2 = nullptr; // error: the type decltype(A<int>::f) is invalid
|
| 154 |
+
}
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
In each case, the constraints of `f` are not satisfied. In the
|
| 158 |
+
declaration of `p2`, those constraints are required to be satisfied even
|
| 159 |
+
though `f` is an unevaluated operand [[expr.prop]].
|
| 160 |
+
|
| 161 |
+
— *end example*]
|
| 162 |
+
|
| 163 |
+
— *end note*]
|
| 164 |
+
|
| 165 |
#### Unqualified names <a id="expr.prim.id.unqual">[[expr.prim.id.unqual]]</a>
|
| 166 |
|
| 167 |
``` bnf
|
| 168 |
unqualified-id:
|
| 169 |
identifier
|
| 170 |
operator-function-id
|
| 171 |
conversion-function-id
|
| 172 |
literal-operator-id
|
| 173 |
+
'~' type-name
|
| 174 |
'~' decltype-specifier
|
| 175 |
template-id
|
| 176 |
```
|
| 177 |
|
| 178 |
+
An *identifier* is only an *id-expression* if it has been suitably
|
| 179 |
+
declared [[dcl.dcl]] or if it appears as part of a *declarator-id*
|
| 180 |
+
[[dcl.decl]]. An *identifier* that names a coroutine parameter refers to
|
| 181 |
+
the copy of the parameter [[dcl.fct.def.coroutine]].
|
| 182 |
|
| 183 |
[*Note 1*: For *operator-function-id*s, see [[over.oper]]; for
|
| 184 |
*conversion-function-id*s, see [[class.conv.fct]]; for
|
| 185 |
*literal-operator-id*s, see [[over.literal]]; for *template-id*s, see
|
| 186 |
+
[[temp.names]]. A *type-name* or *decltype-specifier* prefixed by `~`
|
| 187 |
+
denotes the destructor of the type so named; see [[expr.prim.id.dtor]].
|
| 188 |
+
Within the definition of a non-static member function, an *identifier*
|
| 189 |
+
that names a non-static member is transformed to a class member access
|
| 190 |
+
expression ([[class.mfct.non-static]]). — *end note*]
|
| 191 |
+
|
| 192 |
+
The result is the entity denoted by the identifier. If the entity is a
|
| 193 |
+
local entity and naming it from outside of an unevaluated operand within
|
| 194 |
+
the declarative region where the *unqualified-id* appears would result
|
| 195 |
+
in some intervening *lambda-expression* capturing it by copy
|
| 196 |
+
[[expr.prim.lambda.capture]], the type of the expression is the type of
|
| 197 |
+
a class member access expression [[expr.ref]] naming the non-static data
|
| 198 |
+
member that would be declared for such a capture in the closure object
|
| 199 |
+
of the innermost such intervening *lambda-expression*.
|
| 200 |
+
|
| 201 |
+
[*Note 2*: If that *lambda-expression* is not declared `mutable`, the
|
| 202 |
+
type of such an identifier will typically be `const`
|
| 203 |
+
qualified. — *end note*]
|
| 204 |
+
|
| 205 |
+
The type of the expression is the type of the result.
|
| 206 |
+
|
| 207 |
+
[*Note 3*: If the entity is a template parameter object for a template
|
| 208 |
+
parameter of type `T` [[temp.param]], the type of the expression is
|
| 209 |
+
`const T`. — *end note*]
|
| 210 |
+
|
| 211 |
+
[*Note 4*: The type will be adjusted as described in [[expr.type]] if
|
| 212 |
+
it is cv-qualified or is a reference type. — *end note*]
|
| 213 |
+
|
| 214 |
+
The expression is an lvalue if the entity is a function, variable,
|
| 215 |
+
structured binding [[dcl.struct.bind]], data member, or template
|
| 216 |
+
parameter object and a prvalue otherwise [[basic.lval]]; it is a
|
| 217 |
+
bit-field if the identifier designates a bit-field.
|
| 218 |
+
|
| 219 |
+
[*Example 1*:
|
| 220 |
+
|
| 221 |
+
``` cpp
|
| 222 |
+
void f() {
|
| 223 |
+
float x, &r = x;
|
| 224 |
+
[=] {
|
| 225 |
+
decltype(x) y1; // y1 has type float
|
| 226 |
+
decltype((x)) y2 = y1; // y2 has type float const& because this lambda
|
| 227 |
+
// is not mutable and x is an lvalue
|
| 228 |
+
decltype(r) r1 = y1; // r1 has type float&
|
| 229 |
+
decltype((r)) r2 = y2; // r2 has type float const&
|
| 230 |
+
};
|
| 231 |
+
}
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
— *end example*]
|
| 235 |
|
| 236 |
#### Qualified names <a id="expr.prim.id.qual">[[expr.prim.id.qual]]</a>
|
| 237 |
|
| 238 |
``` bnf
|
| 239 |
qualified-id:
|
| 240 |
+
nested-name-specifier templateₒₚₜ unqualified-id
|
| 241 |
```
|
| 242 |
|
| 243 |
``` bnf
|
| 244 |
nested-name-specifier:
|
| 245 |
'::'
|
| 246 |
type-name '::'
|
| 247 |
namespace-name '::'
|
| 248 |
decltype-specifier '::'
|
| 249 |
nested-name-specifier identifier '::'
|
| 250 |
+
nested-name-specifier templateₒₚₜ simple-template-id '::'
|
| 251 |
```
|
| 252 |
|
| 253 |
The type denoted by a *decltype-specifier* in a *nested-name-specifier*
|
| 254 |
shall be a class or enumeration type.
|
| 255 |
|
| 256 |
A *nested-name-specifier* that denotes a class, optionally followed by
|
| 257 |
+
the keyword `template` [[temp.names]], and then followed by the name of
|
| 258 |
+
a member of either that class [[class.mem]] or one of its base classes
|
| 259 |
+
[[class.derived]], is a *qualified-id*; [[class.qual]] describes name
|
| 260 |
+
lookup for class members that appear in *qualified-id*s. The result is
|
| 261 |
+
the member. The type of the result is the type of the member. The result
|
| 262 |
+
is an lvalue if the member is a static member function or a data member
|
| 263 |
+
and a prvalue otherwise.
|
| 264 |
|
| 265 |
[*Note 1*: A class member can be referred to using a *qualified-id* at
|
| 266 |
+
any point in its potential scope [[basic.scope.class]]. — *end note*]
|
|
|
|
| 267 |
|
| 268 |
+
Where *type-name* `::~` *type-name* is used, the two *type-name*s shall
|
| 269 |
+
refer to the same type (ignoring cv-qualifications); this notation
|
| 270 |
+
denotes the destructor of the type so named [[expr.prim.id.dtor]]. The
|
| 271 |
+
*unqualified-id* in a *qualified-id* shall not be of the form
|
| 272 |
+
`~`*decltype-specifier*.
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
The *nested-name-specifier* `::` names the global namespace. A
|
| 275 |
+
*nested-name-specifier* that names a namespace [[basic.namespace]],
|
| 276 |
+
optionally followed by the keyword `template` [[temp.names]], and then
|
| 277 |
+
followed by the name of a member of that namespace (or the name of a
|
| 278 |
+
member of a namespace made visible by a *using-directive*), is a
|
| 279 |
*qualified-id*; [[namespace.qual]] describes name lookup for namespace
|
| 280 |
members that appear in *qualified-id*s. The result is the member. The
|
| 281 |
type of the result is the type of the member. The result is an lvalue if
|
| 282 |
+
the member is a function, a variable, or a structured binding
|
| 283 |
+
[[dcl.struct.bind]] and a prvalue otherwise.
|
| 284 |
|
| 285 |
+
A *nested-name-specifier* that denotes an enumeration [[dcl.enum]],
|
| 286 |
followed by the name of an enumerator of that enumeration, is a
|
| 287 |
*qualified-id* that refers to the enumerator. The result is the
|
| 288 |
enumerator. The type of the result is the type of the enumeration. The
|
| 289 |
result is a prvalue.
|
| 290 |
|
| 291 |
In a *qualified-id*, if the *unqualified-id* is a
|
| 292 |
+
*conversion-function-id*, its *conversion-type-id* is first looked up in
|
| 293 |
+
the class denoted by the *nested-name-specifier* of the *qualified-id*
|
| 294 |
+
and the name, if found, is used. Otherwise, it is looked up in the
|
| 295 |
+
context in which the entire *qualified-id* occurs. In each of these
|
| 296 |
+
lookups, only names that denote types or templates whose specializations
|
| 297 |
+
are types are considered.
|
| 298 |
+
|
| 299 |
+
#### Destruction <a id="expr.prim.id.dtor">[[expr.prim.id.dtor]]</a>
|
| 300 |
+
|
| 301 |
+
An *id-expression* that denotes the destructor of a type `T` names the
|
| 302 |
+
destructor of `T` if `T` is a class type [[class.dtor]], otherwise the
|
| 303 |
+
*id-expression* is said to name a *pseudo-destructor*.
|
| 304 |
+
|
| 305 |
+
If the *id-expression* names a pseudo-destructor, `T` shall be a scalar
|
| 306 |
+
type and the *id-expression* shall appear as the right operand of a
|
| 307 |
+
class member access [[expr.ref]] that forms the *postfix-expression* of
|
| 308 |
+
a function call [[expr.call]].
|
| 309 |
+
|
| 310 |
+
[*Note 1*: Such a call ends the lifetime of the object ([[expr.call]],
|
| 311 |
+
[[basic.life]]). — *end note*]
|
| 312 |
+
|
| 313 |
+
[*Example 1*:
|
| 314 |
+
|
| 315 |
+
``` cpp
|
| 316 |
+
struct C { };
|
| 317 |
+
void f() {
|
| 318 |
+
C * pc = new C;
|
| 319 |
+
using C2 = C;
|
| 320 |
+
pc->C::~C2(); // OK, destroys *pc
|
| 321 |
+
C().C::~C(); // undefined behavior: temporary of type C destroyed twice
|
| 322 |
+
using T = int;
|
| 323 |
+
0 .T::~T(); // OK, no effect
|
| 324 |
+
0.T::~T(); // error: 0.T is a user-defined-floating-point-literal[lex.ext]
|
| 325 |
+
}
|
| 326 |
+
```
|
| 327 |
+
|
| 328 |
+
— *end example*]
|
| 329 |
|
| 330 |
### Lambda expressions <a id="expr.prim.lambda">[[expr.prim.lambda]]</a>
|
| 331 |
|
| 332 |
``` bnf
|
| 333 |
lambda-expression:
|
| 334 |
lambda-introducer lambda-declaratorₒₚₜ compound-statement
|
| 335 |
+
lambda-introducer '<' template-parameter-list '>' requires-clauseₒₚₜ lambda-declaratorₒₚₜ compound-statement
|
| 336 |
```
|
| 337 |
|
| 338 |
``` bnf
|
| 339 |
lambda-introducer:
|
| 340 |
'[' lambda-captureₒₚₜ ']'
|
| 341 |
```
|
| 342 |
|
| 343 |
``` bnf
|
| 344 |
lambda-declarator:
|
| 345 |
'(' parameter-declaration-clause ')' decl-specifier-seqₒₚₜ
|
| 346 |
+
noexcept-specifierₒₚₜ attribute-specifier-seqₒₚₜ trailing-return-typeₒₚₜ requires-clauseₒₚₜ
|
| 347 |
```
|
| 348 |
|
| 349 |
+
A *lambda-expression* provides a concise way to create a simple function
|
| 350 |
+
object.
|
| 351 |
|
| 352 |
[*Example 1*:
|
| 353 |
|
| 354 |
``` cpp
|
| 355 |
#include <algorithm>
|
|
|
|
| 360 |
```
|
| 361 |
|
| 362 |
— *end example*]
|
| 363 |
|
| 364 |
A *lambda-expression* is a prvalue whose result object is called the
|
| 365 |
+
*closure object*.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
[*Note 1*: A closure object behaves like a function object
|
| 368 |
+
[[function.objects]]. — *end note*]
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
In the *decl-specifier-seq* of the *lambda-declarator*, each
|
| 371 |
+
*decl-specifier* shall be one of `mutable`, `constexpr`, or `consteval`.
|
| 372 |
+
|
| 373 |
+
[*Note 2*: The trailing *requires-clause* is described in
|
| 374 |
+
[[dcl.decl]]. — *end note*]
|
| 375 |
|
| 376 |
If a *lambda-expression* does not include a *lambda-declarator*, it is
|
| 377 |
as if the *lambda-declarator* were `()`. The lambda return type is
|
| 378 |
`auto`, which is replaced by the type specified by the
|
| 379 |
*trailing-return-type* if provided and/or deduced from `return`
|
|
|
|
| 388 |
auto x3 = []()->auto&& { return j; }; // OK: return type is int&
|
| 389 |
```
|
| 390 |
|
| 391 |
— *end example*]
|
| 392 |
|
| 393 |
+
A lambda is a *generic lambda* if the *lambda-expression* has any
|
| 394 |
+
generic parameter type placeholders [[dcl.spec.auto]], or if the lambda
|
| 395 |
+
has a *template-parameter-list*.
|
| 396 |
+
|
| 397 |
+
[*Example 3*:
|
| 398 |
+
|
| 399 |
+
``` cpp
|
| 400 |
+
int i = [](int i, auto a) { return i; }(3, 4); // OK: a generic lambda
|
| 401 |
+
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK: a generic lambda
|
| 402 |
+
```
|
| 403 |
+
|
| 404 |
+
— *end example*]
|
| 405 |
+
|
| 406 |
#### Closure types <a id="expr.prim.lambda.closure">[[expr.prim.lambda.closure]]</a>
|
| 407 |
|
| 408 |
The type of a *lambda-expression* (which is also the type of the closure
|
| 409 |
object) is a unique, unnamed non-union class type, called the *closure
|
| 410 |
type*, whose properties are described below.
|
| 411 |
|
| 412 |
The closure type is declared in the smallest block scope, class scope,
|
| 413 |
or namespace scope that contains the corresponding *lambda-expression*.
|
| 414 |
|
| 415 |
[*Note 1*: This determines the set of namespaces and classes associated
|
| 416 |
+
with the closure type [[basic.lookup.argdep]]. The parameter types of a
|
| 417 |
+
*lambda-declarator* do not affect these associated namespaces and
|
| 418 |
classes. — *end note*]
|
| 419 |
|
| 420 |
+
The closure type is not an aggregate type [[dcl.init.aggr]]. An
|
| 421 |
implementation may define the closure type differently from what is
|
| 422 |
described below provided this does not alter the observable behavior of
|
| 423 |
the program other than by changing:
|
| 424 |
|
| 425 |
- the size and/or alignment of the closure type,
|
| 426 |
+
- whether the closure type is trivially copyable [[class.prop]], or
|
| 427 |
+
- whether the closure type is a standard-layout class [[class.prop]].
|
|
|
|
|
|
|
| 428 |
|
| 429 |
An implementation shall not add members of rvalue reference type to the
|
| 430 |
closure type.
|
| 431 |
|
| 432 |
+
The closure type for a *lambda-expression* has a public inline function
|
| 433 |
+
call operator (for a non-generic lambda) or function call operator
|
| 434 |
+
template (for a generic lambda) [[over.call]] whose parameters and
|
| 435 |
return type are described by the *lambda-expression*’s
|
| 436 |
+
*parameter-declaration-clause* and *trailing-return-type* respectively,
|
| 437 |
+
and whose *template-parameter-list* consists of the specified
|
| 438 |
+
*template-parameter-list*, if any. The *requires-clause* of the function
|
| 439 |
+
call operator template is the *requires-clause* immediately following
|
| 440 |
+
`<` *template-parameter-list* `>`, if any. The trailing
|
| 441 |
+
*requires-clause* of the function call operator or operator template is
|
| 442 |
+
the *requires-clause* of the *lambda-declarator*, if any.
|
| 443 |
+
|
| 444 |
+
[*Note 2*: The function call operator template for a generic lambda
|
| 445 |
+
might be an abbreviated function template [[dcl.fct]]. — *end note*]
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
[*Example 1*:
|
| 448 |
|
| 449 |
``` cpp
|
| 450 |
auto glambda = [](auto a, auto&& b) { return a < b; };
|
|
|
|
| 475 |
call operator or operator template. An *attribute-specifier-seq* in a
|
| 476 |
*lambda-declarator* appertains to the type of the corresponding function
|
| 477 |
call operator or operator template. The function call operator or any
|
| 478 |
given operator template specialization is a constexpr function if either
|
| 479 |
the corresponding *lambda-expression*'s *parameter-declaration-clause*
|
| 480 |
+
is followed by `constexpr` or `consteval`, or it satisfies the
|
| 481 |
+
requirements for a constexpr function [[dcl.constexpr]]. It is an
|
| 482 |
+
immediate function [[dcl.constexpr]] if the corresponding
|
| 483 |
+
*lambda-expression*'s *parameter-declaration-clause* is followed by
|
| 484 |
+
`consteval`.
|
| 485 |
|
| 486 |
+
[*Note 3*: Names referenced in the *lambda-declarator* are looked up in
|
| 487 |
the context in which the *lambda-expression* appears. — *end note*]
|
| 488 |
|
| 489 |
[*Example 2*:
|
| 490 |
|
| 491 |
``` cpp
|
|
|
|
| 494 |
|
| 495 |
struct NonLiteral {
|
| 496 |
NonLiteral(int n) : n(n) { }
|
| 497 |
int n;
|
| 498 |
};
|
| 499 |
+
static_assert(ID(NonLiteral{3}).n == 3); // error
|
| 500 |
```
|
| 501 |
|
| 502 |
— *end example*]
|
| 503 |
|
| 504 |
[*Example 3*:
|
|
|
|
| 522 |
// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
|
| 523 |
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)
|
| 524 |
// in a constant expression.
|
| 525 |
auto two = monoid(2);
|
| 526 |
assert(two() == 2); // OK, not a constant expression.
|
| 527 |
+
static_assert(add(one)(one)() == two()); // error: two() is not a constant expression
|
| 528 |
static_assert(add(one)(one)() == monoid(2)()); // OK
|
| 529 |
```
|
| 530 |
|
| 531 |
— *end example*]
|
| 532 |
|
| 533 |
+
[*Note 4*:
|
| 534 |
+
|
| 535 |
+
The function call operator or operator template may be constrained
|
| 536 |
+
[[temp.constr.decl]] by a *type-constraint* [[temp.param]], a
|
| 537 |
+
*requires-clause* [[temp.pre]], or a trailing *requires-clause*
|
| 538 |
+
[[dcl.decl]].
|
| 539 |
+
|
| 540 |
+
[*Example 4*:
|
| 541 |
+
|
| 542 |
+
``` cpp
|
| 543 |
+
template <typename T> concept C1 = ...;
|
| 544 |
+
template <std::size_t N> concept C2 = ...;
|
| 545 |
+
template <typename A, typename B> concept C3 = ...;
|
| 546 |
+
|
| 547 |
+
auto f = []<typename T1, C1 T2> requires C2<sizeof(T1) + sizeof(T2)>
|
| 548 |
+
(T1 a1, T1 b1, T2 a2, auto a3, auto a4) requires C3<decltype(a4), T2> {
|
| 549 |
+
// T2 is constrained by a type-constraint.
|
| 550 |
+
// T1 and T2 are constrained by a requires-clause, and
|
| 551 |
+
// T2 and the type of a4 are constrained by a trailing requires-clause.
|
| 552 |
+
};
|
| 553 |
+
```
|
| 554 |
+
|
| 555 |
+
— *end example*]
|
| 556 |
+
|
| 557 |
+
— *end note*]
|
| 558 |
+
|
| 559 |
The closure type for a non-generic *lambda-expression* with no
|
| 560 |
+
*lambda-capture* whose constraints (if any) are satisfied has a
|
| 561 |
+
conversion function to pointer to function with C++ language linkage
|
| 562 |
+
[[dcl.link]] having the same parameter and return types as the closure
|
| 563 |
+
type’s function call operator. The conversion is to “pointer to
|
| 564 |
+
`noexcept` function” if the function call operator has a non-throwing
|
| 565 |
+
exception specification. The value returned by this conversion function
|
| 566 |
+
is the address of a function `F` that, when invoked, has the same effect
|
| 567 |
+
as invoking the closure type’s function call operator on a
|
| 568 |
+
default-constructed instance of the closure type. `F` is a constexpr
|
| 569 |
+
function if the function call operator is a constexpr function and is an
|
| 570 |
+
immediate function if the function call operator is an immediate
|
| 571 |
+
function.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
|
| 573 |
+
For a generic lambda with no *lambda-capture*, the closure type has a
|
| 574 |
+
conversion function template to pointer to function. The conversion
|
| 575 |
+
function template has the same invented template parameter list, and the
|
| 576 |
+
pointer to function has the same parameter types, as the function call
|
| 577 |
+
operator template. The return type of the pointer to function shall
|
| 578 |
+
behave as if it were a *decltype-specifier* denoting the return type of
|
| 579 |
+
the corresponding function call operator template specialization.
|
| 580 |
+
|
| 581 |
+
[*Note 5*:
|
| 582 |
|
| 583 |
If the generic lambda has no *trailing-return-type* or the
|
| 584 |
*trailing-return-type* contains a placeholder type, return type
|
| 585 |
deduction of the corresponding function call operator template
|
| 586 |
specialization has to be done. The corresponding specialization is that
|
|
|
|
| 612 |
};
|
| 613 |
```
|
| 614 |
|
| 615 |
— *end note*]
|
| 616 |
|
| 617 |
+
[*Example 5*:
|
| 618 |
|
| 619 |
``` cpp
|
| 620 |
void f1(int (*)(int)) { }
|
| 621 |
void f2(char (*)(int)) { }
|
| 622 |
|
|
|
|
| 637 |
— *end example*]
|
| 638 |
|
| 639 |
The value returned by any given specialization of this conversion
|
| 640 |
function template is the address of a function `F` that, when invoked,
|
| 641 |
has the same effect as invoking the generic lambda’s corresponding
|
| 642 |
+
function call operator template specialization on a default-constructed
|
| 643 |
+
instance of the closure type. `F` is a constexpr function if the
|
| 644 |
+
corresponding specialization is a constexpr function and `F` is an
|
| 645 |
+
immediate function if the function call operator template specialization
|
| 646 |
+
is an immediate function.
|
| 647 |
|
| 648 |
+
[*Note 6*: This will result in the implicit instantiation of the
|
| 649 |
generic lambda’s body. The instantiated generic lambda’s return type and
|
| 650 |
+
parameter types are required to match the return type and parameter
|
| 651 |
+
types of the pointer to function. — *end note*]
|
| 652 |
|
| 653 |
+
[*Example 6*:
|
| 654 |
|
| 655 |
``` cpp
|
| 656 |
auto GL = [](auto a) { std::cout << a; return a; };
|
| 657 |
int (*GL_int)(int) = GL; // OK: through conversion function template
|
| 658 |
GL_int(3); // OK: same as GL(3)
|
|
|
|
| 660 |
|
| 661 |
— *end example*]
|
| 662 |
|
| 663 |
The conversion function or conversion function template is public,
|
| 664 |
constexpr, non-virtual, non-explicit, const, and has a non-throwing
|
| 665 |
+
exception specification [[except.spec]].
|
| 666 |
|
| 667 |
+
[*Example 7*:
|
| 668 |
|
| 669 |
``` cpp
|
| 670 |
auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
|
| 671 |
auto C = [](auto a) { return a; };
|
| 672 |
|
| 673 |
static_assert(Fwd(C,3) == 3); // OK
|
| 674 |
|
| 675 |
// No specialization of the function call operator template can be constexpr (due to the local static).
|
| 676 |
auto NC = [](auto a) { static int s; return a; };
|
| 677 |
+
static_assert(Fwd(NC,3) == 3); // error
|
| 678 |
```
|
| 679 |
|
| 680 |
— *end example*]
|
| 681 |
|
| 682 |
The *lambda-expression*’s *compound-statement* yields the
|
| 683 |
+
*function-body* [[dcl.fct.def]] of the function call operator, but for
|
| 684 |
+
purposes of name lookup [[basic.lookup]], determining the type and value
|
| 685 |
+
of `this` [[class.this]] and transforming *id-expression*s referring to
|
| 686 |
+
non-static class members into class member access expressions using
|
| 687 |
+
`(*this)` ([[class.mfct.non-static]]), the *compound-statement* is
|
| 688 |
+
considered in the context of the *lambda-expression*.
|
|
|
|
| 689 |
|
| 690 |
+
[*Example 8*:
|
| 691 |
|
| 692 |
``` cpp
|
| 693 |
struct S1 {
|
| 694 |
int x, y;
|
| 695 |
int operator()(int);
|
|
|
|
| 707 |
Further, a variable `__func__` is implicitly defined at the beginning of
|
| 708 |
the *compound-statement* of the *lambda-expression*, with semantics as
|
| 709 |
described in [[dcl.fct.def.general]].
|
| 710 |
|
| 711 |
The closure type associated with a *lambda-expression* has no default
|
| 712 |
+
constructor if the *lambda-expression* has a *lambda-capture* and a
|
| 713 |
+
defaulted default constructor otherwise. It has a defaulted copy
|
| 714 |
+
constructor and a defaulted move constructor [[class.copy.ctor]]. It has
|
| 715 |
+
a deleted copy assignment operator if the *lambda-expression* has a
|
| 716 |
+
*lambda-capture* and defaulted copy and move assignment operators
|
| 717 |
+
otherwise [[class.copy.assign]].
|
| 718 |
|
| 719 |
+
[*Note 7*: These special member functions are implicitly defined as
|
| 720 |
usual, and might therefore be defined as deleted. — *end note*]
|
| 721 |
|
| 722 |
The closure type associated with a *lambda-expression* has an
|
| 723 |
+
implicitly-declared destructor [[class.dtor]].
|
| 724 |
|
| 725 |
+
A member of a closure type shall not be explicitly instantiated
|
| 726 |
+
[[temp.explicit]], explicitly specialized [[temp.expl.spec]], or named
|
| 727 |
+
in a friend declaration [[class.friend]].
|
| 728 |
|
| 729 |
#### Captures <a id="expr.prim.lambda.capture">[[expr.prim.lambda.capture]]</a>
|
| 730 |
|
| 731 |
``` bnf
|
| 732 |
lambda-capture:
|
|
|
|
| 741 |
'='
|
| 742 |
```
|
| 743 |
|
| 744 |
``` bnf
|
| 745 |
capture-list:
|
| 746 |
+
capture
|
| 747 |
+
capture-list ',' capture
|
| 748 |
```
|
| 749 |
|
| 750 |
``` bnf
|
| 751 |
capture:
|
| 752 |
simple-capture
|
| 753 |
init-capture
|
| 754 |
```
|
| 755 |
|
| 756 |
``` bnf
|
| 757 |
simple-capture:
|
| 758 |
+
identifier '...'ₒₚₜ
|
| 759 |
+
'&' identifier '...'ₒₚₜ
|
| 760 |
+
this
|
| 761 |
+
'*' 'this'
|
| 762 |
```
|
| 763 |
|
| 764 |
``` bnf
|
| 765 |
init-capture:
|
| 766 |
+
'...'ₒₚₜ identifier initializer
|
| 767 |
+
'&' '...'ₒₚₜ identifier initializer
|
| 768 |
```
|
| 769 |
|
| 770 |
The body of a *lambda-expression* may refer to variables with automatic
|
| 771 |
storage duration and the `*this` object (if any) of enclosing block
|
| 772 |
scopes by capturing those entities, as described below.
|
| 773 |
|
| 774 |
If a *lambda-capture* includes a *capture-default* that is `&`, no
|
| 775 |
identifier in a *simple-capture* of that *lambda-capture* shall be
|
| 776 |
preceded by `&`. If a *lambda-capture* includes a *capture-default* that
|
| 777 |
is `=`, each *simple-capture* of that *lambda-capture* shall be of the
|
| 778 |
+
form “`&` *identifier* `...`ₒₚₜ ”, “`this`”, or “`* this`”.
|
| 779 |
|
| 780 |
[*Note 1*: The form `[&,this]` is redundant but accepted for
|
| 781 |
compatibility with ISO C++14. — *end note*]
|
| 782 |
|
| 783 |
Ignoring appearances in *initializer*s of *init-capture*s, an identifier
|
|
|
|
| 787 |
|
| 788 |
``` cpp
|
| 789 |
struct S2 { void f(int i); };
|
| 790 |
void S2::f(int i) {
|
| 791 |
[&, i]{ }; // OK
|
| 792 |
+
[&, this, i]{ }; // OK, equivalent to [&, i]
|
| 793 |
[&, &i]{ }; // error: i preceded by & when & is the default
|
| 794 |
[=, *this]{ }; // OK
|
| 795 |
+
[=, this]{ }; // OK, equivalent to [=]
|
| 796 |
[i, i]{ }; // error: i repeated
|
| 797 |
[this, *this]{ }; // error: this appears twice
|
| 798 |
}
|
| 799 |
```
|
| 800 |
|
| 801 |
— *end example*]
|
| 802 |
|
| 803 |
+
A *lambda-expression* shall not have a *capture-default* or
|
| 804 |
+
*simple-capture* in its *lambda-introducer* unless its innermost
|
| 805 |
+
enclosing scope is a block scope [[basic.scope.block]] or it appears
|
| 806 |
+
within a default member initializer and its innermost enclosing scope is
|
| 807 |
+
the corresponding class scope [[basic.scope.class]].
|
|
|
|
|
|
|
|
|
|
|
|
|
| 808 |
|
| 809 |
The *identifier* in a *simple-capture* is looked up using the usual
|
| 810 |
+
rules for unqualified name lookup [[basic.lookup.unqual]]; each such
|
| 811 |
+
lookup shall find a local entity. The *simple-capture*s `this` and
|
| 812 |
+
`* this` denote the local entity `*this`. An entity that is designated
|
| 813 |
+
by a *simple-capture* is said to be *explicitly captured*.
|
|
|
|
|
|
|
| 814 |
|
| 815 |
If an *identifier* in a *simple-capture* appears as the *declarator-id*
|
| 816 |
of a parameter of the *lambda-declarator*'s
|
| 817 |
*parameter-declaration-clause*, the program is ill-formed.
|
| 818 |
|
| 819 |
[*Example 2*:
|
| 820 |
|
| 821 |
``` cpp
|
| 822 |
void f() {
|
| 823 |
int x = 0;
|
| 824 |
+
auto g = [x](int x) { return 0; }; // error: parameter and simple-capture have the same name
|
| 825 |
}
|
| 826 |
```
|
| 827 |
|
| 828 |
— *end example*]
|
| 829 |
|
| 830 |
+
An *init-capture* without ellipsis behaves as if it declares and
|
| 831 |
+
explicitly captures a variable of the form “`auto` *init-capture* `;`”
|
| 832 |
+
whose declarative region is the *lambda-expression*’s
|
| 833 |
+
*compound-statement*, except that:
|
| 834 |
|
| 835 |
- if the capture is by copy (see below), the non-static data member
|
| 836 |
declared for the capture and the variable are treated as two different
|
| 837 |
ways of referring to the same object, which has the lifetime of the
|
| 838 |
non-static data member, and no additional copy and destruction is
|
| 839 |
performed, and
|
| 840 |
- if the capture is by reference, the variable’s lifetime ends when the
|
| 841 |
closure object’s lifetime ends.
|
| 842 |
|
| 843 |
+
[*Note 2*: This enables an *init-capture* like “`x = std::move(x)`”;
|
| 844 |
the second “`x`” must bind to a declaration in the surrounding
|
| 845 |
context. — *end note*]
|
| 846 |
|
| 847 |
[*Example 3*:
|
| 848 |
|
|
|
|
| 851 |
auto y = [&r = x, x = x+1]()->int {
|
| 852 |
r += 2;
|
| 853 |
return x+2;
|
| 854 |
}(); // Updates ::x to 6, and initializes y to 7.
|
| 855 |
|
| 856 |
+
auto z = [a = 42](int a) { return 1; }; // error: parameter and local variable have the same name
|
| 857 |
```
|
| 858 |
|
| 859 |
— *end example*]
|
| 860 |
|
| 861 |
+
For the purposes of lambda capture, an expression potentially references
|
| 862 |
+
local entities as follows:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
|
| 864 |
+
- An *id-expression* that names a local entity potentially references
|
| 865 |
+
that entity; an *id-expression* that names one or more non-static
|
| 866 |
+
class members and does not form a pointer to member [[expr.unary.op]]
|
| 867 |
+
potentially references `*this`. \[*Note 3*: This occurs even if
|
| 868 |
+
overload resolution selects a static member function for the
|
| 869 |
+
*id-expression*. — *end note*]
|
| 870 |
+
- A `this` expression potentially references `*this`.
|
| 871 |
+
- A *lambda-expression* potentially references the local entities named
|
| 872 |
+
by its *simple-capture*s.
|
| 873 |
+
|
| 874 |
+
If an expression potentially references a local entity within a
|
| 875 |
+
declarative region in which it is odr-usable, and the expression would
|
| 876 |
+
be potentially evaluated if the effect of any enclosing `typeid`
|
| 877 |
+
expressions [[expr.typeid]] were ignored, the entity is said to be
|
| 878 |
+
*implicitly captured* by each intervening *lambda-expression* with an
|
| 879 |
+
associated *capture-default* that does not explicitly capture it. The
|
| 880 |
+
implicit capture of `*this` is deprecated when the *capture-default* is
|
| 881 |
+
`=`; see [[depr.capture.this]].
|
| 882 |
|
| 883 |
[*Example 4*:
|
| 884 |
|
| 885 |
``` cpp
|
| 886 |
+
void f(int, const int (&)[2] = {}); // #1
|
| 887 |
+
void f(const int&, const int (&)[1]); // #2
|
| 888 |
void test() {
|
| 889 |
const int x = 17;
|
| 890 |
auto g = [](auto a) {
|
| 891 |
f(x); // OK: calls #1, does not capture x
|
| 892 |
};
|
| 893 |
|
| 894 |
+
auto g1 = [=](auto a) {
|
| 895 |
+
f(x); // OK: calls #1, captures x
|
| 896 |
+
};
|
| 897 |
+
|
| 898 |
auto g2 = [=](auto a) {
|
| 899 |
int selector[sizeof(a) == 1 ? 1 : 2]{};
|
| 900 |
+
f(x, selector); // OK: captures x, might call #1 or #2
|
| 901 |
+
};
|
| 902 |
+
|
| 903 |
+
auto g3 = [=](auto a) {
|
| 904 |
+
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand
|
| 905 |
};
|
| 906 |
}
|
| 907 |
```
|
| 908 |
|
| 909 |
+
Within `g1`, an implementation might optimize away the capture of `x` as
|
| 910 |
+
it is not odr-used.
|
| 911 |
+
|
| 912 |
— *end example*]
|
| 913 |
|
| 914 |
+
[*Note 4*:
|
| 915 |
+
|
| 916 |
+
The set of captured entities is determined syntactically, and entities
|
| 917 |
+
might be implicitly captured even if the expression denoting a local
|
| 918 |
+
entity is within a discarded statement [[stmt.if]].
|
| 919 |
+
|
| 920 |
+
[*Example 5*:
|
| 921 |
+
|
| 922 |
+
``` cpp
|
| 923 |
+
template<bool B>
|
| 924 |
+
void f(int n) {
|
| 925 |
+
[=](auto a) {
|
| 926 |
+
if constexpr (B && sizeof(a) > 4) {
|
| 927 |
+
(void)n; // captures n regardless of the value of B and sizeof(int)
|
| 928 |
+
}
|
| 929 |
+
}(0);
|
| 930 |
+
}
|
| 931 |
+
```
|
| 932 |
+
|
| 933 |
+
— *end example*]
|
| 934 |
|
| 935 |
+
— *end note*]
|
|
|
|
|
|
|
|
|
|
| 936 |
|
| 937 |
An entity is *captured* if it is captured explicitly or implicitly. An
|
| 938 |
+
entity captured by a *lambda-expression* is odr-used [[basic.def.odr]]
|
| 939 |
+
in the scope containing the *lambda-expression*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 940 |
|
| 941 |
+
[*Note 5*: As a consequence, if a *lambda-expression* explicitly
|
| 942 |
+
captures an entity that is not odr-usable, the program is ill-formed
|
| 943 |
+
[[basic.def.odr]]. — *end note*]
|
| 944 |
+
|
| 945 |
+
[*Example 6*:
|
| 946 |
|
| 947 |
``` cpp
|
| 948 |
void f1(int i) {
|
| 949 |
int const N = 20;
|
| 950 |
auto m1 = [=]{
|
|
|
|
| 958 |
int f;
|
| 959 |
void work(int n) {
|
| 960 |
int m = n*n;
|
| 961 |
int j = 40;
|
| 962 |
auto m3 = [this,m] {
|
| 963 |
+
auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
|
| 964 |
+
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
|
| 965 |
x += m; // OK: m implicitly captured by m4 and explicitly captured by m3
|
| 966 |
+
x += i; // error: i is odr-used but not odr-usable
|
| 967 |
+
// due to intervening function and class scopes
|
| 968 |
x += f; // OK: this captured implicitly by m4 and explicitly by m3
|
| 969 |
};
|
| 970 |
};
|
| 971 |
}
|
| 972 |
};
|
|
|
|
| 976 |
double ohseven = .007;
|
| 977 |
auto f() {
|
| 978 |
return [this] {
|
| 979 |
return [*this] {
|
| 980 |
return ohseven; // OK
|
| 981 |
+
};
|
| 982 |
}();
|
| 983 |
}
|
| 984 |
auto g() {
|
| 985 |
return [] {
|
| 986 |
return [*this] { }; // error: *this not captured by outer lambda-expression
|
|
|
|
| 989 |
};
|
| 990 |
```
|
| 991 |
|
| 992 |
— *end example*]
|
| 993 |
|
| 994 |
+
[*Note 6*: Because local entities are not odr-usable within a default
|
| 995 |
+
argument [[basic.def.odr]], a *lambda-expression* appearing in a default
|
| 996 |
+
argument cannot implicitly or explicitly capture any local entity. Such
|
| 997 |
+
a *lambda-expression* can still have an *init-capture* if any
|
| 998 |
+
full-expression in its *initializer* satisfies the constraints of an
|
| 999 |
+
expression appearing in a default argument
|
| 1000 |
+
[[dcl.fct.default]]. — *end note*]
|
| 1001 |
|
| 1002 |
+
[*Example 7*:
|
| 1003 |
|
| 1004 |
``` cpp
|
| 1005 |
void f2() {
|
| 1006 |
int i = 1;
|
| 1007 |
+
void g1(int = ([i]{ return i; })()); // error
|
| 1008 |
+
void g2(int = ([i]{ return 0; })()); // error
|
| 1009 |
+
void g3(int = ([=]{ return i; })()); // error
|
| 1010 |
void g4(int = ([=]{ return 0; })()); // OK
|
| 1011 |
void g5(int = ([]{ return sizeof i; })()); // OK
|
| 1012 |
+
void g6(int = ([x=1]{ return x; })()); // OK
|
| 1013 |
+
void g7(int = ([x=i]{ return x; })()); // error
|
| 1014 |
}
|
| 1015 |
```
|
| 1016 |
|
| 1017 |
— *end example*]
|
| 1018 |
|
|
|
|
| 1030 |
referenced function type if the entity is a reference to a function, or
|
| 1031 |
the type of the corresponding captured entity otherwise. A member of an
|
| 1032 |
anonymous union shall not be captured by copy.
|
| 1033 |
|
| 1034 |
Every *id-expression* within the *compound-statement* of a
|
| 1035 |
+
*lambda-expression* that is an odr-use [[basic.def.odr]] of an entity
|
| 1036 |
captured by copy is transformed into an access to the corresponding
|
| 1037 |
unnamed data member of the closure type.
|
| 1038 |
|
| 1039 |
+
[*Note 7*: An *id-expression* that is not an odr-use refers to the
|
| 1040 |
+
original entity, never to a member of the closure type. However, such an
|
| 1041 |
+
*id-expression* can still cause the implicit capture of the
|
| 1042 |
entity. — *end note*]
|
| 1043 |
|
| 1044 |
+
If `*this` is captured by copy, each expression that odr-uses `*this` is
|
| 1045 |
+
transformed to instead refer to the corresponding unnamed data member of
|
| 1046 |
+
the closure type.
|
| 1047 |
|
| 1048 |
+
[*Example 8*:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1049 |
|
| 1050 |
``` cpp
|
| 1051 |
void f(const int*);
|
| 1052 |
void g() {
|
| 1053 |
const int N = 10;
|
|
|
|
| 1055 |
int arr[N]; // OK: not an odr-use, refers to automatic variable
|
| 1056 |
f(&N); // OK: causes N to be captured; &N points to
|
| 1057 |
// the corresponding member of the closure type
|
| 1058 |
};
|
| 1059 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1060 |
```
|
| 1061 |
|
| 1062 |
— *end example*]
|
| 1063 |
|
| 1064 |
An entity is *captured by reference* if it is implicitly or explicitly
|
| 1065 |
captured but not captured by copy. It is unspecified whether additional
|
| 1066 |
unnamed non-static data members are declared in the closure type for
|
| 1067 |
entities captured by reference. If declared, such non-static data
|
| 1068 |
members shall be of literal type.
|
| 1069 |
|
| 1070 |
+
[*Example 9*:
|
| 1071 |
|
| 1072 |
``` cpp
|
| 1073 |
// The inner closure type must be a literal type regardless of how reference captures are represented.
|
| 1074 |
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);
|
| 1075 |
```
|
|
|
|
| 1077 |
— *end example*]
|
| 1078 |
|
| 1079 |
A bit-field or a member of an anonymous union shall not be captured by
|
| 1080 |
reference.
|
| 1081 |
|
| 1082 |
+
An *id-expression* within the *compound-statement* of a
|
| 1083 |
+
*lambda-expression* that is an odr-use of a reference captured by
|
| 1084 |
+
reference refers to the entity to which the captured reference is bound
|
| 1085 |
+
and not to the captured reference.
|
| 1086 |
+
|
| 1087 |
+
[*Note 8*: The validity of such captures is determined by the lifetime
|
| 1088 |
+
of the object to which the reference refers, not by the lifetime of the
|
| 1089 |
+
reference itself. — *end note*]
|
| 1090 |
+
|
| 1091 |
+
[*Example 10*:
|
| 1092 |
+
|
| 1093 |
+
``` cpp
|
| 1094 |
+
auto h(int &r) {
|
| 1095 |
+
return [&] {
|
| 1096 |
+
++r; // Valid after h returns if the lifetime of the
|
| 1097 |
+
// object to which r is bound has not ended
|
| 1098 |
+
};
|
| 1099 |
+
}
|
| 1100 |
+
```
|
| 1101 |
+
|
| 1102 |
+
— *end example*]
|
| 1103 |
+
|
| 1104 |
If a *lambda-expression* `m2` captures an entity and that entity is
|
| 1105 |
captured by an immediately enclosing *lambda-expression* `m1`, then
|
| 1106 |
`m2`’s capture is transformed as follows:
|
| 1107 |
|
| 1108 |
- if `m1` captures the entity by copy, `m2` captures the corresponding
|
| 1109 |
non-static data member of `m1`’s closure type;
|
| 1110 |
- if `m1` captures the entity by reference, `m2` captures the same
|
| 1111 |
entity captured by `m1`.
|
| 1112 |
|
| 1113 |
+
[*Example 11*:
|
| 1114 |
|
| 1115 |
+
The nested *lambda-expression*s and invocations below will output
|
| 1116 |
`123234`.
|
| 1117 |
|
| 1118 |
``` cpp
|
| 1119 |
int a = 1, b = 1, c = 1;
|
| 1120 |
auto m1 = [a, &b, &c]() mutable {
|
|
|
|
| 1130 |
std::cout << a << b << c;
|
| 1131 |
```
|
| 1132 |
|
| 1133 |
— *end example*]
|
| 1134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1135 |
When the *lambda-expression* is evaluated, the entities that are
|
| 1136 |
captured by copy are used to direct-initialize each corresponding
|
| 1137 |
non-static data member of the resulting closure object, and the
|
| 1138 |
non-static data members corresponding to the *init-capture*s are
|
| 1139 |
initialized as indicated by the corresponding *initializer* (which may
|
| 1140 |
be copy- or direct-initialization). (For array members, the array
|
| 1141 |
elements are direct-initialized in increasing subscript order.) These
|
| 1142 |
initializations are performed in the (unspecified) order in which the
|
| 1143 |
non-static data members are declared.
|
| 1144 |
|
| 1145 |
+
[*Note 9*: This ensures that the destructions will occur in the reverse
|
| 1146 |
order of the constructions. — *end note*]
|
| 1147 |
|
| 1148 |
+
[*Note 10*: If a non-reference entity is implicitly or explicitly
|
| 1149 |
captured by reference, invoking the function call operator of the
|
| 1150 |
corresponding *lambda-expression* after the lifetime of the entity has
|
| 1151 |
ended is likely to result in undefined behavior. — *end note*]
|
| 1152 |
|
| 1153 |
+
A *simple-capture* containing an ellipsis is a pack expansion
|
| 1154 |
+
[[temp.variadic]]. An *init-capture* containing an ellipsis is a pack
|
| 1155 |
+
expansion that introduces an *init-capture* pack [[temp.variadic]] whose
|
| 1156 |
+
declarative region is the *lambda-expression*’s *compound-statement*.
|
| 1157 |
|
| 1158 |
+
[*Example 12*:
|
| 1159 |
|
| 1160 |
``` cpp
|
| 1161 |
template<class... Args>
|
| 1162 |
void f(Args... args) {
|
| 1163 |
auto lm = [&, args...] { return g(args...); };
|
| 1164 |
lm();
|
| 1165 |
+
|
| 1166 |
+
auto lm2 = [...xs=std::move(args)] { return g(xs...); };
|
| 1167 |
+
lm2();
|
| 1168 |
}
|
| 1169 |
```
|
| 1170 |
|
| 1171 |
— *end example*]
|
| 1172 |
|
| 1173 |
### Fold expressions <a id="expr.prim.fold">[[expr.prim.fold]]</a>
|
| 1174 |
|
| 1175 |
+
A fold expression performs a fold of a pack [[temp.variadic]] over a
|
| 1176 |
+
binary operator.
|
| 1177 |
|
| 1178 |
``` bnf
|
| 1179 |
fold-expression:
|
| 1180 |
'(' cast-expression fold-operator '...' ')'
|
| 1181 |
'(' '...' fold-operator cast-expression ')'
|
|
|
|
| 1194 |
An expression of the form `(...` *op* `e)` where *op* is a
|
| 1195 |
*fold-operator* is called a *unary left fold*. An expression of the form
|
| 1196 |
`(e` *op* `...)` where *op* is a *fold-operator* is called a *unary
|
| 1197 |
right fold*. Unary left folds and unary right folds are collectively
|
| 1198 |
called *unary folds*. In a unary fold, the *cast-expression* shall
|
| 1199 |
+
contain an unexpanded pack [[temp.variadic]].
|
| 1200 |
|
| 1201 |
An expression of the form `(e1` *op1* `...` *op2* `e2)` where *op1* and
|
| 1202 |
*op2* are *fold-operator*s is called a *binary fold*. In a binary fold,
|
| 1203 |
*op1* and *op2* shall be the same *fold-operator*, and either `e1` shall
|
| 1204 |
+
contain an unexpanded pack or `e2` shall contain an unexpanded pack, but
|
| 1205 |
+
not both. If `e2` contains an unexpanded pack, the expression is called
|
| 1206 |
+
a *binary left fold*. If `e1` contains an unexpanded pack, the
|
| 1207 |
+
expression is called a *binary right fold*.
|
|
|
|
| 1208 |
|
| 1209 |
[*Example 1*:
|
| 1210 |
|
| 1211 |
``` cpp
|
| 1212 |
template<typename ...Args>
|
|
|
|
| 1214 |
return (true && ... && args); // OK
|
| 1215 |
}
|
| 1216 |
|
| 1217 |
template<typename ...Args>
|
| 1218 |
bool f(Args ...args) {
|
| 1219 |
+
return (args + ... + args); // error: both operands contain unexpanded packs
|
| 1220 |
}
|
| 1221 |
```
|
| 1222 |
|
| 1223 |
— *end example*]
|
| 1224 |
|
| 1225 |
+
### Requires expressions <a id="expr.prim.req">[[expr.prim.req]]</a>
|
| 1226 |
+
|
| 1227 |
+
A *requires-expression* provides a concise way to express requirements
|
| 1228 |
+
on template arguments that can be checked by name lookup
|
| 1229 |
+
[[basic.lookup]] or by checking properties of types and expressions.
|
| 1230 |
+
|
| 1231 |
+
``` bnf
|
| 1232 |
+
requires-expression:
|
| 1233 |
+
requires requirement-parameter-listₒₚₜ requirement-body
|
| 1234 |
+
```
|
| 1235 |
+
|
| 1236 |
+
``` bnf
|
| 1237 |
+
requirement-parameter-list:
|
| 1238 |
+
'(' parameter-declaration-clauseₒₚₜ ')'
|
| 1239 |
+
```
|
| 1240 |
+
|
| 1241 |
+
``` bnf
|
| 1242 |
+
requirement-body:
|
| 1243 |
+
'{' requirement-seq '}'
|
| 1244 |
+
```
|
| 1245 |
+
|
| 1246 |
+
``` bnf
|
| 1247 |
+
requirement-seq:
|
| 1248 |
+
requirement
|
| 1249 |
+
requirement-seq requirement
|
| 1250 |
+
```
|
| 1251 |
+
|
| 1252 |
+
``` bnf
|
| 1253 |
+
requirement:
|
| 1254 |
+
simple-requirement
|
| 1255 |
+
type-requirement
|
| 1256 |
+
compound-requirement
|
| 1257 |
+
nested-requirement
|
| 1258 |
+
```
|
| 1259 |
+
|
| 1260 |
+
A *requires-expression* is a prvalue of type `bool` whose value is
|
| 1261 |
+
described below. Expressions appearing within a *requirement-body* are
|
| 1262 |
+
unevaluated operands [[expr.prop]].
|
| 1263 |
+
|
| 1264 |
+
[*Example 1*:
|
| 1265 |
+
|
| 1266 |
+
A common use of *requires-expression*s is to define requirements in
|
| 1267 |
+
concepts such as the one below:
|
| 1268 |
+
|
| 1269 |
+
``` cpp
|
| 1270 |
+
template<typename T>
|
| 1271 |
+
concept R = requires (T i) {
|
| 1272 |
+
typename T::type;
|
| 1273 |
+
{*i} -> std::convertible_to<const typename T::type&>;
|
| 1274 |
+
};
|
| 1275 |
+
```
|
| 1276 |
+
|
| 1277 |
+
A *requires-expression* can also be used in a *requires-clause*
|
| 1278 |
+
[[temp.pre]] as a way of writing ad hoc constraints on template
|
| 1279 |
+
arguments such as the one below:
|
| 1280 |
+
|
| 1281 |
+
``` cpp
|
| 1282 |
+
template<typename T>
|
| 1283 |
+
requires requires (T x) { x + x; }
|
| 1284 |
+
T add(T a, T b) { return a + b; }
|
| 1285 |
+
```
|
| 1286 |
+
|
| 1287 |
+
The first `requires` introduces the *requires-clause*, and the second
|
| 1288 |
+
introduces the *requires-expression*.
|
| 1289 |
+
|
| 1290 |
+
— *end example*]
|
| 1291 |
+
|
| 1292 |
+
A *requires-expression* may introduce local parameters using a
|
| 1293 |
+
*parameter-declaration-clause* [[dcl.fct]]. A local parameter of a
|
| 1294 |
+
*requires-expression* shall not have a default argument. Each name
|
| 1295 |
+
introduced by a local parameter is in scope from the point of its
|
| 1296 |
+
declaration until the closing brace of the *requirement-body*. These
|
| 1297 |
+
parameters have no linkage, storage, or lifetime; they are only used as
|
| 1298 |
+
notation for the purpose of defining *requirement*s. The
|
| 1299 |
+
*parameter-declaration-clause* of a *requirement-parameter-list* shall
|
| 1300 |
+
not terminate with an ellipsis.
|
| 1301 |
+
|
| 1302 |
+
[*Example 2*:
|
| 1303 |
+
|
| 1304 |
+
``` cpp
|
| 1305 |
+
template<typename T>
|
| 1306 |
+
concept C = requires(T t, ...) { // error: terminates with an ellipsis
|
| 1307 |
+
t;
|
| 1308 |
+
};
|
| 1309 |
+
```
|
| 1310 |
+
|
| 1311 |
+
— *end example*]
|
| 1312 |
+
|
| 1313 |
+
The *requirement-body* contains a sequence of *requirement*s. These
|
| 1314 |
+
*requirement*s may refer to local parameters, template parameters, and
|
| 1315 |
+
any other declarations visible from the enclosing context.
|
| 1316 |
+
|
| 1317 |
+
The substitution of template arguments into a *requires-expression* may
|
| 1318 |
+
result in the formation of invalid types or expressions in its
|
| 1319 |
+
*requirement*s or the violation of the semantic constraints of those
|
| 1320 |
+
*requirement*s. In such cases, the *requires-expression* evaluates to
|
| 1321 |
+
`false`; it does not cause the program to be ill-formed. The
|
| 1322 |
+
substitution and semantic constraint checking proceeds in lexical order
|
| 1323 |
+
and stops when a condition that determines the result of the
|
| 1324 |
+
*requires-expression* is encountered. If substitution (if any) and
|
| 1325 |
+
semantic constraint checking succeed, the *requires-expression*
|
| 1326 |
+
evaluates to `true`.
|
| 1327 |
+
|
| 1328 |
+
[*Note 1*: If a *requires-expression* contains invalid types or
|
| 1329 |
+
expressions in its *requirement*s, and it does not appear within the
|
| 1330 |
+
declaration of a templated entity, then the program is
|
| 1331 |
+
ill-formed. — *end note*]
|
| 1332 |
+
|
| 1333 |
+
If the substitution of template arguments into a *requirement* would
|
| 1334 |
+
always result in a substitution failure, the program is ill-formed; no
|
| 1335 |
+
diagnostic required.
|
| 1336 |
+
|
| 1337 |
+
[*Example 3*:
|
| 1338 |
+
|
| 1339 |
+
``` cpp
|
| 1340 |
+
template<typename T> concept C =
|
| 1341 |
+
requires {
|
| 1342 |
+
new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required
|
| 1343 |
+
};
|
| 1344 |
+
```
|
| 1345 |
+
|
| 1346 |
+
— *end example*]
|
| 1347 |
+
|
| 1348 |
+
#### Simple requirements <a id="expr.prim.req.simple">[[expr.prim.req.simple]]</a>
|
| 1349 |
+
|
| 1350 |
+
``` bnf
|
| 1351 |
+
simple-requirement:
|
| 1352 |
+
expression ';'
|
| 1353 |
+
```
|
| 1354 |
+
|
| 1355 |
+
A *simple-requirement* asserts the validity of an *expression*.
|
| 1356 |
+
|
| 1357 |
+
[*Note 1*: The enclosing *requires-expression* will evaluate to `false`
|
| 1358 |
+
if substitution of template arguments into the *expression* fails. The
|
| 1359 |
+
*expression* is an unevaluated operand [[expr.prop]]. — *end note*]
|
| 1360 |
+
|
| 1361 |
+
[*Example 1*:
|
| 1362 |
+
|
| 1363 |
+
``` cpp
|
| 1364 |
+
template<typename T> concept C =
|
| 1365 |
+
requires (T a, T b) {
|
| 1366 |
+
a + b; // C<T> is true if a + b is a valid expression
|
| 1367 |
+
};
|
| 1368 |
+
```
|
| 1369 |
+
|
| 1370 |
+
— *end example*]
|
| 1371 |
+
|
| 1372 |
+
A *requirement* that starts with a `requires` token is never interpreted
|
| 1373 |
+
as a *simple-requirement*.
|
| 1374 |
+
|
| 1375 |
+
[*Note 2*: This simplifies distinguishing between a
|
| 1376 |
+
*simple-requirement* and a *nested-requirement*. — *end note*]
|
| 1377 |
+
|
| 1378 |
+
#### Type requirements <a id="expr.prim.req.type">[[expr.prim.req.type]]</a>
|
| 1379 |
+
|
| 1380 |
+
``` bnf
|
| 1381 |
+
type-requirement:
|
| 1382 |
+
typename nested-name-specifierₒₚₜ type-name ';'
|
| 1383 |
+
```
|
| 1384 |
+
|
| 1385 |
+
A *type-requirement* asserts the validity of a type.
|
| 1386 |
+
|
| 1387 |
+
[*Note 1*: The enclosing *requires-expression* will evaluate to `false`
|
| 1388 |
+
if substitution of template arguments fails. — *end note*]
|
| 1389 |
+
|
| 1390 |
+
[*Example 1*:
|
| 1391 |
+
|
| 1392 |
+
``` cpp
|
| 1393 |
+
template<typename T, typename T::type = 0> struct S;
|
| 1394 |
+
template<typename T> using Ref = T&;
|
| 1395 |
+
|
| 1396 |
+
template<typename T> concept C = requires {
|
| 1397 |
+
typename T::inner; // required nested member name
|
| 1398 |
+
typename S<T>; // required class template specialization
|
| 1399 |
+
typename Ref<T>; // required alias template substitution, fails if T is void
|
| 1400 |
+
};
|
| 1401 |
+
```
|
| 1402 |
+
|
| 1403 |
+
— *end example*]
|
| 1404 |
+
|
| 1405 |
+
A *type-requirement* that names a class template specialization does not
|
| 1406 |
+
require that type to be complete [[basic.types]].
|
| 1407 |
+
|
| 1408 |
+
#### Compound requirements <a id="expr.prim.req.compound">[[expr.prim.req.compound]]</a>
|
| 1409 |
+
|
| 1410 |
+
``` bnf
|
| 1411 |
+
compound-requirement:
|
| 1412 |
+
'{' expression '}' noexceptₒₚₜ return-type-requirementₒₚₜ ';'
|
| 1413 |
+
```
|
| 1414 |
+
|
| 1415 |
+
``` bnf
|
| 1416 |
+
return-type-requirement:
|
| 1417 |
+
'->' type-constraint
|
| 1418 |
+
```
|
| 1419 |
+
|
| 1420 |
+
A *compound-requirement* asserts properties of the *expression* E.
|
| 1421 |
+
Substitution of template arguments (if any) and verification of semantic
|
| 1422 |
+
properties proceed in the following order:
|
| 1423 |
+
|
| 1424 |
+
- Substitution of template arguments (if any) into the *expression* is
|
| 1425 |
+
performed.
|
| 1426 |
+
- If the `noexcept` specifier is present, E shall not be a
|
| 1427 |
+
potentially-throwing expression [[except.spec]].
|
| 1428 |
+
- If the *return-type-requirement* is present, then:
|
| 1429 |
+
- Substitution of template arguments (if any) into the
|
| 1430 |
+
*return-type-requirement* is performed.
|
| 1431 |
+
- The immediately-declared constraint [[temp.param]] of the
|
| 1432 |
+
*type-constraint* for `decltype((E))` shall be satisfied.
|
| 1433 |
+
\[*Example 1*:
|
| 1434 |
+
Given concepts `C` and `D`,
|
| 1435 |
+
``` cpp
|
| 1436 |
+
requires {
|
| 1437 |
+
{ E1 } -> C;
|
| 1438 |
+
{ E2 } -> D<A₁, ⋯, Aₙ>;
|
| 1439 |
+
};
|
| 1440 |
+
```
|
| 1441 |
+
|
| 1442 |
+
is equivalent to
|
| 1443 |
+
``` cpp
|
| 1444 |
+
requires {
|
| 1445 |
+
E1; requires C<decltype((E1))>;
|
| 1446 |
+
E2; requires D<decltype((E2)), A₁, ⋯, Aₙ>;
|
| 1447 |
+
};
|
| 1448 |
+
```
|
| 1449 |
+
|
| 1450 |
+
(including in the case where n is zero).
|
| 1451 |
+
— *end example*]
|
| 1452 |
+
|
| 1453 |
+
[*Example 2*:
|
| 1454 |
+
|
| 1455 |
+
``` cpp
|
| 1456 |
+
template<typename T> concept C1 = requires(T x) {
|
| 1457 |
+
{x++};
|
| 1458 |
+
};
|
| 1459 |
+
```
|
| 1460 |
+
|
| 1461 |
+
The *compound-requirement* in `C1` requires that `x++` is a valid
|
| 1462 |
+
expression. It is equivalent to the *simple-requirement* `x++;`.
|
| 1463 |
+
|
| 1464 |
+
``` cpp
|
| 1465 |
+
template<typename T> concept C2 = requires(T x) {
|
| 1466 |
+
{*x} -> std::same_as<typename T::inner>;
|
| 1467 |
+
};
|
| 1468 |
+
```
|
| 1469 |
+
|
| 1470 |
+
The *compound-requirement* in `C2` requires that `*x` is a valid
|
| 1471 |
+
expression, that `typename T::inner` is a valid type, and that
|
| 1472 |
+
`std::same_as<decltype((*x)), typename T::inner>` is satisfied.
|
| 1473 |
+
|
| 1474 |
+
``` cpp
|
| 1475 |
+
template<typename T> concept C3 =
|
| 1476 |
+
requires(T x) {
|
| 1477 |
+
{g(x)} noexcept;
|
| 1478 |
+
};
|
| 1479 |
+
```
|
| 1480 |
+
|
| 1481 |
+
The *compound-requirement* in `C3` requires that `g(x)` is a valid
|
| 1482 |
+
expression and that `g(x)` is non-throwing.
|
| 1483 |
+
|
| 1484 |
+
— *end example*]
|
| 1485 |
+
|
| 1486 |
+
#### Nested requirements <a id="expr.prim.req.nested">[[expr.prim.req.nested]]</a>
|
| 1487 |
+
|
| 1488 |
+
``` bnf
|
| 1489 |
+
nested-requirement:
|
| 1490 |
+
requires constraint-expression ';'
|
| 1491 |
+
```
|
| 1492 |
+
|
| 1493 |
+
A *nested-requirement* can be used to specify additional constraints in
|
| 1494 |
+
terms of local parameters. The *constraint-expression* shall be
|
| 1495 |
+
satisfied [[temp.constr.decl]] by the substituted template arguments, if
|
| 1496 |
+
any. Substitution of template arguments into a *nested-requirement* does
|
| 1497 |
+
not result in substitution into the *constraint-expression* other than
|
| 1498 |
+
as specified in [[temp.constr.constr]].
|
| 1499 |
+
|
| 1500 |
+
[*Example 1*:
|
| 1501 |
+
|
| 1502 |
+
``` cpp
|
| 1503 |
+
template<typename U> concept C = sizeof(U) == 1;
|
| 1504 |
+
|
| 1505 |
+
template<typename T> concept D = requires (T t) {
|
| 1506 |
+
requires C<decltype (+t)>;
|
| 1507 |
+
};
|
| 1508 |
+
```
|
| 1509 |
+
|
| 1510 |
+
`D<T>` is satisfied if `sizeof(decltype (+t)) == 1`
|
| 1511 |
+
[[temp.constr.atomic]].
|
| 1512 |
+
|
| 1513 |
+
— *end example*]
|
| 1514 |
+
|
| 1515 |
+
A local parameter shall only appear as an unevaluated operand
|
| 1516 |
+
[[expr.prop]] within the *constraint-expression*.
|
| 1517 |
+
|
| 1518 |
+
[*Example 2*:
|
| 1519 |
+
|
| 1520 |
+
``` cpp
|
| 1521 |
+
template<typename T> concept C = requires (T a) {
|
| 1522 |
+
requires sizeof(a) == 4; // OK
|
| 1523 |
+
requires a == 0; // error: evaluation of a constraint variable
|
| 1524 |
+
};
|
| 1525 |
+
```
|
| 1526 |
+
|
| 1527 |
+
— *end example*]
|
| 1528 |
+
|