tmp/tmpr_j4fh7b/{from.md → to.md}
RENAMED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### Regular modified cylindrical Bessel functions <a id="sf.cmath.cyl_bessel_i">[[sf.cmath.cyl_bessel_i]]</a>
|
| 2 |
+
|
| 3 |
+
``` cpp
|
| 4 |
+
double cyl_bessel_i(double nu, double x);
|
| 5 |
+
float cyl_bessel_if(float nu, float x);
|
| 6 |
+
long double cyl_bessel_il(long double nu, long double x);
|
| 7 |
+
```
|
| 8 |
+
|
| 9 |
+
*Effects:* These functions compute the regular modified cylindrical
|
| 10 |
+
Bessel functions of their respective arguments `nu` and `x`.
|
| 11 |
+
|
| 12 |
+
*Returns:* $$%
|
| 13 |
+
\mathsf{I}_\nu(x) =
|
| 14 |
+
i^{-\nu} \mathsf{J}_\nu(ix)
|
| 15 |
+
=
|
| 16 |
+
\sum_{k=0}^\infty \frac{(x/2)^{\nu+2k}}
|
| 17 |
+
{k! \: \Gamma(\nu+k+1)},
|
| 18 |
+
\quad \mbox{for $x \ge 0$}$$ where $\nu$ is `nu` and x is `x`.
|
| 19 |
+
|
| 20 |
+
*Remarks:* The effect of calling each of these functions is
|
| 21 |
+
*implementation-defined* if `nu >= 128`.
|
| 22 |
+
|
| 23 |
+
See also [[sf.cmath.cyl_bessel_j]].
|
| 24 |
+
|