tmp/tmp1og8b_an/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Cylindrical Bessel functions of the first kind <a id="sf.cmath.cyl_bessel_j">[[sf.cmath.cyl_bessel_j]]</a>
|
| 2 |
+
|
| 3 |
+
``` cpp
|
| 4 |
+
double cyl_bessel_j(double nu, double x);
|
| 5 |
+
float cyl_bessel_jf(float nu, float x);
|
| 6 |
+
long double cyl_bessel_jl(long double nu, long double x);
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
*Effects:* These functions compute the cylindrical Bessel functions of
|
| 10 |
+
the first kind of their respective arguments `nu` and `x`.
|
| 11 |
+
|
| 12 |
+
*Returns:* $$%
|
| 13 |
+
\mathsf{J}_\nu(x) =
|
| 14 |
+
\sum_{k=0}^\infty \frac{(-1)^k (x/2)^{\nu+2k}}
|
| 15 |
+
{k! \: \Gamma(\nu+k+1)},
|
| 16 |
+
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 17 |
+
|
| 18 |
+
*Remarks:* The effect of calling each of these functions is
|
| 19 |
+
*implementation-defined* if `nu >= 128`.
|
| 20 |
+
|