tmp/tmpba8go0_4/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Riemann zeta function <a id="sf.cmath.riemann_zeta">[[sf.cmath.riemann_zeta]]</a>
|
| 2 |
+
|
| 3 |
+
``` cpp
|
| 4 |
+
double riemann_zeta(double x);
|
| 5 |
+
float riemann_zetaf(float x);
|
| 6 |
+
long double riemann_zetal(long double x);
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
*Effects:* These functions compute the Riemann zeta function of their
|
| 10 |
+
respective arguments `x`.
|
| 11 |
+
|
| 12 |
+
*Returns:* $$%
|
| 13 |
+
\mathsf{\zeta}(x) =
|
| 14 |
+
\left\{
|
| 15 |
+
\begin{array}{cl}
|
| 16 |
+
\displaystyle
|
| 17 |
+
\sum_{k=1}^\infty k^{-x},
|
| 18 |
+
& \mbox{for $x > 1$}
|
| 19 |
+
\\
|
| 20 |
+
\\
|
| 21 |
+
\displaystyle
|
| 22 |
+
\frac{1}
|
| 23 |
+
{1 - 2^{1-x}}
|
| 24 |
+
\sum_{k=1}^\infty (-1)^{k-1} k^{-x},
|
| 25 |
+
& \mbox{for $0 \le x \le 1$}
|
| 26 |
+
\\
|
| 27 |
+
\\
|
| 28 |
+
\displaystyle
|
| 29 |
+
2^x \pi^{x-1} \sin(\frac{\pi x}{2}) \, \Gamma(1-x) \, \zeta(1-x),
|
| 30 |
+
& \mbox{for $x < 0$}
|
| 31 |
+
\end{array}
|
| 32 |
+
\right.
|
| 33 |
+
\;$$ where x is `x`.
|
| 34 |
+
|